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Adjacency graphs:
generalization of adjacencies in
grid cell or grid point model, in this talk: 2D case

all nodes equal
symmetric and irreflexive adjacency relation

Incidence Pseudographs:
generalization of Euclidean complexes (poset topologies)
grid cell incidence model, for nD case, n > 1

nodes characterized by dimension 0,1,...,n
symmetric and reflexive incidence relation




grid cell model grid point model

2D: 4- and 8-adjacencies, 3D: 6-, 18- and 26-adjacencies
2D: 1- and 0-adjacencies, 3D: 2-, 1-, and 0-adjacencies

2D nodes: pixel, 3D nodes: voxel or frontier faces

Rosenfeld 1970, ..., Artzy/Frieder/Herman 1981, ...



Aleksandrov-Hopf 1935 Khalimsky 1986

homeomorphic poset topologies for 2D picture grids

Kovalevsky 1989
m X n picture grid and (m+1) X (n+1) frontier grid
““maximum-label rule"
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ORIENTED ADJACENCY GRAPHS [S, 4, €]

countable set S, adjacency relation A4 (irreflexive, symmetric)

local cyclic orders &

 A(p)1s finite forany p in S
e [§, A] 1s a connected undirected graph (finite or infinite)

* any finite subset M of § possesses at most one infinite
complementary component

 any directed edge generates a periodic path with respect to &

note: a generalization of oriented 2D tilings or 2D combinatorial maps




local circular order E(p) =|[a, b, c, d, €]
of all points in the adjacency set A(p)




N,

d’3

e 1

the undirected graph needs not to be planar (as 1n 2D tilings)
and not to be finite (as in 2D combinatorial maps)

« LEFT: numberings of local circular orders

« RIGHT: drawing convention: clockwise order of outgoing edges
Ed)=[c,e,b,a] &(e)=[b,d,]

directed edge (d,a) generates circuit &(d,a) =<d, a, c, e, b>
E(a,d)=<a,d, c>, ...
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not an oriented adjacency
graph (infinite paths)

3

cycle = generated circuit



oriented adjacency graph [S, 4, E]: E v(p) = 2a, E Mp)=2a,

PES 0

o, = card(S)

o, = card(4)

v(p) = card(4(p))

Mp) = length of cycle p =6 a,=5
o =9 o, =10

o, =#cycles o ,=3 o =
X:O X:_

Euler characteristic X= o,-o,;+ o,






combinatorial maps: each directed edge = two darts
Heffter 1895, Edmonds 1960, Tutte 1963

anti-clockwise

o= (1,-1)(2,-2)(3,-3)(4,-4)(5,-5)(6,-6)(7,-7),(8,-8),(9,-9)
o =(5,3,1)(-4,6,-9)(-7,8,-2)(-1,2,4)(-6,-5,7)(-8,9,-3)
p=0oa= (1,2,-7,-6,-9,-3)(-1,5,7,8,9,-4)(-2,4,6,-5,3,-8)

clockwise

G = (2,10,-7,-1)(-2,3,-9,-8)(-3,4,-6,-10)(9,-4,5,7)(8,6,-5,1)
@=00a= (-2,10,-3,-9,-4,-6,-5,7,-1,8)(1,2,3,4,5)(6,-10,-7,9,-8)
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x <2 for any finite oriented adjacency graph

Voss and Klette 1986



Oy, Oy, 0= (4 6,2) (6 11,3) (8 16,4) (12 26,6) (2n,5n-4,n)
X - -2(n-2)

IXIEXIWMW

0,0y, 0= (8,16,4)(12,29,7)  (16,42,10)  (24,68,16) (4n,131-10,3n-2)
X: 4 _10 16 28 2(3n-4)




M C S generates restricted local circular orders &, (a)=[b,c,d]

(ab)(belled)(da) =

<b,a,c> 1s cycle in [S,A4,E] : atomic cycle

<a,b,c,d> and <d,c,a> arenotcyclesin [S, 4, E] : border cycles



[S, 4, €y ]: 8 atomic cycles

2 border cycles

undirected invalid edges assigned to a border cycle



[S,4,Ey]: oy,=14 o= 22 o,=10 x=2

Note: Euler characteristic of graphs, also counting the ""infinite exterior"



Voss and Klette 1986:  separation theorem

Let [S, 4, €] be a planar oriented adjacency graph.
Let M be a non-empty finite connected proper subset of S.
By deleting all undirected invalid edges assigned to one

of the border cycles of M, [S, A4, €] splits into at least
two non-connected substructures.




the uniquely defined outer border cycle of M separates one (infinite)
background component and a finite number of improper holes from M

any inner border cycle of M separates a finite number of proper holes
from M
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tiling = planar oriented (finite or infinite) adjacency graph
regular tiling = v(p) and A(p) constants

v=3,A=6, 0,=49,0,=59,a,=12, =52, k=29, f=11
middle: v=4,A=4, 0,=23,0,=30,0,=9, [=28, k=32, =8
v=6,A=3, 0,=18,0,=32,a,=16, /=19, k=44, f=15

[ = length of (1inner or outer) border cycle
k =# 1invalid edges assigned to border cycle

f=a,-1




k=v+—I
A

29 =3 + 3/6x52

32 =4 + 4/4x 28

4 =6 + 6/3x19






Voss 1986: total curvature theorem

M = finite connected subset of an infinite regular tiling S, ;
k1
1%

for any border cycle: +] =—— X

outer border cycle: defined by positive sign

inner border cycle: defined by negative sign




Imiya and Eckhardt 1999: angles in an isothetic connected polyhedron

(Hy+ Hg) - (H-+ Hy) - 2(Hp, + Hp,) =8
Hy, H., Hy,, Hy), Hg, Hg
=# A, C, DI, D2, E, G angles
of polyhedron H, respectivel
A C poly p y
D D>
H,-H;<0 iff
inner border
E G H,-H;>0 iff
Yip and Klette 2002: simple isothetic polyhedron | Outer border




Voss 1986: generalized Pick’s theorem

M = finite connected subset of an infinite regular tiling S, ;
without proper holes, then

for the (outer) border cycle: o, =3/ +1/2+1

M = finite connected subset of an infinite regular tiling S, ,
then

for any mner border cycle: «a, =5 f-1/2+1

(see G. Pick’s area theorem A =i + b/2 -1 from 1899 for the orthogonal grid)




0,=22 [f=10 [=22

22=10+ 22/2 +1

outer border cycle: set 1s connected,
no proper hole, but one improper hole

inner border cycle defining two
proper holes

0,=5 f=12 1=16

5=12-16/2 +1







R. Descartes (Cartesius): one convex polyhedron with o, o, o,
L. Euler

first proof: 1794 by A.-M. Legendre

A. Cauchy 1813: D polyhedral cells within one convex polyhedron

A.-J. Lhuilier 1812: b "bubbles’, ¢ tunnels’ and p “entrances/exits’

w Qy-0; Fto,=2(b-t+1)+p
s g






incidence structure G =[S, I, dim]
countable set S
incidence relation /7 on S (reflexive and symmetric)
function dim :S ito {0, 1, ..., m}
defining classes of i-nodes ¢ by dim(c)=i

ind(G) = maximum value of dim(c)
principal node ¢ 1if dim(c) = ind(G)
all principal nodes = core of G
marginal node otherwise

c,d;c, Ut c,#c,
and ex. i-node ¢
¢, €I1(c) A cEllc,)

i-adjacent, i-connected, i-path,
[-components, complementary i-components

adjacent iff ex. i and i-adjacent




let n=1ind(G)

G=IS, I, dim] is

incidence pseudograph iff

I1: I(c) always finite

I12: set of principal nodes in G 1s (n-1)-connected

I13: M C § finite: at most one infinite complementary
(n-1)-component of principal node

I4: (¢'€I(c) and c#c’ then dim(c) # dim(c’)

IS: dim(c) <n then ¢ 1ncident with at least one n-node



incomplete components of 2-nodes
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completion M " of M

(a) MCM
(b) if c'€M™ forall c'EI(c) with dim(c") > dim(c)
then cEM”

M complete 1ff M=M"

component C of set M
= nonempty core, core connected, C 1s complete
every i-node in C 1s incident with principal node in C






region M = finite component

cEM inner node iff I(c)&E M
otherwise: border node

inner set M  and border Sy

POSET TOPOLOGY

MCS closed
cEM and ¢'EI(c) with dim(c')<dim(c)
then c'eM

MCS open iff M=S\M is closed

(note: 1f closed or open, then complete)

frontier of a set = border of its closure
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incidence counts

‘card{c'E€S : dim(c') = j A {c,c'} EI}
a;(c)=1 if i =dim(c)
0 otherwise
MATCHING THEOREM
Eal.j(c) = Eaﬁ(c) for O=<ij=<n
cES cES

incidence grid (IG) = regular incidence pseudograph

a;(c)=a; forall cES,withdim(c)=i



class cardinalities of a finite subset M

o = card{c :c EM A dim(c) =i}

l

from Matching Theorem: a.a, —a,a, =0 ftorlG §, O<i=<n
(andany O<k<n)

Euler characteristic

x(M)= 3 (-1,

from Matching Theorem:

oy =0 Ay

for finite n-dim. IGs




anode c&S

1s invalid w.r.t. M iff

cEM butthereis ¢'EM with ¢'€I(c)

boundary of M = set of all invalid nodes
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boundary of a closed region
= 1ts border (frontier)
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boundary of an open region
= border (frontier) of its closure



boundary counts

‘card{c'€I(c): dim(c") = j A ¢'invalid}
b;].w(c) = 1 if i =dim(c)andcEM

0 otherwise

total boundary counts for M

by = b;'(c)
cES



n-dimensional 1G's

if

(1
2Z_J(j) if i>]

Corollary: E( 1)] l =( _

REGION MATCHING THEOREM

M open or closed region in n-dim. IG
a;a; - b; = aa; for i<j ifclosed, or for i > if open

an =q;a; for i=j

o;a; +b; = a;a; for i>j if closed, or for i <j if open

K. Voss 1993 for open regions



Let M be a finite union of pairwise disjoint closed
(or pairwise disjoint open) regions.

The Euler characteristic of M 1s
x(M) = . i (-D)™'b,, for open regions
2n & |
and

1 n-1 »
X(M)=—-»(-1)"b,,,
2n ; ! for closed regions.

K. Voss 1993 for open regions



Region Matching Theorem allows to replace boundary counts
by class cardinalities and (globally known) incidence counts:
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grid point model grid cell model

elements of
adjacency
structures

elements of
incidence
structures




