Stereo-Vision-Based Driver Assistance - Predict Situations and Automatically Adapt to Traffic -

Reinhard Klette

Zhifeng Liu, Shushi Guan, Tobi Vaudrey, Sandino Morales, Jorge Sanchez, and James Milburn

The University of Auckland, Tamaki campus .enpeda.. Project

Abstract: This talk is about ...

Stereo and Motion Analysis in DAS towards Analysis and Understanding of Traffic

General motivation:

Visual Perception for Modern Cars

Standard sensors in the car of the future: radar, range-finder, cameras, ultra-sound

Parking assistant

Drowsiness detection

Night vision

Blind spot detection

Lane departure warning

Adaptive cruise control

Stereo vision

Active brake assist

Applications in cars today

Parking assistant: 2006

Drowsiness detection: 2007

Night vision: 2005

Blind spot detection: 2004

Lane departure warning: 1995

Adaptive cruise control: 1998

Active break assist: 2008

Stereo vision

. . .

free space detection 3D understanding of scenes width of drivable area pedestrian detection object tracking obstacle detection collision avoidance traffic sign recognition

"Very few innovations can be expected to have as high an impact on future cars as the capability to **perceive** the environment and to **plan** and **conduct** appropriate driving behavior. "

Ü. Özgüner, Ch. Stiller, K. Redmill, Proc. IEEE, 2007

H.M. Jagtman, E. Wiersma, 16th ICTCT workshop, 2003

ACC is distance based, thus there **should** be no problem. ---However, (stereo) vision might also help to exclude (any very low chance of) failure in such a case.

Visual perception influenced by

• day or night

- sun, shade, sun stroke
- o rain, snow, hail
- o heavy or light traffic
- urban or open road
- 。 fast or slow ego-motion
- o fast or slow motion of other objects
- etc. Performance of stereo vision sensors/programs
 is evaluated by using specific metrics: so far only
 by a few simple metrics to advice with respect to a
 basically unlimited diversity of possible situations.

Imagine a driver with allochromasia, tunnel vision (limited peripheral viewing), and myopia (distance blur), but stereo vision:

Did you see the bird flying through?

At what distance to the car?

The common "AI pyramid":

Environment Perception and Driver Assistance

The .enpeda.. Project

HAKA1 = High Awareness Kinematic Automobile no. 1

Test vehicle for recording stereo sequences

two 752 x 480 gray level cameras, 10 bit per pixel

Sponsors: Mercedes Benz New Zealand & Coutts Cars North Shore

Computer installation, thanks to Manukau IT

HAKA1 in the Waitakeres: geometrically rectified stereo images (see standard references in computer vision)

with prior calibration at Tamaki campus (see J.-Y. Bouguet, **Calibration Toolbox**)

A very brief introduction into

Stereo and Motion Analysis

Stereo vision on rectified images

Left Image

Right Image

(Tsukuba stereo pair, see Middlebury stereo website)

One-dimensional disparities between pairs of corresponding points

disparity d at (x,y) in left image

Disparities are mapped into depth and shown in gray scale or color.

Optical flow analysis on image sequences

Image 1

Image 2

(engineered image sequence, Middlebury flow website)

Two-dimensional flow vectors between pairs of corresponding points

Local motion (optic flow) estimation

For each of the two sequences, motion vectors (u,v) are calculated by comparing frames along the time scale. Vectors at (x,y) are shown as one colored dot, representing direction by using the HSI scheme on the left; note that length is encoded by intensity (black = no motion).

flow key

BBPW algorithm on the Auckland Harbor Bridge [Bruhn, Brox, Papenberg, Weickert, ECCV 2004]

BBPW algorithm in the Waitakeres (left and right sequence separately)

Available data (with or without `ground truth') for

Performance Evaluation

Synthesized stereo sequence with ground truth

white =

www.mi.auckland.ac.nz/EISATS

CLG algorithm (combining local and global motion analysis) [Bruhn, Weickert, Schnörr, IJCV 2005]

white = no motion

www.mi.auckland.ac.nz/EISATS

Performance of stereo vision sensors/programs are evaluated by using specific **metrics**: so far only a few simple metrics to advice with respect to a basically unlimited diversity of possible situations.

mean angular error (for ALL the *n* pixels)

$$E_{AE} = \frac{1}{n} \sum \arccos\left(\frac{\mathbf{u} \cdot \mathbf{u}_T}{|\mathbf{u}||\mathbf{u}_T|}\right)$$

endpoint error (for ALL the *n* pixels)

$$E_{EP} = \sqrt{(u - u_T)^2 + (v - v_T)^2}$$

Note: actually, only errors in relevant regions of interest

Real-world or synthetic image sequence test data

(partially with ground truth)

www.mi.auckland.ac.nz/EISATS

#1: Construction-site sequence

#4: Dancing-light sequence

#2: Save-turn sequence

#5: Intern-on-bike sequence

#3: Squirrel sequence

#6: Traffic-light sequence

Set 1:

Seven stereo sequences Daimler A.G. 2007

#7: Crazy-turn sequence

Original dancing light sequence

Pyramid Horn-Schunck

Sobel edge image

Pyramid HS on edge image

Comparative performance evaluation

Stereo algorithms

- An experimental comparison of stereo algorithms
 R. Szeliski & R. Zabih (2000)
- Middlebury Stereo Test Site
 D. Scharstein and R. Szeliski (2002)
- ...

Flow algorithms

- Performance of optical flow techniques
 - J. Barron, D. Fleet, S. Beauchemin (1994)
- Middlebury Flow Test Site
 S Baker et al. (2007)
 - S. Baker *et al*. (2007)

- .

Middlebury computer vision website

Stereo

Original Image

Ground Truth

Optical Flow

use of two or three metrics for defined subregions (non-occluded, textured, ...)

The Top 50 Stereo Algorithms on 1 Dec 2008

ranking by total accuracy of calculated disparities within whole images

engineered or synthetic stereo pairs

given with `ground truth'

each test set of relatively small cardinality (say, less than 10 images)

Similar approach for Flow Algorithms

Error Threshold =	1	1	Sort by	nonocc		-	Sort	by all		-	Sort b	y disc	-		
Error Threshold	:)			/											
Algorithm	Avg.	9	Tsukuba round trut	h	9	Venus	th	92	Teddy ound trut	ih	9	Cones round trut	<u>in</u>	Average p of bad p (explana	ercent ixels i <u>tion</u>)
	Rank	nonocc		disc	nonocc		disc	nonocc		disc	nonocc	V	disc		31
AdaptingBP [17]	3.2	1.117	1.37.3	5.79 8	0.10 1	0.21 3	1.44 2	4.22 3	7.06 2	11.8.3	2.48 1	7.92 3	7,32 2		4.23
CoopRegion [41]	3.2	0.87 1	1.16 1	4.61 1	0.11 2	0.21 2	1.54.4	<u>5.16</u> 7	8.31.4	13.0 8	2.79 4	7.18 1	8.01 5		4.41
DoubleBP [35]	4.4	0.88 3	1.29 2	4.76.3	0.13 5	0.45 8	1.87 7	3.53 2	8.30 3	9.63 1	2.90 5	8.78 11	7.79 3	1 - 1	4.19
OutlierConf [42]	5.1	<u>0.88</u> 2	1.43 5	4.74 2	0.18 9	0.26 5	2.40 11	5.01 5	9,12 6	12.8 5	<u>2.78</u> 3	8.57 7	6.99 1		4.60
SubPixDoubleBP [30]	6.8	1.24 12	1.76 14	5.98 9	0.12 4	0.46 9	1.74 6	3.45 1	8.38 5	10.0 2	2.93 6	8.73 10	7.91 4		4.39
AdaptOvrSegBP [33]	11.7	<u>1.69</u> 24	2.04 22	5.64 7	<u>0.14</u> 6	0.20 1	1.47 3	7.04 17	11.1.9	16.4 13	3.60 13	8.96 13	8.84 12		5.59
PlaneFitBP [32]	12.6	0.97 6	1.83 15	5.26 6	<u>0.17</u> 8	0.51 11	1.71 5	6.65 11	12.1 15	14.7 8	4.17 23	10.7 22	10.6 21		5.78
SymBP+occ [7]	12.7	0.97 5	1.75 13	5.09 5	<u>0.16</u> 7	0.33 6	2.19 9	<u>6.47</u> 10	10.7 8	17.0 17	4.79 27	10.7 23	10.9 22		5.92
Undr+OvrSeg [48]	12.9	2.44 33	2.93 29	10.1 34	<u>0.11</u> 3	0.22 4	1,34 1	<u>6.67</u> 12	9.73 7	16,4 12	<u>3.08</u> 9	8.32 5	8.14 6		5.79
AdaptDispCallb [36]	13.8	1.19 10	1.42.4	8.15 11	0.23 11	0.34 7	2.50 13	7.80 22	13.6 23	17.3 20	3.62 14	9.33 14	9.72.17		6.10
Segm+visib [4]	14.3	<u>1.30</u> 17	1.57 6	6.92 21	<u>0.79</u> 25	1.06 22	6.76 28	5.00 4	6.54 1	12.3 4	3.72 15	8.62 9	10.2 19		5.40
C-SemiGlob [19]	14.9	2.61 35	3.29 30	9.89 32	0.25 14	0.57 13	3.24 18	<u>5.14</u> B	11.8 10	13.0 8	2.77 2	8.35 B	8.20 7		5.76
SO+borders [29]	14.9	<u>1.29</u> 16	1.71 10	6.83 18	0.25 15	0.53 12	2.26 10	7.02 16	12.2 16	16.3 10	3.90 18	9.85 18	10.2 20		6.03
DistinctSM [27]	16.3	1.21 11	1.75 12	6.39 13	0.35 16	0.69 18	2.63 15	7.45 21	13.0 19	18.1 22	<u>3.91</u> 19	9.91 20	8.32 9		6.14
OverSegmBP [26]	16,9	1.69 25	1.97 19	8.47 27	0.50 21	0.68 17	4,69 23	6.74 13	11.9 14	15.8 9	3.19 10	8.81 12	8,89 13		6.11
CostAggr+occ [39]	17.2	1.38 19	1.96 18	7.14 22	0.44 19	1.13 24	4.87 24	6.80 14	11.9 12	17.3 19	3.60 12	8.5/ 8	9.36 15		6.20
SegmentSupport [28]	17.3	1.25 13	1.62.6	0.08 15	0.25 13	0.64 16	2.59 14	8.43 20	14.2 24	18.2 23	3.// 10	9.87 19	9.77 18	_	0.44
FebagesdPD [24]	18.3	1.39 21	1.04 9	6.85 19	0.22 10	0.57 13	1.93 8	7.92 20	11.9 13	10.8 15	<u>0.31</u> 30	11.9 29	11.8 20		0.00
Enhancedbr (24)	19.0	0.94 4	1.79 11	0.00 00	0.33 17	0.00 19	4.34 22	<u>8.11</u> 20	13.3 21	18.3 20	<u>5.09</u> 30	11.1 25	11.0 23		80.0
Adaptiveight [12]	20.7	1.30 19	1.00 10	6 92 17	1.15.20	1.13 25	10 7 20	9.07.24	11.0.11	10.0 20	3.02.24	0.00 15	0.20 0		7.00
SecTreeDP (22)	20.0	2 21 31	2 78 28	10 3 35	0.46 20	0.60.15	2 44 12	0 58 32	15.2.31	18.4.25	9.92 11	7.88.2	8.83 11	_	68.8
ImproveSubPix [25]	21.8	3 00 37	3.61.34	10.9.37	0.88.27	1 47 26	7.10.30	7 12 18	12.4.18	16.6 14	2.96.7	8 22 4	8.55 10		6.90
SemiGlob (6)	23.0	3.26.38	3.96 35	12.8 40	1.00 28	1.57 27	11.3 34	6.02.8	12.2 17	16.3 11	3.06 8	9.75 16	8.90 14		7.50
VariableCross (44)	26.3	1.99 28	2.65 25	6.77 16	0.62 22	0.96 21	3.20 17	9.75 33	15.1 29	18.2 24	6.28 35	12.7 32	12.9 34	-	7.60
RealtimeBP [21]	26.6	1.49 22	3.40 32	7.87 25	0.77 24	1.90 31	9.00 33	8.72 30	13.2 20	17.2 18	4.61 25	11.6 27	12.4 32	1	7.69
20P+acc [37]	27.2	2.91 36	3.56 33	7.33 24	0.24 12	0.49 10	2.76 16	10.9 38	15.4 32	20.6 35	5.42 33	10.8 24	12.5 33		7.75
CCH+SegAggr [47]	27.7	1.74 26	2.11 23	9.23 30	0.41 18	0.94 20	3.97 21	8.08 25	14.3 25	19.8 33	7.07 39	12.9 33	16.3 39	10.00	8.07
FastAggreg (45)	28.3	1.16 8	2.11 24	6.06 10	4.03 43	4.75 42	6.43 26	9.04 31	15.2 30	20.2 34	5.37 32	12.6 31	11.9 28		8.24
GC+occ [2]	28.5	1.19 9	2.01 21	6.24 12	1.64 35	2.19 33	6.75 27	11.2 39	17.4 38	19.8 32	5.36 31	12.4 30	13.0 35	12 C	8.26
Layered (5)	29.2	<u>1.57</u> 23	1.87 17	8.28 26	1.34 32	1.85 29	6.85 29	8.64 29	14.3 26	18.5 27	6.59 38	14.7 37	14.4 37		8.24
MultiCamGC [3]	29.2	<u>1.27</u> 15	1.99 20	6.48 14	<u>2.79</u> 41	3.13 38	3.60 20	<u>12.0</u> 40	17.6 39	22.0 38	4.89 28	11.8 28	12.1 29		8.31
ConvexTV [46]	30,4	<u>3.61</u> 39	5.72 41	18.0 46	<u>1.16</u> 30	2.50 35	12.4 38	<u>6.10</u> 9	15.7 33	16.8 16	<u>3.88</u> 17	14.4 36	11.5 25		9.30
AdaptPolygon [43]	30.8	2.29 32	2.88 28	8.94 29	0.80 26	1.11 23	3.41 19	10.5 37	15.9 34	21.3 37	6.13 34	13.2 34	13.3 36	1	8.32
GenModel [20]	32.3	2.57 34	4.74 38	13.0 41	<u>1.72</u> 36	3.08 37	16.9 41	<u>6.86</u> 15	15.0 28	19.2 30	4.64 26	14.9 38	11.4 24		9.50
TensorVoting [9]	32.9	<u>3.79</u> 40	4.79 39	8.86 28	<u>1.23</u> 31	1.88 30	11.5 35	<u>9.76</u> 34	17.0 37	24.0 41	4.38 24	11.4 26	12.2 30		9.25
RealTimeGPU [14]	33.3	2.05 30	4.22 37	10.6 36	<u>1.92</u> 38	2.98 36	20.3 43	7.23 19	14.4 27	17.6 21	<u>6.41</u> 37	13.7 35	16.5 40		9.82
CostRelax [11]	34.5	4.76 45	6.08 43	20.3 47	1.41 34	2.48 34	18.5 42	8.18 27	15.9 35	23.8 39	3.91 20	10.2 21	11.8 27		10.6
ReliabilityDP [13]	35.6	1.36 18	3.39 31	7.25 23	2.35 40	3.48 41	12.2 37	9.82 35	16.9 36	19.5 31	12.9 47	19.9 46	19.7 42		10.7
TreeDP [8]	37.0	1.99 29	2.84 27	9.96 33	<u>1.41</u> 33	2.10 32	7.74 31	<u>15.9</u> 44	23.9 44	27.1 45	10.0 43	18.3 42	18.9 41	1	11.7
GC[1d]	37.9	1.94 27	4.12 36	9.39 31	1.79 37	3.44 40	8.75 32	16.5 45	25.0 46	24.9 42	7.70 40	18.2 41	15.3 38		11.4
DR (40)	38.6	4.17 43	5.04 44	14.6 43	104 50	3.31 39	10.8 40	10.2 36	18.9 40	24.0 40	4.93 29	10.6.39	12.3 31		11.1
Dr [10]	42.1	4.12 42	0.04 40	12.0 38	0.1 50	0.10.25	21.0 44	14.0 41	21.0 91	20.0 35	10.8 44	19.1 43	21.1 94		14.2
RegionalSup (201	44.0	3.00.41	8.05 42	14 2 49	8 14 40	0.10.45	36.8.40	18.3.40	28.7.49	32 1 47	9 16 41	10.3.44	10.0.42		17.0
SSD4ME [1a]	44.0	5 23 48	7.07.40	24 1 40	3 74 42	5 16 42	11.9.30	16.5.46	24 8 45	32.9 48	10.6.45	19.8 45	26.3.47		17.0
STICA (16)	46.4	7.70.49	9.63.50	27.8.40	8 19 47	9.58.48	40.3.50	15.8.43	23.2 43	37.7.49	9.80.42	17.8.40	28.7.40		10.7
SOItel	46.9	5.08 47	7.22 48	12.2.30	9.44 49	10.9 49	21.9.45	19.9 49	28.2 50	26.3 44	13.0 48	22.8 49	22.3 48		16.6
PhaseDiff (23)	47.8	4.89 46	7.11 47	16.3 45	8.34 48	9.76 48	26.0 46	20.0 50	28.0 49	29.0 46	19.8 50	28.5 50	27.5 48		18.8
Infection [10]	48.0	7.95 50	9.54 49	28.9 50	4.41 44	5.53 44	31.7 48	17.7 47	25.1 47	44.4 50	14.3 49	21.3 48	38.0 50	1	20.7
				and the second second		-						and the second se			

Datasets · Code · Submit

w features and main differences to version 1 abmit and evaluate your own results.

The Middlebury Effect

- Great leaps forward in stereo and flow algorithms!
- Very accurate results for these specific scenes
- Very strong influence on differential methods
- no focus on using multiple time frames (e.g., Kalman filtering)

Differences in image data

Real-world images low contrast, gray-value, but 10 or 12 bit homogeneous regions, specularities differences in brightness (e.g., left to right) etc. - just REAL WORLD

-

Synthetic images (engineered or rendered)

Brightness differences between left and right image

causes BP to fail (in difference to DP, SGM MI, or BT) - so far not discussed on Middlebury stereo page

Examples of approaches to provide ...

Ground Truth for Real-World Sequences

We read yaw rate and velocity at 25 Hz from the car's computer, thanks to the research department at

Daimler AG Germany

1. Motion parameters of ego-vehicle by reading sensor data

GPS: Blackhawk Tracking Devices Ltd

20 Ε R S 10 . Z

110

2. Adaptive tilt estimation based on disparities

See [Liu and Klette, AI 2008]

$$\theta = \arcsin\left(\frac{H\cos\psi \cdot d}{b \cdot f}\right) - \psi$$
$$\psi = \arctan\left(\frac{(y_p - y_0)s_y}{f}\right)$$

Example: estimated mean tilt angles

for (subsequent, disjoint) intervals of

10 stereo frames (taken in 0.4 sec)

within a recorded stereo sequence

First pair of frames	1	11	21	31	41	51	61	71	81	91	101	111
Tilt angle $(10^{-3} \text{ of a radian})$	80	71	60	60	62	63	65	70	77	71	63	66
First pair of frames	121	131	141	151	161	171	181	191	201	211	221	231
Tilt angle $(10^{-3} \text{ of a radian})$	60	50	50	59	58	54	55	56	58	53	53	42

See [Liu and Klette, PSIVT 2009]

-

3. Radar for distance to lead vehicle

4. Indoor sequence recorded under defined conditions

constant and known camera viewing angles towards a ground plane translation of calibrated camera with respect to a scene on this plane

Examples of ...

Evaluations on Different Input Data

1. Improving dynamic programming stereo by propagation

Sequence from Set 1 www.mi.auckland.ac.nz/EISATS

Dynamic programming stereo with temporal propagation [Liu and Klette, AI 2008]

Sequence Name	Num of Frames	RMS	Bad Match %
1: 2007-03-06_121807	300	0.020271	2.68%
2: 2007-03-07_144703	300	0.023257	8.51%
3: 2007-03-15_182043	300	0.023400	23.11%
4: 2007-04-20_083101	250	0.067744	21.40%
5: 2007-04-27_145842	250	0.063743	17.50%
6: 2007-04-27_155554	250	0.071799	44.78%
7: 2007-05-08_132636	220	0.056440	35.75%

Original DP (without propagation) on road areas

Sequence Name	Num of Frames	RMS	Bad Match %
1: 2007-03-06_121807	300	0.026014	15.12%
2: 2007-03-07_144703	300	0.053607	51.87%
3: 2007-03-15_182043	300	0.025122	40.37%
4: 2007-04-20_083101	250	0.069820	46.37%
5: 2007-04-27_145842	250	0.064231	24.85%
6: 2007-04-27_155554	250	0.074456	58.16%
7: 2007-05-08_132636	220	0.061994	50.80%

DP with spatial propagation on road areas

Sequence Name	Num of Frames	RMS	Bad Match %
1: 2007-03-06_121807	300	0.019513	1.88%
2: 2007-03-07_144703	300	0.018198	3.28%
3: 2007-03-15_182043	300	0.022127	17.75%
4: 2007-04-20_083101	250	0.067528	19.24%
5: 2007-04-27_145842	250	0.063678	16.37%
6: 2007-04-27_155554	250	0.071739	45.28%
7: 2007-05-08_132636	220	0.054376	32.87%

DP with temporal propagation on road areas

Sequence Name	Num of Frames	RMS	Bad Match %
1: 2007-03-06_121807	300	0.020348	5.54%
2: 2007-03-07_144703	300	0.038693	18.98%
3: 2007-03-15_182043	300	0.022827	24.36%
4: 2007-04-20_083101	250	0.067902	31.79%
5: 2007-04-27_145842	250	0.063755	16.19%
6: 2007-04-27_155554	250	0.072373	51.01%
7: 2007-05-08_132636	220	0.058989	41.79%

DP with spatio-temporal propagation on road areas

Sequence Name	Num of Frames	RMS	Bad Match %
1: 2007-03-06_121807	300	0.089806	60.98%
2: 2007-03-07_144703	300	0.105662	96.80%
3: 2007-03-15_182043	300	0.109850	81.04%
4: 2007-04-20_083101	250	0.125842	99.21%
5: 2007-04-27_145842	250	0.116894	94.63%
6: 2007-04-27_155554	250	0.135165	99.82%
7: 2007-05-08_132636	220	0.104936	99.43%

Birchfield-Tomasi on road areas

Note: analysis along sequences allows a new quality (compared to small input sets)

2. Improving belief propagation stereo by preprocessing

Original left input sequence

Sobel of left input sequence

BP on original input sequences

BP on Sobel input sequences

[Guan and Klette, Robot Vision 2008]

Original

BP

Edge BP

BP on Middlebury stereo image pairs

Table below: results get slightly worse for edge (Sobel) images of those stereo pairs

Image pair	Tsukuba	edge	Мар	edge	Sawtooth	edge	Venus	edge
error	1.75	1.81	0.31	0.33	0.94	0.95	0.99	1.02

3. Improving occupancy grid by also using disparity rate in the Kalman filter

[Vaudrey, Badino, Gehrig, Robot Vision 2008]

www.mi.auckland.ac.nz

Incorporating disparity rate improved distance (speed) estimates to lead vehicle, compared to static stereo integration [Vaudrey, Badino, Gehrig, Robot Vision 2008]

4. Evaluation for different types of input data

5. Evaluation of estimated navigation angles (roll, yaw)

KLT tracker, max-response disks in scale space for 3D vector estimation

Mean navigation angles. Top: constant translation, ground truth: -10 and 12 degrees.

A few...

Concluding Remarks

- The ultimate goal: predict traffic situations about 3 seconds ahead (basically impossible, but how close can we go?)
- Current focus on accumulating (accurate) stereo and motion data may soon move on to data analysis and scene understanding: what is likeley to happen in the next 3 seconds?
- Adapt driving and car to current traffic situation
- For example, **prepare** the car for a collision if it appears to be immanent
- Understand complex traffic situations: moving or static people versus any other "less important object"

- Driver assistance scenes may be the most difficult for flow + stereo algorithms
- Algorithms performing well on one test data set, may not perform well on another set
- For long stereo sequences with high bits per pixel see test sets on www.mi.auckland.ac.nz/EISATS
- We **aim at optimizing** for safety, i.e. avoidance of any human accidental damage.
- Needed: model building of scenes, scenarios, or behaviorial patterns, inference of appropriate conclusions

The Next Evaluation? - Scene Flow

Beyond 6D Vision: Dense Scene Flow

