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Given a Euclidean space which contains (closed) 
polyhedral obstacles; compute a path which 
(i) connects two given points in the space, 
(ii) does not intersect the interior of any obstacle, 
(iii) is of minimum Euclidean length. 

Examples: ESP inside of a simple cube-arc or inside 
of a simple polygon, on the surface of a convex polytope, 
or inside of a simply-connected polyhedron, or problems 
such as touring polygons, parts cutting, safari or 
zookeeper, or the watchman route. All-together, a class
of immensely important computational problems of 
huge impact in economy, science or technology.

General Euclidean shortest path (ESP) problem



Time complexities

For 3D (e.g., path-planning in robotics), general ESP 
algorithms are NP-hard (J. Canny and J. H. Reif 1987).

For 2D, there are linear-time, but very complicated
algorithms (e.g., for ESP in simple polygon, based on
a triangulation of the whole polygon, see
                                                                        B. Chazelle, 1991)
or linear-time and easy-to-implement algorithms
                                          (e.g., for the relative convex 
                                          hull in the 2D grid, see
                                               R. Klette, V. Kovalevsky, and 
                                                       B. Yip, 1999).

Relative
convex
hull



the original rubberband algorithm (RBA) for the 
calculation of Euclidean shortest paths (ESPs) in 
cube-curves in 3D space 
                             (T. Buelow and R. Klette, 2000 - 2002),
 

the analysis of this algorithm, leading to two
approximate  algorithms, (an edge-based or 
face-based) corrected rubberband algorithms, and 
(MOST IMPORTANTLY) to generalizations of basic 
ideas for efficient solutions for 2D or 3D ESP 
problems by rubberband algorithms.
                                  (F. Li and R. Klette, 2003 - 2006).

This talk is about RBAs, namely



It started in 1999 with cube-curves in 3D space

A possible initialization for calculating an ESP. 



Critical edges are the only possible locations for
vertices of an ESP (R. Klette and T. Buelow, DGCI 2000);
a subset of those will define the step set.

Critical edges in simple cube curves



Original RBA (ICPR 2000, IEEE PAMI 2002):

Check for Options 1, 2 or 3 in successive iterations n,
until change in length Ln of curves is below 

OP1+ OP2: find step set of critical edges {e0, e1, …, em} 
  such that ei contains exactly one vertex of the path,
  for i = 0,1, …, m.

OP3:
•move pi on its critical edge e into optimum position 
    pnew  with |pnew- pi-1| + |pi+1- pnew| 
                         = min{|p - pi-1| + |pi+1- p|: p in e}
•replace (pi-1, pi, pi+1) by (pi-1, pnew, pi+1) in path
•continue with vertices pnew,pi+1,pi+2 .

!



An application of OP3: calculation of pnew.

Example of local optimization in OP3 



Updated path.



Original RBA more in detail:
Algorithm which consists of two subprocesses:
(i) an initialization process (e.g., from endpoint of
     critical edge to closest endpoint of next
     critical edge), and
(ii) an iterative process (OP1+ OP2+ OP3) which 
      contracts the path in each step (using a 
      break-off criterion:      Ln - Ln+1 <      ), with
OP1 : delete pi  if  pi-1pi+1 is in tube (= union of all 
                                                                     cubes), or
OP2 : calculate intersection points of triangle pi-1 pi pi+1
              with critical edges and take resulting convex
          arc (in tube of curve) of intersection points

!



Illustration for (original) Option 2 :

In general it may be 11,14,18 again in next iteration - 
of course, for decreasing length of calculated curve.



Experimental evaluation (2000-2002)

Critical edges (short 
black lines), initialization 
(dashed blue line) and 
final result (red line).

Results on digitized 3D
curves with known
length    , for different
grid resolutions.

!

!



Situation with original RBA in 2002
Even for very small values of    , the measured
time complexity was O(n), where n is the number
of cubes on the given cube-curve. However, no
proof for asymptotic time complexity of original
rubberband algorithm by 2002.

!

For a small number of test examples, calculated
paths seemed (!) to converge against ESP. However,
no implemented algorithm for calculating the ESP, 
and (more general) no proof whether path provided 
by original rubberband algorithm actually converges 
against ESP.
(Algorithm in use since 2002, e.g. in DNA research).



An arithmetic algorithm consists of a finite number 
of steps of arithmetic operations, possibly also using 
input parameters from the field of rational numbers, 
using only the following basic operators:  + , － , · ,  / 
or the kth root, for k ≥ 2.

Arithmetic algorithms

Example: The problem of finding the roots of p(x) =
84x6 － 228x5 + 361x4 + 20x3 + 210x2 － 200x + 25

is not solvable by radicals over the field of rationals.
Proof (F. Li 2006): using a Theorem by C. Bajaj 1988 and the
factorization algorithm by E. R. Berlekamp 1967.



Cube-curve for this polynomial



Two corollaries from this example

Corollary 1: There is no exact arithmetic algorithm 
for calculating roots of polynomials (known since
E. Galois; B.L. van der Waerden’s example p(x) = x5 - x - 1).

Obviously and well-known:

Corollary 2: There is no exact arithmetic algorithm
for calculating ESPs (Chanderjit Bajaj, 1985; of order 20) 
in simple cube-curves (the new result; and order 6 only).

Note: not just a ``rounding number problem’’ but a
FUNDAMENTAL  non-existence of exact algorithms,
no matter what kind of time-complexity is allowed.



Approximate algorithms
An algorithm is a    -approximation algorithm for 
a minimization problem P iff, for each input instance 
I of P, the algorithm delivers a solution that is at 
most    times the optimum solution.

!

!

O(n4 [b + log(n/  )]2  /   2)! !

Example: General 3D ESP problem can be solved
in                                            time by an (1+    )-
approximation algorithm    
                                              (C. H. Papadimitriou 1985).

!

An algorithm is    -linear  iff its time complexity is 
in    (  )· O(n), and function     does not depend on 
the problem size n, for      > 0.

!

! !!

!

We use                              , where L is the true length
of ESP, and L0 the initial length.

! "( ) = L
0
# L( ) / "



A cube-curve is first-class iff each critical edge
contains one ESP vertex. Original RBA is correct
and    -linear, for first-class cube-curves.

First-class cube-curves

ESP

(F. Li and R. Klette, CAIP 2005)

This cube-curve
is not first-class.

!



Subdivide each critical edge by m uniformly-spaced
vertices; connect each vertex with vertices such that 
resulting edge is contained in the tube. This defines
a weighted undirected graph. Calculate a shortest-
length cycle as (first-class !) input for original RBA.

Approximate graph-theoretical algorithm

m = 3



Example (not first-class)

1.234018.0252{1, 2, 3, 6,
7, 8, 9, 10}

3

Time (in
seconds) in
Matlab

Length of
shortest
cycle

Edges
with cycle
vertices

Subdivision
number m

Red cube = first
cube, containing
critical edges 1
and 2. Yellow
cube = last cube.

4

8

3
10

9



Time-complexity of graph-theoretic algorithm

O(m
4
n

4
 +  ! (") · n)

This graph-theoretic algorithm applies Dijkstra’s
algorithm repeatedly; possibly its time-complexity
can be reduced, but certainly not to be    -linear. !

The benefit was in 2004 that this algorithm allowed
for the first time to evaluate results obtained by the
original RBA; all evaluations had been positive in
those tests.



End angles and middle angles

Assume a simple cube-curve g and a triple of
consecutive critical edges e1, e2, and e3 such that
ei orthogonal to ej, for i, j = 1, 2, 3 and i ≠j.
If e1 and e3 are also coplanar, then we say that e1, e2,
                                                 and e3 form an end
                                                 angle, and a middle
                                                 angle otherwise.

                                                 The ESP vertex on e2 is
                                                 an endpoint of e2.

6 end angles, no middle angle



Unique shortest paths

There is a uniquely defined shortest path, which 
passes through subsequent line segments e1, e2, . . ., 
and ek in 3D space in this order. - Three diff. proofs in

J. Choi, J. Sellen, and C.-K. Yap 1995
C.-K. Yap 1995
M. Sharir and A. Schorr, 1986

Obviousely: vertices of a shortest path can be 
at real division points, and even at those which 
cannot be represented by radicals over the field 
of rationals



We assume that the given cube-curve is first-class
and has at least one end angle where we split 
the curve into arc(s).

For each arc, one vertex on each critical edge
can be calculated using optimization (differentiation)
of 2- or 3-variable equations. A variable ti determines
the position of vertex pi on edge ei.

Experiments showed again that the original RBA
and this (efficient) approximate algorithm 
lead to (basically) identical results; which was of
benefit for evaluations.

Approximate numerical algorithm



An open problem in 2003 and its 2005 answer

An open problem (see [KletteRosenfeld2004, page 406]) 
was stated as follows: Is there a simple cube-curve
such that none of the nodes of its ESP is a grid vertex?

The answer is “yes”, and any of those does not have
any end angle! Thus, the provably correct approximate
numerical algorithm cannot be used in general.

This lead us back to the original RBA: 
 - is it correct? (use either approximate graph-
       theoretical or numerical algorithm for evaluation)
 - what is its time-complexity in general?



A simple cube-curve where the ESP does not have
any grid-point vertex (and which has no end angle).



Two open problems

What is the smallest (say, in number of cubes
or in number of critical edges - both is equivalent)
simple cube curve which does not have 
any end angle.

What is the smallest (say, in number of cubes
or in number of critical edges - both is equivalent)
simple cube curve which does not have 
any of its MLP vertices at a grid point location?

We assume, the second problem is more difficult
to solve.



OP2 : if intersecting with the triangle pi-1pipi+1 
         and using the convex arc only, we may miss 
         edges of the step set - more tests are
         needed, and this option was reformulated
         (a complex correction).
OP3 : the vertex pnew, found by optimization, may
         specify edges pi-1pnew and pnewpi+1 such that 
         one or both of them are not fully contained in 
         the tube of the curve; an additional test is
         needed (a simple correction).

Necessary corrections in the original RBA



A Situation Where the Original Option 2 Fails



Final result for ESPs in simple cube-curves

Corrections define the edge-based corrected RBA. 

Instead of moving points along critical edges, we can
also move points within critical faces (which contain 
one critical edge). This defines the (slower) face-based 
corrected RBA.

Both are provably correct, implemented in Java,
and have provably asymtotic time complexity

(i.e., they are     -linear).

Recall:

! (") · O(n)

!

! "( ) = L
0
# L( ) / "



Cauchy convergence criterion

!Let       be the maximum accuracy of your 
program. We can obtain arbitrary accuracy
(with respect to L) when continuing iterations.



Random generation of simple cube-curves is an 
interesting problem on itself.



Animation: RBA in Action (27 iterations)



Time for RBA on Simple Cube Curves

Implemented in Java, run under Matlab 7.0.4, Pentium 4

! = 10-10



In this talk, we discuss only two examples. For
more applications in computational geometry, 
see report 2141 by F. Li and R. Klette on IMA’s 
Website (in Minneapolis).

Example 1: finite stack of q - rectangles defining
the (convex) obstacles (NP-complete, 
J.S.B. Mitchell and M.Sharir, 2004)

Example 2: touring a finite sequence of simple
(not necessarily convex) polygons (open problem, 
M. Dror, A. Efrat, A. Lubiw, and J.S.B. Mitchell, 2003)

RBA applications to further ESP problems



Finite Stack of q - Rectangles
(J.S.B. Mitchell, M. Sharir, 2004)
It is NP-complete to decide whether there exists 
an obstacle-avoiding path of Euclidean length ≤ L 
among a set of stacked axis-aligned rectangles. 
The problem is (already) NP-complete for the 
special case that the axis-aligned rectangles are 
all q-rectangles.







Time for RBA on q-Rectangles

Implemented in Java, run under Matlab 7.0.4, Pentium 4

! = 10-10



Touring a Finite Sequence of Polygons

Note: was until now an open problem for non-convex polygons







Time for RBA on Sequence of Polygons

Implemented in Java, run under Matlab 7.0.4, Pentium 4

! = 10-10



Conclusions

Idea of the rubberband algorithm was generalized
to establish a whole class of RBAs:

- assume an ESP problem
- define and select (or calculate) the step set
- apply the RBA, that means:
      basic idea is Option 3
      define      to be the maximum numeric accuracy
           you can achieve on your machine for a selected
           numerical precision
      repeat local optimization until no further 
           improvement is possible
      if step set correct, then local = global minimum

!


