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     basic  models/theories  in digital topology:

•    good pairs for binary images, 4-, 6-, 8-neighborhoods, ...

•    adjacency graph models, neighborhood structures, ...

•    poset topology, Khalimsky plane, Kovalevsky plane, ...

•    digital spaces, topological digital spaces (Herman)

•    inter-pixel boundaries, half-integer grid, ...

•    oriented adjacency graphs, combinatorial maps, ...

•    theory of n-dimensional cell complexes, ...

•    combinatorial topology, ...

•    ...
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(4 millions of legal installations)
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    what they use in the non-anti-aliased case:

    adjacency = 4-adjacency only
    pixel = labeled grid square
    object-related segmentation >>> post-processing



R. Klette

switch is on

switch is off

?

reference point
flip-flop
case

don’t care

uniquely defined

see, e.g., strongly normal digital picture spaces, GADSs

      Switches-approach
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(i) a 4-connected region (no switches)

(ii) expanded by uniquely defined 
switches (no don’t cares, no flip-flops)

(iii) and finally with all switches, 
including flip-flops
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0.5 % flip-flops

0.22 % flip-flops0.38 % flip-flops

0.38 % flip-flops
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Valid adjacencies are between 
adjacent grid points which are

labeled by identical image values. 
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S-matrix

valid adjacencies

templates for flip-flops
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2.  S-matrix (constant, or using templates)

1.  templates for flip-flops

3.  remaining valid adjacencies

OPTION 1: SWITCH-APPROACH
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0 1 2 3

0

1

0-cell

2-cell

Aleksandrov-Hopf 1935
Khalimsky 1986
Kovalevsky 1989...

[CG2, ≤G2, dim] [CE2, ≤E2, dim]
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Φ :  mapping of topological space C1 into topological space
C2

Φ   is   continuous   iff
          Φ-1(M)  =   {p in C1 :   Φ(p) in M }   is open in C1,
                                                      for any open subset M of C2

(H. Poincare, 1895)
      Φ is a homeomorphism
   iff      it  is  one-one,   onto C2,    continuous,   and  Φ-1  is
             continuous as well.

1. complexes [CG2, ≤G2, dim]  and [CE2, ≤E2, dim]  are isomorphic

2. Khalimsky and Kovalevsky plane are homeomorphic

Topological spaces of isomorphic posets are homeomorphic.
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closed

open

...
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2. define data structure and 
      design cell-structure algorithms

1.  specify poset topology

3.  regions defined as in Euclidean topology

OPTION 2: POSET-APPROACH



R. Klette

0 1 2 3 4 5 6 7 8

0

1

2

3

4

.5 1 1.5 2 2.5 3 3.5 4

.5

1

1.5

2

4.5

2.5

Wyse et al.  1970

.5 1 1.5 2 2.5 3 3.5 4

1

1.5

2

4.5

2.5



R. Klette

2. define data structure and 
      design 4-topology algorithms

1.  map all odd grid points into pixel positions

3.  regions defined as in Euclidean topology

OPTION 3:  4-TOPOLOGY
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closed

open

neither closed nor open
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2. use local orientation cycles at pixel positions 
      (similar to Freeman codes)

1.  stay (in 2D) with 4-adjacency model   ONLY

3.  regions defined as in Clifford’s marble example

OPTION 4:  oriented 4-adjacency
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Theory of oriented adjacency graphs

Klaus Voss, Reinhard Klette, Peter Hufnagl, Albrecht Hübler, ...
1985  ...

in German:   in journal  Bild und Ton  (in existence till 1992 only)

                     book by Voss in 1988 (Akademie-Verlag, Berlin)

in English:    TR (Klette/Voss) at CfAR, College Park,  in 1987
                     published 1991 in 
                                   Pattern Recognition and Image Analysis

                      book by Voss in 1993 (Springer, Berlin)

          recently: CITR-TR-101 (Klette, Oct. 2001)
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set of points  C,  adjacency relation  A  (irreflexive, symmetric)
                     neighborhood relation  N  (reflexive)  
oriented adjacency graphs   [C, A, ξ]

axioms :  

•   A(p) is finite for any  p  in  C. 

•   [C, A]  is a connected undirected graph.

•   Any finite subset  M  of  C  possesses at most one infinite 
    complementary component.

•   Any directed edge generates a periodic path with respect to  ξ .

generalization of oriented tilings or combinatorial maps



R. Klette

  local circular order   ξ(p)  = [a, b, c, d, e] 
of all points in the adjacency set  A(p)   

e
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a b

cd

e

a
b

cd

e

1

2

3

12

3

4

1
23

1 2

3

1
2 3

             the undirected graph needs not to be planar

•   LEFT:  numberings of local circular orders

•   RIGHT: drawing convention: clockwise order of outgoing edges

        ξ(a) = [c, b, d]       ξ(b) = [e, d, a]        ξ(c) = [d, a, e]
                                  ξ(d) = [c, e, b, a]     ξ(e) = [b, d, c]

    directed edge (d,a) generates  circuit   ξ(d,a) = <d, a, c, e, b>
    ξ(a,d) = <a, d, c> , ...
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1

2

3

41 2

3

4

not an oriented adjacency                cycle = generated circuit
graph (infinite paths)
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(a,b),(b,c),(c,d),(d,a)

(b,a),(a,c),(c,b)

(d,c),(c,a),(a,d)

a b

cd

<b,a,c>    is  cycle  in   [C, A, ξ]  :   original   or   atomic cycle

<a,b,c,d>   and    <d,c,a>   are not cycles in [C, A, ξ]  :  border cycles

 generates  restricted local circular orders   ξM(a) = [b,c,d]M !C
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Euler characteristic       =  α 0 - α 1 + α 2!

  = 0                                    = -2!!

oriented adjacency graph  [C, A, ξ]: 

α 0  =   card (C)

α 1 =  card (A)

ν(p) = card(A(p))

λ(g)  = length of cycle  g

α 2 = # cycles

! p( )
p"C

# = 2$
1

% g( )
g

# = 2$
1

α 0= 6                                α 0 = 5
α 1= 9                                α 1 = 10
α 2= 3                                α 2= 3 



R. Klette

      0

      -2

        -2

        -2

        0

       -2

       -2

       -4

      -2

       -4

     -4

      -4

! =

! =

! =

! =

! =

! =

! =

! =

! =

! =

! =

! =



R. Klette

orientable surfaces: orientable triangulations or tilings  
Listing 1861, Aleksandrov 1956, ...

pure two-dimensional tiling is strongly connected iff any two
tiles may be connected via a chain of edge-adjacent tiles

  Orientation of a single edge in a strongly connected tiling of an
  orientable surface specifies the orientation of all tiles in
  this tiling.

Euler characteristic       =  α 0 - α 1 + α 2   of a tiling is equal to 2
iff surface homeomorphic to unit sphere (Jordan surface)

!
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initial orientation of one of the square tiles

still strongly connected

not strongly connected
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combinatorial maps: each directed edge = two darts

1
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  ! = " o# =

α =  (1,−1)(2,−2)(3,−3)(4,−4)(5,−5)(6,−6)(7,−7),(8,−8),(9,−9)
σ  = (5,3,1)(-4,6,-9)(-7,8,-2)(-1,2,4)(-6,-5,7)(-8,9,-3)
                                         (1,2,-7,-6,-9,-3)(-1,5,7,8,9,-4)(-2,4,6,-5,3,-8)

      σ = (2,10,-7,-1)(-2,3,-9,-8)(-3,4,-6,-10)(9,-4,5,7)(8,6,-5,1)
                          (-2,10,-3,-9,-4,-6,-5,7,-1,8)(1,2,3,4,5)(6,-10,-7,9,-8)

anti-clockwise

clockwise

  ! = " o# =

Edmonds 1960, Tutte 1963
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combinatorial maps  =  finite oriented adjacency graphs,
but different ways of presentations (global permutations vs. local
adjacency cycles) and different directions of studies 
                                                                           (different results!)

both theories developed without knowing from each other
               (resolved in February 2002 at least)

here: further review of theory of oriented adjacency graphs
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    for any finite oriented adjacency graph   (Voss/Klette 1986)! " 2

finite:     planar  iff
infinite:  planar  iff  any non-empty finite connected subgraph planar 

! = 2

(π,κ,µ): (4,6,2)  (6,11,3)      (8,16,4)          (12,26,6)                 (2n,5n-4,n)
               0          -2               -4                    -8                                -2(n-2)! :

(π,κ,µ): (8,16,4)(12,29,7)    (16,42,10)       (24,68,16)      (4n,13n-10,3n-2)
               -4         -10             -16                  -28                             -2(3n-4)! :
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[C, A, ξ]:       α0 =  20       α1 =  46       α2 =  28              2   

[C, A, ξΜ]: α0 =  14       α1 =  22        α2 =  10              2   

! =

! =
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8 original cycles

2 border cycles

undirected invalid edges assigned to a border cycle

[C, A, ξΜ]:
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Let [C, A, ξ] be a planar oriented adjacency graph.

Let M be a non-empty finite connected proper subset of C.

By deleting all undirected invalid edges assigned to one
of the border cycles of M,  [C, A, ξ] splits into at least
two non-connected substructures.

separation theoremVoss and Klette 1986: 
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original cycles

border cycles

1

2

3

4

5

1

2

3

4

5
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proper hole

proper
hole

improper
hole

improper
hole

background component

original cycles

border cycles
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the uniquely defined outer border cycle of M separates one (infinite)
background component and a finite number of improper holes from M

any inner border cycle of M separates a finite number of proper holes
from M
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     mesh  =  planar oriented adjacency graph
     regular mesh  =   ν(p)   and   λ(g)   constants

left :             ν = 3, λ = 6,  α0 = 49, α1 = 59, α2 = 12,  l = 52,  k = 29,  f = 11
middle :  ν = 4, λ = 4,  α0 = 23, α1 = 30, α2 = 9,    l = 28,  k = 32,  f = 8
right :         ν = 6, λ = 3,  α0 = 18, α1 = 32, α2 = 16,  l = 19,  k = 44,  f = 15

l = length of (inner or outer) border cycle
k = # invalid edges assigned to border cycle
f = α2 - 1
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29   = 3   +    3/6 x 52

32   = 4   +   4/4 x 28

44   = 6   +   6/3 x 19

k = ! +
!

"
l
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Voss 1986: total curvature theorem

M = finite connected subset of an infinite regular mesh Cν,λ 

For any border cycle:   

outer border cycle: positive sign,   inner border cycle: negative sign

±1=
k

!
"
l

#

Yip/Klette 2001:    generalized to orthogonal grid in 3D
(based on classification and counts of possible edges)
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Six kinds of angles in an isothetic simple polyhedron

HA, Hc, HD1, HD2, HE, HG 

= # A, C, D1, D2, E, G angles 
of polyhedron H, respectively 

Yip and Klette 2001:
(HA + HG) - (HC + HE) - 2(HD1 + HD2) = 8 

for any isothetic simple polyhedron H

HA - HG < 0  iff 
inner border

HA - HG > 0  iff 
outer border
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Voss 1986: generalized Pick’s theorems

M = finite connected subset of an infinite regular mesh Cν,λ 
without proper holes, then

for the (outer) border cycle:   !0 = "
#
f + l /2 +1

M = finite connected subset of an infinite regular mesh Cν,λ 
then

for any inner border cycle:   !
0
= "

#
f $ l /2 +1

(see G. Pick’s area theorem  A = i + b/2 -1  from 1899 for the orthogonal grid)
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α0 = 5      f=12     l=16

5 = 12 -  16/2  + 1

α0 = 22     f=10     l=22

22 = 10 +  22/2  + 1

outer border cycle: set is connected,
no proper hole, but one improper hole

inner border cycle defining two
proper holes
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   Brief review
•    image analysis based on 4-adjacency only (2D):  Univ. Jena,
     TU Berlin, Univ. Auckland, Academy Bratislava, ...

•    6-adjacency only in 3D

example 1:  (Urysohn) curve 
                 = one-dimensional continuum

(see Sloboda/ Zatko/ Klette, VG’98)
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example 2:  simple curves in 2D as frontiers of cell complexes
(see Kovalevsky et al.)

DSS approximation, skeletonization, ...

frontier of union of cells boundary defined by an outer border cycle
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1 2

3

4
5

6
7

89

10

11

12

13

Bülow and Klette 2000/2001:
iterative algorithm with measured
time complexity O(n)

      Vertices of MLP always on
      critical edges.
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two-dimensional grid continua:

Sloboda and Zatko 2000:

multigrid-convergent surface area estimator:  contents of 
relative convex hull   (using inner and outer Jordan  digitization)

Klette and Yu 2001:
approximation algorithm
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J-(S)  and   part of J+(S)

CH J+
 (J-(S))
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   The global picture
boundaries = space between black and white marbles, the potential
site of polygonal (2D) or polyhedral (3D) approximations

things to do:  

•  finish the measurement chapter
•  algorithms towards further topological analysis
       - isotopy test
       - fundamental group calculation
          (classification of 3D objects)
       -  analysis of elementary curves
          (e.g. list of branching indices) 
          Listing 1861


