
Plug-and-play PKI:
A PKI your Mother can use

Peter Gutmann

University of Auckland

Why is PKI failing?

The usual suspects...
•Difficult to deploy
•Expensive
•Lack of interoperability
•Poor match to pressing real-world problems

I think a lot of purists would rather have PKI be useless to anyone in any
practical terms than to have it made simple enough to use, but
potentially “flawed” — Chris Zimman

From the end-user perspective: It’s too hard to use
•How can we make it easier to use for end users?

What it should be like: The DHCP Model

User wants to use TCP/IP / email / WWW
•DHCP client automatically discovers the server
•Client requests all necessary information from the server
•Auto-configures itself using returned information
•User is online without even knowing that the DHCP exchange

happened

What it is like: The X.25 Model

User is required to use X.25
•Dozens of parameters to manually configure
•Different vendors use different terms for the same thing
•Get one parameter wrong and nothing works
•Problem diagnosis: Find an X.25 expert and ask for help

The vast majority of users detest anything they must configure and
tweak. Any really mass-appeal tool must allow an essentially
transparent functionality as default behaviour; anything else will
necessarily have limited adoption — Bo Leuf, Peer to Peer

How bad is it really?

Obtaining a certificate from a large public CA
•Had to ask where to get the certificate
•Filled out eight (!!) browser pages of information
•Several retries due to values being rejected, had to ask for help

several times, searched for documentation such as passport, etc
•Cut & pasted data from emailed message to web page
–Multiple random strings had to be manually copied over
–Emailed cookies: Only one should be necessary

•Filled out more fields in eleven further web pages
–Much of the contents were incomprehensible to the user:
“certificate Distinguished Name”, “X.509 SubjectAltName”
–User guessed and clicked “Next”

How bad is it really? (ctd)
•Web page announced that a certificate had been issued, but

none seemed available
•Emailed message provided a link to click on
•More web pages to fill out
•Switch to another browser to download file
•Clicking on the file had no effect

Time taken: > 1 hour (with outside assistance)
•Usenet posts/email suggest that most skilled technical users

take between 30 minutes and 4 hours to get a certificate

What should it be like

The mom test: Could your mother use this?

The ISP model
•Call ISP with credit card
•ISP provides username and password
•Enter username and password, click OK
•DHCP does the rest

PKI enrolment should be similar
•Others have debugged the process for us
•Users have been conditioned to do this
•Most users can handle this

Assumptions

Basic networking services are present
•The user has a net connection, IP address, etc etc (DHCP at

work)

Assumptions (ctd)

The user has some existing relationship with the certificate-
issuing authority
•Issuing identity certificates to strangers doesn’t make much

sense
•Online banking/tax filing/loyalty program sign-up is usually

handled by
–In-person communications
–(Snail) mailed authenticator
–Phone authorisation

•Follows existing practice
–People are used to it
–Established legal precedent

Assumptions (ctd)

We’re not designing a system to handle nuclear weapons
launch codes
•The system need only be as secure as the equivalent non-PKI

alternative
–Techies tend to go overboard when designing authentication

systems
•Operations where a cert might be used (online banking,

shopping, tax filing) all get by with a username and password
•If it’s good enough when used without certificates, it's equally

good with them

Cumbersome technology will be deployed and operated incorrectly and
insecurely, or perhaps not at all

— Ravi Sandhu, IEEE Internet Computing

PKI Service Location

DHCP
•Limited to local subnet
•Would require modifying all existing DHCP servers
•Unnecessarily low-level: Higher-level network infrastructure is

already in place

DNS SRV
•Easily added to existing servers
•Not supported in Win’95/98/ME
•Those who need it most don’t have it
–Expecting your mum to install bind is probably a bit much

PKI Service Location (ctd)

SLP
•Service Location Protocol, specialised service-location

mechanism
•Rarely used, requires configuring and maintaining yet another

server/service

UPnP
•Very complex
•Requires XML (SOAP), HTML GUI interface, etc etc
•Many sites block UPnP for the same reason that they block

NetBIOS

PKI Service Location (ctd)

Jini
•Very complex
•Tied to Java-specific mechanisms (RMI, code downloading,

etc etc)

Others: Salutation, Rendezvous, …
•See SLP

PKI Service Location (ctd)

Faking it
•Use of “well-known” locations for services
•Full IP service (e.g. PC): Use “pkiboot” at start of domain

name
–foo.domain.com pkiboot.domain.com
–Example: Corporate/organisational CA certifying users

•Partial IP service (e.g. web-enabled embedded device): Append
“pkiboot” to device's IP address or location:
–192.0.0.1  http://192.0.0.1/pkiboot/
–Example: Print server certifying printers

•Use HTTP redirects if necessary
•Somewhat clunky, but can be done automatically/transparently

PKIBoot: Obtaining Initial Certificates

Establishing the initial trusted certificate set
•Browsers contain over 100 hardcoded certificates
–Unknown CAs
–Moribund web sites
–512-bit keys
–No-liability certificates
–Keys on-sold to third parties

•Any one of these CAs can usurp any other CA
–Certificate from “Verisign Class 1 Public Primary
Certification Authority” could be issued by “Honest Al's
Used Cars and Certificates”
–Browser trusts Verisign and Honest Al equally

PKIBoot: Obtaining Initial Certificates (ctd)

Why do browsers do this?
•Prime directive: Don’t expose the users to scary warning

dialogs
•One-size-fits-all browser can’t know in advance which entities

the user has a trust relationship with
–Need to include as many certificates as possible to minimise

the chances of users getting warning dialogs
–The ideal user-friendly situation would be to automatically

trust all certificates

Goal: User should only have to trust certificates of
relevance to them

PKIBoot: Obtaining Initial Certificates (ctd)
Use username + password to authenticate download of

known-good/trusted certs (PKIBoot)
•Messages are protected using a cryptographic message

authentication code (MAC) derived from the password
•User  PKI service: Send known-good certificates
–User request is authenticated with MAC

•PKI service  user: Known-good certificates
–PKI service response is authenticated with MAC

•Since only the legitimate service can generate the MAC,
certificate spoofing isn’t possible
•Eliminates the need for secure service discovery
–Authenticate the service afterit’s been discovered
–Security and transparent service discovery are mutually

exclusive

PKIBoot: Obtaining Initial Certificates (ctd)

Initial state: No certificates

Use username + password to authenticate download of
known-good/trusted certs (PKIBoot)
•Messages are protected using a cryptographic message

authentication code (MAC) derived from the password
•User  PKI service: Send known-good certificates
–User request is authenticated with MAC

•PKI service  user: Known-good certificates
–PKI service response is authenticated with MAC

PKIBoot: Obtaining Initial Certificates (ctd)
•Since only the legitimate service can generate the MAC,
certificate spoofing isn’t possible
•Eliminates the need for secure service discovery
–Authenticate the service after it’s been discovered
–Security and transparent service discovery are mutually

exclusive

Obtaining User Certificates

Initial state: CA certificates

Use MAC to authenticate the request for a signing
certificate

•User  PKI service: Sign this for me
–User request is authenticated with a MAC

•PKI service  user: Signed certificate
–PKI service response is authenticated with a signature from

the PKIBoot cert

Obtaining User Certificates (ctd)

Initial state: CA certificates, signing certificate

Use signing certificate to authenticate the request for an
encryption certificate

•User  PKI service: Sign this for me
–User request is authenticated with the signing cert

•PKI service  user: Signed certificate
–PKI service response authenticated with a signature from

the PKIBoot cert

Sequence of Operations

Multi-phase bootstrap
•MAC  CA cert, signing cert request
•CA cert  response
•Signing cert  encryption cert

User Svc.Location PKI Service

Svc_Req

Svc_Resp

Auth(PKIBoot_Req)

Auth(PKIBoot_Resp)

Auth(Init_Req)

Auth(Init_Resp)

Auth(Update_Resp)

Auth(Update_Req)

Locate PKI
service

Obtain CA
certificates

Obtain initial
certificates

Obtain
further certs

PKIBoot for Internet-enabled Toasters

Design so far assumes a user sitting in front of a PC
•Embedded devices don’t have a user to drive things, and often

no UI

Use the baby duck security model
•Device initialisation removes any existing state
•Newly-initialised device imprints upon the first thing it sees
•Device trusts it to issue certificates

PKIBoot for Internet-enabled Toasters (ctd)

Security is physical, not based on MACs/sigs

•PKIBoot and signing certificate issue are done on a
private/secure network
–Physically isolated LAN segment (factory setup)
–Plugged directly into a laptop (field setup)

•Further operations (e.g. firmware download) are done on
public network, secured by PKIBoot certificates

CA

Uninitialised
device

Public
Lan

Private network
segment

CA

Initialised
device

Public
Lan

Implementation details

Store-bought or home-grown?
•Use existing standards: Nothing terribly appropriate available
•Home-grown design: Not yet another PKI RFC!
–21 RFCs, 30 RFC drafts
–1,600 pages of PKI RFCs
–At least that many more non-IETF PKI standards

You can’t be a real country unless you have a beer and an airline. It
helps if you have some kind of a football team, or some nuclear
weapons, but at the very least you need a beer — Frank Zappa

And an X.509 profile —Me

Implementation details (ctd)

Underlying transport protocol is PKIX CMP
•Incredibly complex
•Ambiguous specification
–No two implementations can agree on what to do

•See the paper for more information — too horrible to go into
further here

PnP PKI in action

User
•Enters username + password
–No need to even mention certificates

Software developer
•Creates PnP PKI session
•Adds file/smart card for key storage
–Card can be pre-personalised with enrolment information

•Adds username + password

PnP PKI in action (ctd)

PnP PKI session
•Performs PKIBoot using username + password
•Generates signing key
•Requests signing certificate using username + password
•Generates encryption key
•Requests encryption certificate using signing certificate
•Updates file/smart card with signing, encryption keys and user

and CA certificates

User/Software developer
•Has keys and certificates ready for use

Future work

Use of non-CMP transport
•SCEP (Simple Cert Enrolment Protocol), used in IPsec routers
•Somewhat quirky: Cert messaging is done via secured

messages, but cert fetch is done via (insecure) HTTP GET
–PKIBoot is difficult
–Overload GetCert message: NULL issuer name  get all

trusted certificates
–No provision for MAC’d messages

•SCEP uses all-in-one certificates, so separation of signing and
encryption certificates isn’t possible

Future work / Availability

PnP for other certificate operations
•Certificate update/renewal
•Mostly taken care of by CMP anyway

Available in cryptlib, http://www.cs.auckland.ac.nz/
~pgut001/cryptlib

