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Adjacency graphs: 
generalization of adjacencies in
grid cell or grid point model, in this talk: 2D case

    all nodes equal
    symmetric and irreflexive adjacency relation

Incidence Pseudographs: 
generalization of Euclidean complexes (poset topologies)
grid cell incidence model, for nD case, n ≥ 1

    nodes characterized by dimension 0,1,…,n
    symmetric and reflexive incidence relation



grid cell model             grid point model

  2D: 4- and 8-adjacencies,  3D: 6-, 18- and 26-adjacencies
  2D: 1- and 0-adjacencies,  3D: 2-, 1-, and 0-adjacencies

2D nodes: pixel,    3D nodes: voxel or frontier faces

Rosenfeld 1970, …, Artzy/Frieder/Herman 1981, …
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Kovalevsky 1989 
     m x n picture grid   and  (m+1) x (n+1) frontier grid
     ``maximum-label rule''

Aleksandrov-Hopf 1935                                   Khalimsky 1986

        homeomorphic poset topologies for 2D picture grids

Voss 1993
     incidence relations in nD grid



countable set S,  adjacency relation  A  (irreflexive, symmetric)

local cyclic orders  x

•   A(p) is finite for any  p  in S 

•   [S, A]  is a connected undirected graph (finite or infinite)

•   any finite subset  M  of  S  possesses at most one infinite 
    complementary component

•   any directed edge generates a periodic path with respect to  x 

note: a generalization of oriented 2D tilings or 2D combinatorial maps

ORIENTED ADJACENCY GRAPHS   [S, A, x]



  local circular order   x(p)  = [a, b, c, d, e] 
of all points in the adjacency set  A(p)   
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the undirected graph needs not to be planar (as in 2D tilings)
and not to be finite (as in 2D combinatorial maps)

•   LEFT:  numberings of local circular orders

•   RIGHT: drawing convention: clockwise order of outgoing edges

        x(a) = [c, b, d]       x(b) = [e, d, a]        x(c) = [d, a, e]
                                  x(d) = [c, e, b, a]     x(e) = [b, d, c]

    directed edge (d,a) generates  circuit   x(d,a) = <d, a, c, e, b>
    x(a,d) = <a, d, c> , ...
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not an oriented adjacency                cycle = generated circuit
graph (infinite paths)



Euler characteristic       =  a 0 - a 1 + a 2c

  = 0                                    = -2cc

oriented adjacency graph  [S, A, x]: 

a0    =  card (S)

a1    =  card (A)

n(p) = card(A(p))

l(r)  = length of cycle r

a2    = # cycles

a 0= 6                                a 0 = 5
a 1= 9                                a 1 = 10
a 2= 3                                a 2= 3 

n p( )
pŒS
Â = 2a1 l r( )

r
Â = 2a1
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combinatorial maps: each directed edge = two darts
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  j = s oa =

a =  (1,-1)(2,-2)(3,-3)(4,-4)(5,-5)(6,-6)(7,-7),(8,-8),(9,-9)
s  = (5,3,1)(-4,6,-9)(-7,8,-2)(-1,2,4)(-6,-5,7)(-8,9,-3)
                    (1,2,-7,-6,-9,-3)(-1,5,7,8,9,-4)(-2,4,6,-5,3,-8)

      s = (2,10,-7,-1)(-2,3,-9,-8)(-3,4,-6,-10)(9,-4,5,7)(8,6,-5,1)
                          (-2,10,-3,-9,-4,-6,-5,7,-1,8)(1,2,3,4,5)(6,-10,-7,9,-8)

anti-clockwise

clockwise

  j = s oa =

Heffter 1895, Edmonds 1960, Tutte 1963
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    for any finite oriented adjacency graph   c £ 2

Voss and Klette 1986

finite:     planar  iff
infinite:  planar  iff  any non-empty finite connected subgraph planar 

c = 2



a0,a1,a2= (4,6,2)  (6,11,3)      (8,16,4)          (12,26,6)               (2n,5n-4,n)
                 0           -2               -4                    -8                             -2(n-2)c :

a0,a1,a2= (8,16,4)(12,29,7)    (16,42,10)       (24,68,16)   (4n,13n-10,3n-2)
                 -4          -10             -16                  -28                          -2(3n-4)c :



(a,b),(b,c),(c,d),(d,a)

(b,a),(a,c),(c,b)

(d,c),(c,a),(a,d)

a b

cd

<b,a,c>    is  cycle  in   [S, A, x]  :   atomic cycle

<a,b,c,d>   and    <d,c,a>   are not cycles in [S, A, x]  :  border cycles

 generates  restricted local circular orders   xM(a) = [b,c,d]M Õ S



8 atomic cycles

2 border cycles

undirected invalid edges assigned to a border cycle

[S, A, xM]:



[S, A, x]:       a0 =  20       a1 =  46       a2 =  28              2   

[S, A, xM]:    a0 =  14       a1 =  22        a2 =  10              2   

c =

c =

Note: Euler characteristic of graphs, also counting the ``infinite exterior''



Let [S, A, x] be a planar oriented adjacency graph.

Let M be a non-empty finite connected proper subset of S.

By deleting all undirected invalid edges assigned to one
of the border cycles of M,  [S, A, x] splits into at least
two non-connected substructures.

separation theoremVoss and Klette 1986: 



the uniquely defined outer border cycle of M separates one (infinite)
background component and a finite number of improper holes from M

any inner border cycle of M separates a finite number of proper holes
from M



proper hole

proper
hole

improper
hole

improper
hole

background component

atomic cycles

border cycles



     tiling  =  planar oriented (finite or infinite) adjacency graph
     regular tiling  =   n(p)   and   l(r)   constants

left :        n = 3, l = 6,  a0 = 49, a1 = 59, a2 = 12,  l = 52,  k = 29,  f = 11
middle :  n = 4, l = 4,  a0 = 23, a1 = 30, a2 = 9,    l = 28,  k = 32,  f = 8
right :      n = 6, l = 3,  a0 = 18, a1 = 32, a2 = 16,  l = 19,  k = 44,  f = 15

l = length of (inner or outer) border cycle
k = # invalid edges assigned to border cycle
f = a2 - 1



29   = 3   +    3/6 x 52

32   = 4   +   4/4 x 28

44   = 6   +   6/3 x 19

k = n +
n
l

l





Voss 1986: total curvature theorem

M = finite connected subset of an infinite regular tiling Sn,l 

for any border cycle:   

outer border cycle: defined by positive sign  

inner border cycle: defined by negative sign

±1 =
k
n

-
l
l



HA, Hc, HD1, HD2, HE, HG 

= # A, C, D1, D2, E, G angles 
of polyhedron H, respectively 

(HA + HG) - (HC + HE) - 2(HD1 + HD2) = 8

Imiya and Eckhardt 1999: angles in an isothetic connected polyhedron

HA - HG < 0  iff 
inner border

HA - HG > 0  iff 
outer borderYip and Klette 2002: simple isothetic polyhedron



Voss 1986: generalized Pick’s theorem

M = finite connected subset of an infinite regular tiling Sn,l 
without proper holes, then

for the (outer) border cycle:   a0 = n
l f + l /2 +1

M = finite connected subset of an infinite regular tiling Sn,l 
then

for any inner border cycle:   a0 = n
l f - l /2 +1

(see G. Pick’s area theorem  A = i + b/2 -1  from 1899 for the orthogonal grid)



a0 = 5      f =12     l =16

5 = 12 -  16/2  + 1

a0 = 22     f =10     l =22

22 = 10 +  22/2  + 1

outer border cycle: set is connected,
no proper hole, but one improper hole

inner border cycle defining two
proper holes
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R. Descartes (Cartesius): one convex polyhedron with a0, a1, a2 
L. Euler         
                                                                  a0 - a1 + a2 = 2
first proof: 1794 by A.-M. Legendre

A. Cauchy 1813: D polyhedral cells within one convex polyhedron

                                                                  a0 - a1 + a2 = D + 1

A.-J. Lhuilier 1812:  b `bubbles’, t `tunnels’ and p `entrances/exits’

                                                                  a0 - a1 + a2 = 2 (b - t + 1) + p

wrong





incidence structure   G = [S, I, dim]
   countable set   S
   incidence relation  I  on  S  (reflexive and symmetric)
   function   dim : S   into  {0, 1, ..., m}
         defining   classes   of   i-nodes    c     by      dim(c) = i

ind(G) = maximum value of   dim(c)
principal node  c   if   dim(c) = ind(G)
all principal nodes  =  core of G
marginal node  otherwise

c1 Ai c2    iff   c1 ≠ c2   
                      and ex.  i-node  c

i-adjacent, i-connected, i-path, 
i-components, complementary i-components
adjacent  iff  ex.  i  and  i-adjacent
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b c

a d f

e
c1 ŒI c( ) Ÿ c ŒI c2( )



 let   n = ind(G)

G = [S, I, dim]  is   

      incidence pseudograph  iff

I1:     I(c) always finite

I2:     set of principal nodes in G  is (n-1)-connected

I3:                 finite: at most one infinite complementary 

          (n-1)-component of principal node

I4:                     and   c ≠ c’    then    dim(c)  ≠  dim(c’)    

I5:       dim(c) < n  then   c    incident with at least one  n-node

M Õ S

c'ŒI c( )
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incomplete  components  of  2-nodes



completion  M +  of  M

(a)                    

(b)    if                for all                 with

                     then      

M  complete     iff     M = M +

M Õ M+

c'ŒM+ c'ŒI c( ) dim c'( ) > dim c( )

c ŒM +

component C of set M
    = nonempty core, core connected, C is complete
       every i-node in C is incident with principal node in C
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                region  M  =  finite component

                            inner node  iff 

                otherwise:  border node

                inner set               and   border  

 

               closed 

                             and                    with                           

                 then

               open  iff                     is closed

(note: if closed or open, then complete)     

c ŒM I c( ) Õ M

M— dM

M Õ S
c ŒM c'ŒI c( ) dim c'( ) < dim c( )

c'ŒM
M Õ S M = S \ M

POSET TOPOLOGY

frontier of a set = border of its closure







aij c( ) =

card c'ŒS : dim c'( ) = j Ÿ c,c'{ } ŒI{ }
if i = dim c( )

0 otherwise

Ï 
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incidence counts

MATCHING THEOREM

aij c( )
cŒS
Â = aji c( )

cŒS
Â for 0 £ i, j £ n

incidence grid (IG) = regular incidence pseudograph

aij c( ) = aij for all            , with dim(c) = ic ŒS



class cardinalities of a finite subset M

from Matching Theorem:                                for IG  S,
                                                                            (and any                 ) 

                                               
                                                 Euler characteristic

                                                        
                                                       from Matching Theorem:

                                                        for finite n-dim. IGs

ai
M = card c : c ŒM Ÿ dim c( ) = i{ }

aiaik -akaki = 0 0 £ i £ n
0 £ k £ n

c M( ) = -1( )iai
i=0

n

Â01

2 1 2
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b c

a d f

e
c M( ) = 2

c M( )
ak

= -1( )i aki

aiki=0

n

Â



a node                is   invalid   w.r.t. M  iff

                                            but there is                with

boundary  of  M  = set of all invalid nodes  

c ŒS
c œM c'ŒM c'ŒI c( )

   boundary of a closed region                    boundary of an open region
= its border (frontier)                              = border (frontier) of its closure



bij
M c( ) =

card c'ŒI c( ) : dim c'( ) = j Ÿ c' invalid{ }
if i = dim c( ) and c ŒM

0 otherwise

Ï 

Ì 
Ô 

Ó 
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boundary counts

total boundary counts  for  M

bij
M = bij

M c( )
cŒS
Â



n-dimensional IG's

B. Rosenfeld, I. Jaglom 1971
R. Klette 1972

aij =

2 j-i n - i
n - j

Ê 

Ë 
Á 

ˆ 

¯ 
˜ if i < j

1 if i = j

2i- j i
j

Ê 

Ë 
Á 

ˆ 

¯ 
˜ if i > j
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Corollary: -1( ) j aij

ajij=0

n

Â = 0

REGION MATCHING THEOREM

M open or closed region in n-dim. IG
ai aij - bij = aj aji    for  i < j  if closed, or for  i > j  if open
ai aij        = aj aji    for  i = j
ai aij + bji = aj aji    for  i > j  if closed, or for  i < j  if open

K. Voss 1993 for open regions



Let  M  be a finite union of pairwise disjoint closed

(or pairwise disjoint open) regions.

The Euler characteristic of   M  is

                                                               for open regions

and

                                                              for closed regions.

K. Voss 1993 for open regions

c M( ) =
1
2n

⋅ -1( )i+1bi,i-1
i=1

n

Â

c M( ) =
1
2n

⋅ -1( )i+1bi,i+1
i=0

n-1

Â



Region Matching Theorem allows to replace boundary counts
by class cardinalities and (globally known) incidence counts:

                                                      for open regions

                                                      for closed regions

bi,i-1 = ai-1ai-1,i -a iai,i-1

bi,i+1 = a iai,i+1 -a i+1ai+1,i



grid point model               grid cell model

elements of
adjacency
structures

elements of
incidence
structures


