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Some areas of possible future research

• Cost functions
• Classes related to the K -trivials
• Partial relativization and weak reducibilities
• Randomness notions between 2-random and 1-random

(such as Demuth random, or Schnorr random relative to ∅′)
• Randomness via computational complexity theory
• Randomness via higher descriptive set theory
• Randomness/lowness with infinite objects other than subsets

of N (such as continuous functions)
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Part 1
Cost functions
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What cost functions are good for

Cost functions are a great tool for analyzing certain classes of
∆0

2 sets.
Mostly, these classes are lowness properties such as being
K -trivial, or strongly jump traceable.

Cost functions help a lot to understand the following results:

• Each K -trivial set is Turing below a c.e. K -trivial set (Nies).
• Each null Σ0

3 class of ML-random sets has a simple Turing
lower bound. Moreover, this lower bound is obtained via an
injury-free construction (Hirschfeldt, Miller).

• Each strongly jump traceable c.e. set is Turing below each
ω-c.e. ML-random set (Greenberg, Nies).
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Definition of cost functions

Definition 1
A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.

We view c(x , s) as the cost of changing A(x) at stage s.
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Obeying a cost function

Recall that A is ∆0
2 iff A ≤T ∅′ iff A(x) = lims As(x) for a

computable approximation (As)s∈N (Limit Lemma).

Definition 2

The computable approximation (As)s∈N obeys a cost function c
if

∞ >
∑

x ,s c(x , s) [[x < s & x is least s.t. As−1(x) 6= As(x)]].

We write A |= c (A obeys c) if some computable approximation
of A obeys c.

Usually we use this to construct some auxiliary object of finite
“weight”, such as a bounded request set (aka Kraft-Chaitin set),
or a Solovay test.
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Basic existence theorem

For a cost function c : N× N → Q, let ĉ(x) = supsc(x , s).
We say that c has the limit condition if limx ĉ(x) = 0.

Theorem 3 (Various authors)

If a cost function c satisfies the limit condition, then some
(promptly) simple set A obeys c.

Proof. Let We be the e-th c.e. set. If We is infinite we want
some x ∈ We to enter A. We define a computable enumeration
(As)s∈N as follows. Let A0 = ∅. For s > 0,
As = As−1 ∪ {x : ∃e
We,s ∩ As−1 = ∅ We haven’t met e-th simplicity requirement.
x ∈ We,s We can meet it via x .
x ≥ 2e We make A co-infinite.
c(x , s) ≤ 2−e}. We ensure that A obeys c.

�
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Cost function characterization of the K -trivials

The standard cost function cK is given by

cK(x , s) =
∑s

i=x+1 2−Ks(i).

Theorem 4 (Nies 05)
A is K -trivial ⇔
some computable approximation of A obeys cK.

Corollary 5
For each K -trivial A there is a c.e. K -trivial set D ≥T A.

D is the change set {〈x , i〉 : A(x) changes at least i times}.
One verifies that D obeys cK as well.
Actually, this works for any cost function in place of cK.
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Proving Kučera’s Theorem with a cost function

Theorem 6 (Kučera 1986)

Suppose Y is a ML-random ∆0
2 set. Then some

promptly simple set A is Turing below Y .

The proof can be phrased in the language of cost functions.
Let cY (x , s) = 2−x for each x ≥ s. If x < s, and e < x is least
such that Ys−1(e) 6= Ys(e), let

cY (x , s) = max(cY (x , s − 1), 2−e).

Since Y is ∆0
2, the cost function cY satisfies the limit condition.

Proposition 7 (Greenberg and Nies)

If the ∆0
2 set A obeys cY , then A ≤T Y with use function

bounded by the identity.

Some promptly simple A obeys cY . So A ≤T Y .
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Strongly jump traceable sets

• A computably enumerable trace with bound h is a uniformly
computably enumerable sequence (Tx)x∈N such that
|Tx | ≤ h(x) for each x .

• Let JA(e) be the value at e of a universal A-partial
computable function. (For instance, let JA(e) ' ΦA

e (e) where
Φe is the e-th Turing functional.)

• The set A is called strongly jump traceable if for each order
function h, there is a c.e. trace (Tx)x∈N with bound h such
that, whenever JA(x) it is defined, we have

JA(x) ∈ Tx

• SJT will denote the class of c.e. strongly jump traceable sets.
• There is an incomputable set in SJT by Figueira, Nies,

Stephan (2004).

André Nies The University of Auckland New directions in computability and randomness



Open questions on cost functions I

Usually we are given a class D and a cost function c such that
A |= c ⇒ A ∈ D. The question is what else is in D.

Question 8

Let Y be a ML-random ∆0
2 set.

• Is there a c.e. D ≤T Y such that D 6≤wtt Y (and hence
D 6|= cY )?

• If B ≤T Y is c.e., is there a c.e. A |= cY such that B ≤T A?

Question 9

Let Y be a Demuth random ∆0
2 set. If A is c.e. and A ≤T Y, is A

strongly jump traceable?

We have shown that A |= cY ⇒ A is s.j.t.
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Some open questions on cost functions II

There is a ML-random ∆0
2 set Y such that any c.e. A ≤T Y is

s.j.t. (Greenberg, Hirschfeldt, Nies, to appear). The following
would be stronger.

Question 10

Let c be a c.f. with the limit condition. Is there a ML-random ∆0
2

set Y such that for each c.e. set A, if A ≤T Y then A |= c?
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Part 2
Classes related to the K -trivials
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Diamond Classes

2N denotes Cantor space with the uniform (coin-flip) measure.
For a null class H ⊆ 2N, we define

H♦ = the c.e. sets A Turing below each ML-random set in H.

∅'the class  H

computable sets

H     = the c.e. sets T-below
all sets in  H ∩ MLR
♢K-trivial sets

• The larger H is, the smaller is H♦.
• H♦ induces an ideal in the computably enumerable Turing

degrees.
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A lowness property and its dual highness property

• Recall that Z ⊆ N is low if Z ′ ≤T ∅′, and Z is high if ∅′′ ≤T Z ′.
• These classes are “too big”: we have

(low)♦ = (high)♦= computable.

(For instance, (high)♦= computable because there is a
minimal pair of high ML-random sets.)

• So we will try somewhat smaller classes, replacing ≤T by the
stronger truth-table reducibility ≤tt.

Definition 11 (Mohrherr 1986)

A set Z is superlow if Z ′ ≤tt ∅′. Z is superhigh if ∅′′ ≤tt Z ′.

A random set can be superlow (low basis theorem). It can also
be superhigh but Turing incomplete (Kučera coding).
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These diamond classes characterize SJT

The following theorems say that a c.e. set A is strongly jump
traceable iff it is computed, in a specific sense, by many
ML-random oracles.

Theorem 12 (Greenberg, Hirschfeldt and Nies (to appear))

SJT =superlow ♦.

That is, a c.e. set A is strongly jump traceable ⇔ A is Turing
below each superlow ML-random set.

Theorem 13 (Nies, improved version in G’berg, H’feldt, N)

SJT= superhigh ♦.
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Diagram: SJT means computed by many oracles

∅'

superhigh

SJT= (superlow)   =(superhigh)♢ ♢

superlow

K-trivial
computable
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Open questions on classes between SJT and K -trivial

• No natural classes are currently known to lie properly
between SJT and K -trivial

• A good candidate is (AED)♦. Here AED is the class of almost
everywhere dominating sets Z of Dobrinen and Simpson: for
almost all sets X , each function f ≤T X is dominated by a
function g ≤T Z . For the highness properties, there are
proper implications

Turing-complete ⇒ AED ⇒ superhigh.
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• For the corresponding diamond classes, Greenberg and Nies
proved that SJT is properly contained in (AED)♦.

• They built a single benign cost function c such that A |= c
implies A ∈(AED)♦.

• However, (AED)♦ may coincide with K -trivial.
• This would imply that the classes ML-coverable and

ML-noncuppable also coincide with K -trivial.
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Classes of c.e. sets between SJT and K -trivial

K-trivial

ML-coverable ML-noncuppable

AED♢

SJT

(The dashed arrows may be coincidences.)
• A is ML-coverable if A ≤T Y for some ML-random Y 6≥T ∅′.
• A is ML-noncuppable if
∅′ ≤T A⊕ Y for ML-random Y implies ∅′ ≤T Y .
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Some references for Parts 1 and 2

Downey and Greenberg. Each SJT is K -trivial.
N. Greenberg and A. Nies. Benign cost functions and lowness
properties. Submitted.
N. Greenberg, D. Hirschfeldt and A. Nies. Characterizing the
strongly jump-traceable sets via randomness. To appear.
A. Nies. Calculus of cost functions. To appear.
A. Nies. Computability and randomness, Oxford, 2009.
Sections 5.3, 8.4, 8.5.
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Part 3
Partial relativization and weak reducibilities
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Partial relativization

Let C ⊆ 2N be a relativizable class (for instance, a lowness
property, saying that a set is close to being computable).
Usually the relation “A ∈ CB” is not transitive.
For instance, if C is the usual lowness A′ ≤T ∅′, we have

CB = {A : (A ⊕B)′ ≤T B′}.

Take low sets A, D such that ∅′ ≡T A⊕ D, then

A ∈ C∅, ∅ ∈ CD, but A 6∈ CD.

To obtain transitivity, one relativizes only partially.
We will say that A has property C by B, or plop B.
For instance, if C is lowness we have

Cby B = {A : A′ ≤T B′},

and the relation “A ∈ Cby B” is transitive.
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Dictionary

plop |pläp|
noun
a short sound as of a small, solid object dropping into water without a splash.

verb ( plopped , plop•ping )
fall or cause to fall with such a sound : [ intrans. ] the stone plopped into the pond [

trans. ] | she plopped a sugar cube into the cup.
• ( plop oneself down) sit or lie down gently but clumsily : he plopped himself
down on the nearest chair.

ORIGIN early 19th cent.: imitative.
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Definition of weak reducibility

A preordering ≤W on 2N is called weak reducibility if

≤W is Σ0
n for some n as a relation on sets;

A ≤T B implies A ≤W B;

X ′ 6≤W X for each set X .

The idea is that B does not know everything about A (as in the
case of A ≤T B), only a certain aspect of what A can do.
For instance, let
A ≤cdom B ⇔ each A-computable function is dominated by
a B-computable function. B knows how quickly the functions
computed by A grow.
A further example: A ≤LK B ⇔ ∀x K B(x) ≤+ K A(x).
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How a relativizable class yields weak reducibilities

Given a relativizable class C, there are two ways to obtain a
weak reducibility A ≤W B:

• A ≤W B ⇔ A ∈ Cby B,
for the right type of partial relativization.

• A ≤W B ⇔ CA ⊆ CB.
That is, apply the first to the class {X : CX ⊆ C}.
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Associated lowness and highness properties

For each weak reducibility ≤W we have
• a lowness property Z ≤W ∅,
• a highness properties ∅′ ≤W Z .

They are disjoint by the last condition.
An further example of a weak reducibility due to Nies (2005) is

A ≤LR B ⇔ each B-random set is A-random.

• The associated lowness property is being low for random.
• The highness property is equivalent to being uniformly

almost everywhere dominating, by Kjos-Hanssen, Miller,
Solomon (to appear).
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Jump traceability

• JX denotes the universal pc functional with oracle X . An
order function is a nondecreasing, unbounded, computable
function.

• A computably enumerable trace with bound h is a uniformly
computably enumerable sequence (Tx)x∈N such that
|Tx | ≤ h(x) for each x .

• A is called jump traceable if there is a c.e. trace (Te)e∈N for
JA, and an order function h such that |Te| ≤ h(e) for each e.
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Plopping jump traceability

Definition 14 (Simpson, 2006, implicitly)

A is jump traceable plop B, written A ≤JT B, if there is a c.e.
trace (Te)e∈N relative to B for JA, and an order function h such
that |Te| ≤ h(e) for each e.

In contrast, to define jump traceable relative to B, one would
require the existence of a B-c.e. trace for JA⊕B instead of JA,
but the bound for this trace need only be computable in B.

The rules of thumb for plopping successfully:
• write A instead of A⊕ B (in the right places)
• leave computable bounds in peace.
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The weak reducibility ≤JT

It is not hard to show that ≤JT is a Σ0
3 relation on sets, that

A ≤T B implies A ≤JT B, and that A′ 6≤JT A.

Proposition 15

The relation ≤JT is transitive.

Proof. Suppose A is jump traceable by B via a trace (Sn)n∈N with
computable bound g, and B is jump traceable by C via a trace (Ti)i∈N
with a computable bound h. There is a computable function β such
that

JB(β(〈n, k〉)) ' the k -th element enumerated into Sn.

Let Vn =
⋃

k<g(n) Tβ(〈n,k〉), then #Vn ≤ g(n) · h(β(〈n, g(n)〉)) and A is
jump traceable by C via the trace (Vn)n∈N. �
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Which theorems/proofs survive a partial relativization?

Theorem 16 (Nies 05)
Lowness for ML-randomness is the same as lowness for
prefix-free complexity K .

This becomes: ≤LR is equivalent to ≤LK ,
by Kjos, Miller, Solomon, to appear. A different proof is needed,
though.

Theorem 17 (Figueira, N, Stephan 07)

Let C be plain descriptive string complexity. Then
A is jump traceable ⇔ ∀x

[
C(x) ≤+ CA(x) + h(CA(x))

]
for

some order function h.

Plopping the proof, this becomes:
A ≤JT B ⇔
∀x

[
CB(x) ≤+ CA(x) + h(CA(x))

]
for some order function h.
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A theorem that cannot be plopped

Theorem 18 (Nies 2002)
Let A be c.e. Then
A is jump traceable ⇔ A is superlow (i.e., A′ ≤tt ∅′).

Let A = ∅′ and try to plop this theorem to a set B. We have

∅′ ≤JT B ⇒ ∅′′ ≤tt B′ (B is superhigh)

by a result of Simpson.
The converse direction, however, fails: there is a superhigh
jump traceable set B (Kjos-H and Nies). Then B 6≥JT ∅′.
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Table of some weak reducibilities

Weak reducibility Lowness property Highness prop.

≤T computable ≥T ∅′

≤LR ⇔ ≤LK Low(MLR) = low for K u.a.e.d
≤JT jump traceable ≥JT ∅′

A′ ≤tt B′ superlow superhigh
A′ ≤T B′ low high
≤CT comp. traceable ≥T ∅′

≤cdom comp. dominated ≥T ∅′

≤BLR (Cole & Simpson) jump tr. & superlow ≥JT ∅′
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Diagram of weak reducibilities
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Results of G. Barmpalias, Selwyn Ng

We say that A is a base for ≤W if A ≤W Z for some Z that is
ML-random relative to A.

• (Ng) For both ≤SJT and ≤ CT , the cone below ∅′ has size
continuum.

• (Ng) The only bases for ≤JT are the jump traceable sets.
• (Barmpalias) Some set A is a base for ≤LR but not low for

randomness.
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Directions of study for weak reducibilities

Degree theoretic questions: existence of minimal degrees,
of minimal pairs, of nontrivial suprema.

The cardinality of single degrees, and lower cones. Each
LR degree countable (Nies 2005 showed this for ≤LK . Now
use Kjos/Miller/Solomon that ≤LK⇔≤LR), while the LR
lower cone below ∅′ (and in fact below each non-GL2) is
uncountable (Barmpalias, Lewis, Soskova).

Implications between weak redu’s. For instance, does
≤SJT imply ≤LR?

Theory of Borel equivalences. For instance, is ≡LR Borel
complete for countable Borel equivalence relations?
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Some references for Part 3

Barmpalias et al. papers on ≤LR

G. Barmpalias, J. Miller, A. Nies. Randomness notions and
partial relativization. To appear.
S. Ng, Thesis.
A. Nies. Computability and randomness, Oxford, 2009. Section
8.4
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Part 4
Randomness lower down
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Complexity theory: k -traces

Definition 19
Let k ≥ 1. A k -trace is a sequence (Tx)x∈Σ∗ of subsets of Σ∗

such that

• |Tx | = k for each x
• The function x → (code for) Tx is in P.

(Tx)n∈N is a trace for the function f : Σ∗ → Σ∗ if f (x) ∈ Tx for
each x .
We say that A is k -traceable if each function f ∈ PA has a
k -trace.
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Supersparse sets are 2-traceable

Definition 20 (Ambos-Spies 1986)
Let f : N 7→ N be a strictly increasing, time constructible
function. A is f -super sparse if

• A ⊆ {0f (i) : i ∈ N}
• Some machine determines A(0f (i−1)) in time O(f (i)).

Let f be the iteration of the function n → 2n. Ambos-Spies
constructed an f -supersparse set in EXPTIME− P.

Theorem 21 (Ambos-Spies 1986)
Each f -supersparse set is 2-traceable.

Question 22
Is each k-traceable set low for polynomial randomness
[polynomial Schnorr randomness]?
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