Digital Geometry

The Birth of a New Discipline

Reinhard Klette - Auckland, New Zealand

Contents of Talk

• DIGITAL GEOMETRY

THREE CLASSIC PAPERS BY AR & J

DIGITAL GEOMETRY traditional anno 1979 / revised 198

MULTIGRID CONVERGENCE

LENGTH AND SURFACE AREA

CURVES in 2D two techniques

SURFACES in 3D

two techniques

• A FEW OPEN PROBLEMS

figure in **Euclid**'s ``Elements", Book XI Propositions 31--33. Today we could call these `face-connected cubes'.

"It's magic, or geometry, or one of those things."

Terry Pratchett

Euclidean g. analytical g. perspective g. projective g. descriptive g. non-Euclidean g. combinatorial g. similarity g. of polyhedra affine g. of polyhedra projective g. of polyhedra

computer g. computational g. digital g. discrete g.

. . .

1872 Felix Klein: Erlangener Programm

Geometry = a basic manifold **B** a set of figures $F \subseteq 2^{B}$ a group **G** of transformations defined on **B**

Geometric discipline

• a meaningful combination of **B**, $F \subseteq 2^{B}$, **G**

• significance in science or technology

B requires a *structure*, such as being a linear, metric or topological space, or just with a system of neighborhoods $U(x) \subseteq \mathbf{B}$

y is proper neighbor of x iff $y \in U(x)$ and $x \neq y$

Digital geometry

- $\mathbf{B} = \text{grid} / \text{cells}$, $\mathbf{F} = \text{regions}$, $\mathbf{G} = a \text{ group on } \mathbf{B}$
- fundamental for computational imaging (worldwide)

Structure on **B**

- grid: neighborhoods (Rosenfeld/Pfaltz 1966)
- cells: bounding relation (Listing 1861/1862)

THREE CLASSIC PAPERS BY AR & JLP

on connectedness, distance transforms, and metrics on grids

A. Rosenfeld and J.L. Pfaltz.

Sequential operations in digital picture processing. J. ACM, 13:471--494, **1966**.

J.L. Pfaltz and A. Rosenfeld.

Computer representation of planar regions by their skeletons. Comm. ACM, 10:119--122, 125, **1967**.

A. Rosenfeld and J.L. Pfaltz.

Distance functions on digital pictures. Pattern Recognition, 1:33--61, **1968**.

`the `paradox' of Figure (d) can be expressed as follows: If the `curve' of shaded points is connected (`gapless'), it does not disconnect its interior from its exterior; if it is totally disconnected it *does* disconnect them. **This is of course not a mathematical paradox**, but it is unsatisfying intuitively; nevertheless, connectivity is still a useful concept. It should be noted that if a digitized picture is defined as an array of hexagonal, rather than square, elements, the paradox disappears''

1970/73 A. Rosenfeld

Theorem:4-curves separate 8-holes and8-curves separate 4-holes

concept used in binary image processing:

use 4-connectivity for objects and 8-connectivity for background

first *major stimulus* for **digital topology**: ensure duality of separation and connectivity in spaces used in digital geometry (grids, cells)

1966 A. Rosenfeld and J.L. Pfaltz

labeling of connected components

computation of distance transforms (based on **Blum** and **Kotelly**) *skeleton* = local maxima of 8-radii

second *major stimulus* for **digital topology**: distance transforms for shape simplification ... shrinking / medial axes / thinning in 2D / thinning in 3D / thinning in grey level images

"skeleton" today: not the original meaning anymore

TRADITIONAL DIGITAL GEOMETRY

1979 A. Rosenfeld (book chapter on digital geometry)

"By *digital geometry* we mean the mathematical study of geometrical properties of digital picture subsets."

SUBJECT LIST

- segmentation of pictures (arc, curve, digital Jordan curve theorem)
- simplification of picture subsets (simple points)
- measurements of picture subsets (area, perimeter, genus, shape factor)
- graph metrics for distances in pictures (intrinsic diameter, geodesic, chord length)
- and ... (straightness, convexity, homotopy, ...)

THREE INTERRELATED AREAS

- *Digital topology* open/closed, connected, genus, simple points, skeleton,...
- Graph theory and combinatorics length/metrics based on neighborhoods, centers in graphs, ...
- Digital geometry

1987 A. Rosenfeld and R.A. Melter

"Digital geometry is the study of geometric properties of sets of lattice points produced by digitizing regions or curves in the plane."

SUBJECT LIST now starts in 1987 with **digitization, digital convexity, digital straightness**

DIGITAL GEOMETRY = digitized Euclidean geometry in regular grid or cell spaces 1963 J. Bresenham H. Freeman 1961 digital straight lines - digitization and synthesis

1968 A. Rosenfeld and J.L. Pfaltz

approximation of Euclidean distance by integer metrics

1974 A. Rosenfeld

digital straight segments - characterization by chord property

DIGITIZATION MODELS

digital straight line = 8-curve resulting from a (real) straight line (excluding y = x + i/2)

Jordan digitization in 2D, 3D, ...

inner digitization

outer digitization

R. Klette

1892...

Jordan, Peano, Minkowski, Scherrer, ... - multigrid contents estimation ~1820 C.F. Gauss

Gauss digitization in 2D

 $G_r(S) = \{ (i/r, j/r) : (i/r, j/r) \in S \land i, j \text{ integers} \}$

 $A(S) = A(G(S)) + O(\sqrt{x})$

 $G(\mathbf{S}) =$ Gauss digitization

$$f(r) = |A(S) - A(G_r(S))| = O(r^{-1})$$

r = grid resolution

linear convergence $c \cdot \frac{1}{r}$

inner and outer hexagon

percentage of errors for inner n-gon

MULTIGRID CONVERGENCE

LENGTH OF A CURVE IN 2D

graph-theoretical concepts (with local weights etc.) do **not** allow multigrid convergent length estimation

HYPOTHESIS:

two multigrid convergent techniques:

Convergence Theorems

Theorem: *S* is a bounded convex set. Then there exists r_S such that for all $r \ge r_S$ $|Perimeter(S) - l_r| \le f(r)$

DSS and MLP: Experimental Results

1999 R. Klette, W. Kovalevsky, B. Yip

SURFACE AREA IN 3D

Digital Planar Segment Approximation

a DPS consists of n vertices \mathbf{p}_i satisfying

$$0 \leq \mathbf{n} \cdot \mathbf{p}_{i} - d < \mathbf{n} \cdot \mathbf{v} \qquad i=1, 2, ..., n$$

where $\mathbf{n} \cdot \mathbf{p} = d$ is a Euclidean plane

 \mathbf{v} = main diagonal vector of length $\sqrt{3}$

standard plane by

1996 J.Francon, J.-M.Schramm, M.Tajine

2000 R. Klette, H. Sun - Incremental Algorithm

- the surface is traced by using **G.T. Herman's** algorithm and represented by a surface graph
- the problem in each step: given *n* vertices of a DPS. Still a DPS with (*n*+1)th vertex?
- at each step, a list of all effective supporting planes is maintained. If the list is empty, the vertex set is not a DPS.
- after adding a new vertex, delete those supporting planes no longer effective and construct new effective supporting planes with the added vertex.

Experimental Results

surface area of general ellipsoid at different orientations

relative error at grid resolution 100 marching cube: 10% convex hull: 3.22% DPS: < 1% R. Klette

2001 F. Sloboda, B. Zatko - *Relative convex hull*

$$A \subseteq Q \subset R^3$$
 is *Q*-convex iff for all $p, q \in A$
 $pq \subseteq Q$ then $pq \subseteq A$

relative convex hull $CH_0(P)$ of P with respect to Q

= intersection of all Q-convex sets containing P

Convergence theorem:

S be a compact set in 3D space bounded by a smooth closed Jordan surface

then

$$\lim_{r \to \infty} A\left(CH_{J_r^+(S)}\left(J_r^-(S)\right)\right) = A(S)$$

OPEN PROBLEMS

IN GENERAL

- sharp bounds for convergence speeds f(r)?
- optimum convergence speed ?

SURFACE AREA

- proof of convergence for DSP method?
- feasible algorithm for relative convex hull in 3D

LENGTH OF A CURVE

- non-polygonal interpolations for curve digitizations at grid point positions
- MLP algorithm in 3D: correctness, time complexity, and convergence speed

