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DIGITAL GEOMETRY
is the study of geometric properties of subsets of digital images.

binary images

multi-level images
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1.  DIGITAL SPACES AND IMAGES
• Lattice points and adjacency relations

Rosenfeld/Pfaltz 1966
Rosenfeld 1970

• Cell complexes
Listing 1861, Steinitz 1908 ...
Herman 1981, Kovalevsky 1989
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Basic  models/theories  for digital spaces and images:

• 4-, 6-, 8-neighborhoods in 2D, good pairs for 3D

• adjacency graph models, neighborhood structures           

• poset topology (Khalimsky-Kovalevsky plane)

• inter-pixel boundaries, half-integer grid

• oriented adjacency graphs (Voss et al.), combinatorial maps

• theory of n-dimensional cell complexes

• combinatorial topology

• ...
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SOME ODDITIES compared to Euclidean spaces:

“points”, “lines”, ... have rather different properties than they do 
in Euclidean spaces:

points (cells) can be neighbors

lines are sequences of isolated points (cells) and
can intersect in segments
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4-adjacency            8-adjacency
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SOME BASICS OF DIGITAL TOPOLOGY

- Define the DIGITIZATION
D = <S>  of a subset S of the 
Euclidean plane as the union of the
half-open square cells that intersect S.

- Define a digital set D to be 8-CONNECTED
if any two pixels of D are joined by a sequence
of pixels of D such that successive pixels of the
sequence are 8-adjacent.

- THEOREM: D = <S>, where S is connected in the Euclidean
topology, iff D is 8-connected.

S
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THE NEED FOR TWO TYPES OF CONNECTEDNESS

- Unpleasant fact:
If we use only this definition of 8-connectedness,
a closed path doesn't separate the plane into an inside
and an outside - e.g.

- Solution:
also use 4-connectedness by not allowing diagonal neighbors;
use opposite types of connectedness for a set and its complement



A.Rosenfeld, R.Klette



A.Rosenfeld, R.Klette

CONSEQUENCES

- If a component of D and a component of its complement
are adjacent, one of them surrounds the other.

- The complement of a closed path has exactly
two components (the “Jordan curve theorem”).

- The EULER CHARACTERISTIC of a set D (the number of
components of D minus the number of components of
its complement) is locally computable.

- Connectedness properties are preserved by adding/deleting
“simple” pixels to/from a set.

(A pixel is SIMPLE if its neighborhood intersects just one component 
of the set and one component of its complement.)
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EXAMPLES OF GEOMETRIC CONCEPTS, 
PROPERTIES, AND RELATIONS

- Adjacency
- Neighborhoods
- Borders and interiors
- Arcs and curves
- Pathwise connectedness
- Pathwise distance
- Area, perimeter, extent, diameter, etc.
- Elongatedness (and “thinning”)
- Arc length and curvature
- Intrinsic distance
- Convexity and straightness
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2. Digital geometry   as 
discrete geometry

ISSUES

- Definitions of geometric properties

- Complexity of computing the properties

- Local computability

- Characterizing image operations that preserve the properties

- Characterizing digital objects that could be digitizations of
Euclidean objects that have given properties
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Grid-intersection digitization

Freeman 1961
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digital straight segment (DSS) = 
8-curve resulting from a Euclidean straight line segment

Rosenfeld 1974:     (i) a DSS is an irreducible 8-arc.
(ii) A finite irreducible 8-arc is a DSS iff it satisfies the chord property.
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Basic routine in image analysis: 
segmentation into maximum-length DSSs
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A few contributions towards O(n) on-line DSS recognition:

1976 J. Rothstein & C. Weiman
first layer only of off-line linguistic DSS algorithm 

1981 A. Hübler, R. Klette & K. Voss
linear off-line DSS algorithm: linguistic approach

1982 L.D. Wu
linear off-line DSS algorithm: linguistic approach (minor flaw)

1982 C.E. Kim
brief sketch of linear off-line CSS algorithm

(based on Sklansky’s convex hull algorithm)

1982 E. Creutzburg, A. Hübler, & V. Wedler
two linear on-line DSS algorithms: 

(a) linguistic approach and (b) geometric approach
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1983 S. Shlien
linear off-line DSS algorithm: linguistic approach

1985 T.A. Anderson & C.E. Kim
sketch of linear off-line DSS algorithm

1988 E. Creutzburg, A. Hübler, O. Sykora
linear on-line DSS for specifying a separability
problem for monotone polygons

1988 E. Creutzburg, A. Hübler, O. Sykora
linear on-line DSS algorithm

1990 V.A. Kovalevsky
linear on-line DSS for 4-connected sequences

1991 A.W.M.Smeulders & L. Dorst
linear off-line DSS ,  correcting Wu 1982

1995 I. Debled-Rennesson & J.-P. Reveilles
linear on-line DSS , also correcting Wu 1982

and many more .....
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3. Digital geometry as approximate 
Euclidean geometry

If an image can be digitized sufficiently finely, properties
of a subset of the “real” image should be adequately approximated
by properties of a subset of the digital image.

On the other hand: Digital spaces and images allow studies of 
geometric properties of subsets, either in the context of graph theory 
or of combinatorial topology.

The question arises how digital (graph-theoretical or combinatorial)
concepts correspond to concepts of  digitized Euclidean geometry.
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APPROXIMATE EUCLIDEAN GEOMETRY: ISSUES

Multigrid Convergence of Properties:
As the grid becomes finer, do the digital property values 
(such as length, a moment, etc.) converge to the Euclidean 
property values? If so, how fast is the convergence with
respect to grid resolution?

Multigrid Convergence of Sets:
As the grid becomes finer, do the digitally constructed sets 
(such as convex hulls, medial axes, etc.) converge to the
Euclidean analogs? If so, how fast is the convergence?
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EXAMPLE OF NON-CONVERGENCE:

Digital arc length exceeds 
true arc length,
and doesn't approach it in 
the limit (diagonal/staircase).

Maximal DSS (digital 
straight segment) approximation
is an example of a 
multigrid-convergent method.
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EXAMPLE OF NON-CORRESPONDENCE OF CONCEPTS:

A digitized circle doesn't have the smallest (digital arc
length) perimeter of all objects having a given area.

Shorter 8-border possible
if digitizing a diamond
having the same area
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MULTIGRID  CONVERGENCE
Serra 1982 (for sets, not properties) length of grid edge = 1/r

digitization

estimation

multigrid
convergence?

 S ∈ F

digr S( )

EP digr S( )( )

P S( )

= EP,r S( )

r →∞
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Another digitization model: Jordan digitization in 2D, 3D, ...

inner digitization

Jr
− S( )

S

S

Jr
+ S( )

S

Jr
+ S( )

outer digitization
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Jordan, Peano 1892:   volume estimation  in 3D
20th century:  generalizations to n-dimensional case

Let   S be  an  n-dimensional  set  with  a  Jordan  boundary.   
Then

Vol S( ) = lim Vol Ir S( )( )
r→∞

= lim Vol Or S( )( )
r→∞

in 2D: 
known since Gauss (~1820) that this convergence has linear speed

in nD: 
studies on speed of convergence for moments (including volume)
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4. Digital geometry vs. 
computational geometry 

Computational geometry deals with finite collections
of (N) simple objects (points, lines, circles,...)
in Euclidean space, and studies the complexity
of computing properties of the collections as N increases.

In digital geometry, the objects don't behave like
Euclidean objects (as we have seen).
Also, for practical purposes, digital image size is bounded; 
reducing the order of complexity of a computation is only of 
interest if asymptotic constant remains “reasonably small”.
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Relative convex hull

Sklansky and Kibler 1976: definition of the relative convex hull in the
context of digital geometry / image analysis

given set

convex hull relative to this set
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In 2D: relative convex hull =  minimum-length polygon (MLP) 
circumscribing the given set, contained in the bounding set 

inner digitizationouter digitization

MLP
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A⊆ Q⊂ R3 is Q-convex iff for all p,q ∈A

pq ⊆ Q then pq ⊆ A

relative convex hull  CHQ(P)  of  P with respect to  Q
=  intersection of all Q-convex sets containing   P

Theorem (Sloboda and Zatko 2001)

S be a compact set in 3D space
bounded by a smooth closed Jordan surface

then
lim
r→∞

Area CH
Jr
+ S( )

Jr
− S( )( )( )= Area S( )
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Example: J-(S)  and   part of J+(S)
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CH(J-(S))
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CH J+ (J-(S))

Open problem: efficient algorithm for relative convex hull in 3D
see list of open problems on:    http://www.citr.auckland.ac.nz/dgt
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relative convex hull proved to be important in 
robotics, CAD, graphics, ...

many algorithmic studies in computational geometry for 2D case

MLP is multigrid convergent length estimator for digitized curves

however:

- no studies on MLPs in computational 
geometry for 3D (length estimation 
for 3D digital curves)

- also no studies on relative convex 
hulls in 3D ( surface area estimation)
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revival of joint meetings (digital and computational geometry) is
recommended
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5.    Generalizations
- Higher dimensions

- “Good pairs” in topology

- Surfaces

- Non-standard grids or tessellations

- Abstract discrete spaces

- Fuzzy subsets

web site on digital geometry:            citr.auckland.ac.nz/dgt


