Combinatorics on Adjacency Graphs and Incidence Pseudographs

Reinhard Klette

CS & CITR, University of Auckland

New Zealand

Adjacency graphs:

generalization of adjacencies in grid cell or grid point model, in this talk: 2D case

all nodes equal symmetric and irreflexive adjacency relation

Incidence Pseudographs:

generalization of Euclidean complexes (poset topologies) grid cell incidence model, for *n*D case, $n \ge 1$

nodes characterized by dimension 0,1,...,n symmetric and reflexive incidence relation

grid cell model

grid point model

2D: 4- and 8-adjacencies, 3D: 6-, 18- and 26-adjacencies 2D: 1- and 0-adjacencies, 3D: 2-, 1-, and 0-adjacencies

2D nodes: pixel, 3D nodes: voxel or frontier faces

Rosenfeld 1970, ..., Artzy/Frieder/Herman 1981, ...

Aleksandrov-Hopf 1935

Khalimsky 1986

homeomorphic poset topologies for 2D picture grids

Kovalevsky 1989 *m* x *n* picture grid and (*m*+1) x (*n*+1) frontier grid ``maximum-label rule"

Voss 1993 incidence relations in *n*D grid

ORIENTED ADJACENCY GRAPHS $[S, A, \xi]$

countable set *S*, adjacency relation *A* (irreflexive, symmetric) local cyclic orders ξ

- A(p) is finite for any p in S
- [*S*, *A*] is a connected undirected graph (finite or infinite)
- any finite subset *M* of *S* possesses at most one infinite complementary component
- any directed edge generates a periodic path with respect to ξ

note: a generalization of oriented 2D tilings or 2D combinatorial maps

local circular order $\xi(p) = [a, b, c, d, e]$ of all points in the adjacency set A(p)

the undirected graph needs not to be planar (as in 2D tilings) and not to be finite (as in 2D combinatorial maps)

- LEFT: numberings of local circular orders
- RIGHT: drawing convention: clockwise order of outgoing edges

$$\xi(a) = [c, b, d]$$
 $\xi(b) = [e, d, a]$ $\xi(c) = [d, a, e]$
 $\xi(d) = [c, e, b, a]$ $\xi(e) = [b, d, c]$

directed edge (*d*,*a*) generates circuit $\xi(d,a) = \langle d, a, c, e, b \rangle$ $\xi(a,d) = \langle a, d, c \rangle$, ...

not an oriented adjacency graph (infinite paths)

cycle = generated circuit

oriented adjacency graph [S, A, ξ]: $\sum_{p \in S} v(p) = 2\alpha_1$ $\sum_{o} \lambda(\rho) = 2\alpha_1$ = card (S) α_0 $\alpha_1 = \operatorname{card}(A)$ $v(p) = \operatorname{card}(A(p))$ $\alpha_0 = 6$ $\alpha_0 = 5$ $\lambda(\rho) = \text{length of cycle } \rho$ $\alpha_1 = 9$ $\alpha_1 = 10$ $\alpha_2 = 3$ $\alpha_2 = 3$ $\alpha_2 = \#$ cycles $\chi = 0$ $\chi = -2$

Euler characteristic $\chi = \alpha_0 - \alpha_1 + \alpha_2$

combinatorial maps: each directed edge = two **darts**

Heffter 1895, Edmonds 1960, Tutte 1963

anti-clockwise

$$\begin{aligned} \alpha &= (1,-1)(2,-2)(3,-3)(4,-4)(5,-5)(6,-6)(7,-7),(8,-8),(9,-9) \\ \sigma &= (5,3,1)(-4,6,-9)(-7,8,-2)(-1,2,4)(-6,-5,7)(-8,9,-3) \\ \varphi &= \sigma \circ \alpha = (1,2,-7,-6,-9,-3)(-1,5,7,8,9,-4)(-2,4,6,-5,3,-8) \end{aligned}$$

clockwise

$$\sigma = (2,10,-7,-1)(-2,3,-9,-8)(-3,4,-6,-10)(9,-4,5,7)(8,6,-5,1)$$

$$\varphi = \sigma \circ \alpha = (-2,10,-3,-9,-4,-6,-5,7,-1,8)(1,2,3,4,5)(6,-10,-7,9,-8)$$

 $\chi \le 2$ for any finite oriented adjacency graph

Voss and Klette 1986

finite: **planar** iff $\chi = 2$ infinite: **planar** iff any non-empty finite connected subgraph planar

 $M \subseteq S$ generates restricted local circular orders $\xi_M(a) = [b,c,d]$

 $\langle b,a,c \rangle$ is cycle in $[S, A, \xi]$: atomic cycle

 $\langle a,b,c,d \rangle$ and $\langle d,c,a \rangle$ are not cycles in $[S, A, \xi]$: border cycles

 $[S, A, \xi_{M}]$: 8 atomic cycles

2 border cycles

undirected invalid edges assigned to a border cycle

Note: Euler characteristic of graphs, also counting the ``infinite exterior"

Voss and Klette 1986: *separation theorem*

Let $[S, A, \xi]$ be a planar oriented adjacency graph.

Let *M* be a non-empty finite connected proper subset of *S*.

By deleting all undirected invalid edges assigned to one of the border cycles of M, $[S, A, \xi]$ splits into **at least** two non-connected substructures.

the uniquely defined **outer border cycle** of M separates one (infinite) background component and a finite number of improper holes from M

any **inner border cycle** of M separates a finite number of proper holes from M

tiling = planar oriented (finite or infinite) adjacency graph regular tiling = v(p) and $\lambda(\rho)$ constants

left: $\nu = 3, \lambda = 6, \alpha_0 = 49, \alpha_1 = 59, \alpha_2 = 12, l = 52, k = 29, f = 11$ middle: $\nu = 4, \lambda = 4, \alpha_0 = 23, \alpha_1 = 30, \alpha_2 = 9, l = 28, k = 32, f = 8$ right: $\nu = 6, \lambda = 3, \alpha_0 = 18, \alpha_1 = 32, \alpha_2 = 16, l = 19, k = 44, f = 15$

l = length of (inner or outer) border cycle k = # invalid edges assigned to border cycle $f = \alpha_2 - 1$

$$k = \nu + \frac{\nu}{\lambda}l$$

 $29 = 3 + \frac{3}{6} \times 52$ $32 = 4 + \frac{4}{4} \times 28$ $44 = 6 + \frac{6}{3} \times 19$

Voss 1986: total curvature theorem

 $M = \text{finite connected subset of an infinite regular tiling } S_{\nu,\lambda}$ for any border cycle: $\pm 1 = \frac{k}{\nu} - \frac{l}{\lambda}$

outer border cycle: defined by positive sign

inner border cycle: defined by negative sign

Imiya and Eckhardt 1999: angles in an isothetic connected polyhedron

Yip and Klette 2002: simple isothetic polyhedron

Voss 1986: generalized Pick's theorem

M = finite connected subset of an infinite regular tiling $S_{\nu,\lambda}$ without proper holes, then

for the (outer) border cycle: $\alpha_0 = \frac{v}{\lambda}f + l/2 + 1$

M = finite connected subset of an infinite regular tiling $S_{\nu,\lambda}$ then

for any inner border cycle: $\alpha_0 = \frac{v}{\lambda} f - l/2 + 1$

(see G. Pick's area theorem A = i + b/2 - 1 from 1899 for the orthogonal grid)

$$\alpha_0 = 22$$
 $f=10$ $l=22$
 $22 = 10 + 22/2 + 1$

outer border cycle: set is connected, no proper hole, but one improper hole

inner border cycle defining two proper holes

$$\alpha_0 = 5$$
 $f=12$ $l=16$
 $5 = 12 - 16/2 + 1$

R. Descartes (Cartesius): one convex polyhedron with α_0 , α_1 , α_2 L. Euler

$$\alpha_0 - \alpha_1 + \alpha_2 = 2$$

first proof: 1794 by A.-M. Legendre

A. Cauchy 1813: D polyhedral cells within one convex polyhedron

 $\alpha_0 - \alpha_1 + \alpha_2 = D + 1$

A.-J. Lhuilier 1812: *b* 'bubbles', *t* 'tunnels' and *p* 'entrances/exits'

$$\alpha_0 - \alpha_1 + \alpha_2 = 2 (b - t + 1) + p$$
wrong

incidence structure G = [S, I, dim]countable set Sincidence relation I on S (reflexive and symmetric) function dim : S into $\{0, 1, ..., m\}$ defining classes of *i*-nodes c by dim(c) = i

ind(G) = maximum value of dim(c) **principal node** c if dim(c) = ind(G)all principal nodes = **core** of G **marginal node** otherwise

$$c_1 A_i c_2$$
 iff $c_1 \neq c_2$
and ex. *i*-node c
 $c_1 \in I(c) \land c \in I(c_2)$

i-adjacent, *i*-connected, *i*-path, *i*-components, complementary *i*-components **adjacent** iff ex. *i* and *i*-adjacent

let n = ind(G)
G = [S, I, dim] is
incidence pseudograph iff

I1: I(c) always finite

- **I2:** set of principal nodes in G is (n-1)-connected
- **I3:** $M \subseteq S$ finite: at most one infinite complementary

(*n*-1)-component of principal node

- I4: $c' \in I(c)$ and $c \neq c'$ then $dim(c) \neq dim(c')$
- I5: dim(c) < n then c incident with at least one *n*-node

incomplete components of 2-nodes

completion M^+ of M

component *C* of set *M*

= nonempty core, core connected, *C* is complete every *i*-node in *C* is incident with principal node in *C*

region M = finite component

 $c \in M$ inner node iff $I(c) \subseteq M$ otherwise: border node inner set M^{∇} and border δM

POSET TOPOLOGY

 $M \subseteq S$ closed $c \in M$ and $c' \in I(c)$ with dim(c') < dim(c)then $c' \in M$ $M \subseteq S$ open iff $\overline{M} = S \setminus M$ is closed (note: if closed or open, then complete)

frontier of a set = border of its closure

							i.
	П						
		 -		=	 н	н	h
		 ∟				ш	i
	11						
	100	F				н	ŕ
	6 H	 H		H		н	ŕ
		E.			ГI		
		E.			ГI		
		E.			ГI		
	++	 F		Н	н		ĉ
 H	÷ŧ				H	н	 ŕ
Ц							
	тт					П	
		 -			п		 ñ
		 H				н	ĥ
							k
		Г		ГI	-1		
		Г		ГI			
		Г		ГI			
		Г		ГI			
		Г		ГI			
		H		H	H	 н	ŕ
						н	h
						н	ř

		a	

incidence counts

$$a_{ij}(c) = \begin{cases} card\{c \in S : dim(c') = j \land \{c, c'\} \in I\} \\ \text{if } i = dim(c) \\ 0 \quad \text{otherwise} \end{cases}$$

MATCHING THEOREM

$$\sum_{c \in S} a_{ij}(c) = \sum_{c \in S} a_{ji}(c) \quad \text{for} \quad 0 \le i, j \le n$$

incidence grid (IG) = regular incidence pseudograph

$$a_{ij}(c) = a_{ij}$$
 for all $c \in S$, with $dim(c) = i$

class cardinalities of a finite subset M

$$\alpha_i^M = card\{c: c \in M \land dim(c) = i\}$$

from Matching Theorem: $\alpha_i a_{ik} - \alpha_k a_{ki} = 0$ for IG *S*, $0 \le i \le n$ (and any $0 \le k \le n$)

Euler characteristic

$$\chi(M) = \sum_{i=0}^{n} (-1)^{i} \alpha_{i}$$

from Matching Theorem:

$$\frac{\chi(M)}{\alpha_k} = \sum_{i=0}^n (-1)^i \frac{a_{ki}}{a_{ik}}$$
for finite *n*-dim. IGs

a node $c \in S$ is **invalid** w.r.t. *M* iff $c \notin M$ but there is $c' \in M$ with $c' \in I(c)$ **boundary** of M = set of all invalid nodes

boundary of a closed region
= its border (frontier)

boundary of an open region= border (frontier) of its closure

boundary counts

$$b_{ij}^{M}(c) = \begin{cases} card\{c' \in I(c) : dim(c') = j \land c' \text{ invalid} \} \\ \text{if } i = dim(c) \text{ and } c \in M \\ 0 \quad \text{otherwise} \end{cases}$$

total boundary counts for M

$$b_{ij}^{M} = \sum_{c \in S} b_{ij}^{M}(c)$$

$$\begin{array}{c} n\text{-dimensional IG's} \\ a_{ij} = \begin{cases} 2^{j-i} \binom{n-i}{n-j} & \text{if } i < j \\ 1 & \text{if } i = j \\ 2^{i-j} \binom{i}{j} & \text{if } i > j \end{cases} \\ \text{B. Rosenfeld, I. Jaglom 1971} \\ \text{R. Klette 1972} \end{cases}$$
Corollary:
$$\begin{array}{c} \sum_{j=0}^{n} (-1)^{j} \frac{a_{ij}}{a_{ji}} = 0 \\ \hline \text{REGION MATCHING THEOREM} \\ M \text{ open or closed region in n-dim. IG} \\ \alpha_{i} a_{ij} - b_{ij} = \alpha_{j} a_{ji} & \text{for } i < j \text{ if closed, or for } i > j \text{ if open} \\ \alpha_{i} a_{ij} &= \alpha_{j} a_{ji} & \text{for } i = j \\ \alpha_{i} a_{ij} + b_{ji} &= \alpha_{j} a_{ji} & \text{for } i > j \text{ if closed, or for } i < j \text{ if open} \end{cases}$$

K. Voss 1993 for open regions

Let M be a finite union of pairwise disjoint closed (or pairwise disjoint open) regions.

The Euler characteristic of M is

$$\chi(M) = \frac{1}{2n} \cdot \sum_{i=1}^{n} (-1)^{i+1} b_{i,i-1}$$

for open regions

and

$$\chi(M) = \frac{1}{2n} \cdot \sum_{i=0}^{n-1} (-1)^{i+1} b_{i,i+1}$$

for closed regions.

K. Voss 1993 for open regions

Region Matching Theorem allows to replace boundary counts by class cardinalities and (globally known) incidence counts:

$$b_{i,i-1} = \alpha_{i-1}a_{i-1,i} - \alpha_i a_{i,i-1}$$
$$b_{i,i+1} = \alpha_i a_{i,i+1} - \alpha_{i+1}a_{i+1,i}$$

for open regions

for closed regions

