New directions in computability and randomness

André Nies The University of Auckland

Luminy workshop 2009

Some areas of possible future research

- Cost functions
- Classes related to the K-trivials
- Partial relativization and weak reducibilities
- Randomness notions between 2-random and 1-random (such as Demuth random, or Schnorr random relative to ∅')
- Randomness via computational complexity theory
- Randomness via higher descriptive set theory
- Randomness/lowness with infinite objects other than subsets of N (such as continuous functions)

Part 1 Cost functions

Cost functions are a great tool for analyzing certain classes of Δ_2^0 sets.

Mostly, these classes are lowness properties such as being K-trivial, or strongly jump traceable.

Cost functions help a lot to understand the following results:

- Each *K*-trivial set is Turing below a c.e. *K*-trivial set (Nies).
- Each null Σ₃⁰ class of ML-random sets has a simple Turing lower bound. Moreover, this lower bound is obtained via an injury-free construction (Hirschfeldt, Miller).
- Each strongly jump traceable c.e. set is Turing below each ω-c.e. ML-random set (Greenberg, Nies).

Definition 1

A cost function is a computable function

$$c: \mathbb{N} \times \mathbb{N} \to \{x \in \mathbb{Q}: x \ge 0\}.$$

We view c(x, s) as the cost of changing A(x) at stage *s*.

Obeying a cost function

Recall that *A* is Δ_2^0 iff $A \leq_T \emptyset'$ iff $A(x) = \lim_s A_s(x)$ for a computable approximation $(A_s)_{s \in \mathbb{N}}$ (Limit Lemma).

Definition 2

The computable approximation $(A_s)_{s\in\mathbb{N}}$ obeys a cost function *c* if

 $\infty > \sum_{x,s} c(x,s) \llbracket x < s \& x \text{ is least s.t. } A_{s-1}(x) \neq A_s(x) \rrbracket.$

We write $A \models c$ (A obeys c) if some computable approximation of A obeys c.

Usually we use this to construct some auxiliary object of finite "weight", such as a bounded request set (aka Kraft-Chaitin set), or a Solovay test.

Basic existence theorem

For a cost function $c : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$, let $\hat{c}(x) = \sup_{s} c(x, s)$. We say that c has the limit condition if $\lim_{x} \hat{c}(x) = 0$.

Theorem 3 (Various authors)

If a cost function **c** satisfies the limit condition, then some (promptly) simple set **A** obeys **c**.

Proof. Let W_e be the *e*-th c.e. set. If W_e is infinite we wantsome $x \in W_e$ to enter A. We define a computable enumeration $(A_s)_{s \in \mathbb{N}}$ as follows. Let $A_0 = \emptyset$. For s > 0, $A_s = A_{s-1} \cup \{x : \exists e$ $W_{e,s} \cap A_{s-1} = \emptyset$ $x \in W_{e,s}$ $x \ge 2e$ $c(x, s) \le 2^{-e}\}.$

Cost function characterization of the K-trivials

The standard cost function $c_{\mathcal{K}}$ is given by

$$c_{\mathcal{K}}(x,s) = \sum_{i=x+1}^{s} 2^{-K_s(i)}.$$

Theorem 4 (Nies 05)

A is K-trivial \Leftrightarrow some computable approximation of A obeys $c_{\mathcal{K}}$.

Corollary 5

For each K-trivial A there is a c.e. K-trivial set $D \ge_T A$.

D is the change set { $\langle x, i \rangle$: A(x) changes at least *i* times}. One verifies that *D* obeys $c_{\mathcal{K}}$ as well. Actually, this works for any cost function in place of $c_{\mathcal{K}}$.

Theorem 6 (Kučera 1986)

Suppose Y is a ML-random Δ_2^0 set. Then some promptly simple set A is Turing below Y.

The proof can be phrased in the language of cost functions. Let $c_Y(x, s) = 2^{-x}$ for each $x \ge s$. If x < s, and e < x is least such that $Y_{s-1}(e) \ne Y_s(e)$, let

 $c_{Y}(x,s) = \max(c_{Y}(x,s-1),2^{-e}).$

Since *Y* is Δ_2^0 , the cost function c_Y satisfies the limit condition.

Proposition 7 (Greenberg and Nies)

If the Δ_2^0 set A obeys c_Y , then $A \leq_T Y$ with use function bounded by the identity.

Some promptly simple *A* obeys c_Y . So $A \leq_T Y$.

Strongly jump traceable sets

- A computably enumerable trace with bound *h* is a uniformly computably enumerable sequence (*T_x*)_{*x*∈ℕ} such that |*T_x*| ≤ *h*(*x*) for each *x*.
- Let J^A(e) be the value at e of a universal A-partial computable function. (For instance, let J^A(e) ≃ Φ^A_e(e) where Φ_e is the e-th Turing functional.)
- The set A is called strongly jump traceable if for each order function h, there is a c.e. trace (T_x)_{x∈ℕ} with bound h such that, whenever J^A(x) it is defined, we have

$J^{A}(x) \in T_{x}$

- *SJT* will denote the class of c.e. strongly jump traceable sets.
- There is an incomputable set in *SJT* by Figueira, Nies, Stephan (2004).

Usually we are given a class \mathcal{D} and a cost function c such that $A \models c \Rightarrow A \in \mathcal{D}$. The question is what else is in \mathcal{D} .

Question 8

Let Y be a ML-random Δ_2^0 set.

- Is there a c.e. D ≤_T Y such that D ≰_{wtt} Y (and hence D ⊭ c_Y)?
- If $B \leq_T Y$ is c.e., is there a c.e. $A \models c_Y$ such that $B \leq_T A$?

Question 9

Let Y be a Demuth random Δ_2^0 set. If A is c.e. and $A \leq_T Y$, is A strongly jump traceable?

We have shown that $A \models c_Y \Rightarrow A$ is s.j.t.

There is a ML-random Δ_2^0 set *Y* such that any c.e. $A \leq_T Y$ is s.j.t. (Greenberg, Hirschfeldt, Nies, to appear). The following would be stronger.

Question 10

Let c be a c.f. with the limit condition. Is there a ML-random Δ_2^0 set Y such that for each c.e. set A, if $A \leq_T Y$ then $A \models c$?

Part 2

Classes related to the K-trivials

Diamond Classes

 $2^{\mathbb{N}}$ denotes Cantor space with the uniform (coin-flip) measure. For a null class $\mathcal{H} \subseteq 2^{\mathbb{N}}$, we define

 \mathcal{H}^{\Diamond} = the c.e. sets A Turing below each ML-random set in \mathcal{H} .

- The larger \mathcal{H} is, the smaller is \mathcal{H}^{\Diamond} .
- *H*[◊] induces an ideal in the computably enumerable Turing degrees.

A lowness property and its dual highness property

- Recall that $Z \subseteq \mathbb{N}$ is low if $Z' \leq_T \emptyset'$, and Z is high if $\emptyset'' \leq_T Z'$.
- These classes are "too big": we have

 $(low)^{\diamond} = (high)^{\diamond} = computable.$

(For instance, $(high)^{\diamond}$ = computable because there is a minimal pair of high ML-random sets.)

 So we will try somewhat smaller classes, replacing ≤_T by the stronger truth-table reducibility ≤_{tt}.

Definition 11 (Mohrherr 1986)

A set *Z* is superlow if $Z' \leq_{tt} \emptyset'$. *Z* is superhigh if $\emptyset'' \leq_{tt} Z'$.

A random set can be superlow (low basis theorem). It can also be superhigh but Turing incomplete (Kučera coding).

The following theorems say that a c.e. set *A* is strongly jump traceable iff it is computed, in a specific sense, by many ML-random oracles.

Theorem 12 (Greenberg, Hirschfeldt and Nies (to appear))

 $SJT = superlow^{\diamond}$.

That is, a c.e. set A is strongly jump traceable \Leftrightarrow A is Turing below each superlow ML-random set.

Theorem 13 (Nies, improved version in G'berg, H'feldt, N)

SJT= superhigh \diamond .

Diagram: SJT means computed by many oracles

- No natural classes are currently known to lie properly between *SJT* and *K*-trivial
- A good candidate is (AED)[◊]. Here AED is the class of almost everywhere dominating sets *Z* of Dobrinen and Simpson: for almost all sets *X*, each function *f* ≤_T *X* is dominated by a function *g* ≤_T *Z*. For the highness properties, there are proper implications

Turing-complete \Rightarrow AED \Rightarrow superhigh.

- For the corresponding diamond classes, Greenberg and Nies proved that *SJT* is properly contained in (AED)[◊].
- They built a single benign cost function *c* such that *A* ⊨ *c* implies *A* ∈(AED)[◊].
- However, (AED) \diamond may coincide with *K*-trivial.
- This would imply that the classes ML-coverable and ML-noncuppable also coincide with *K*-trivial.

Classes of c.e. sets between SJT and K-trivial

(The dashed arrows may be coincidences.)

- A is ML-coverable if $A \leq_T Y$ for some ML-random $Y \geq_T \emptyset'$.
- A is ML-noncuppable if

 $\emptyset' \leq_T A \oplus Y$ for ML-random Y implies $\emptyset' \leq_T Y$.

Downey and Greenberg. Each SJT is K-trivial.

N. Greenberg and A. Nies. Benign cost functions and lowness properties. Submitted.

N. Greenberg, D. Hirschfeldt and A. Nies. Characterizing the strongly jump-traceable sets via randomness. To appear.

A. Nies. Calculus of cost functions. To appear.

A. Nies. Computability and randomness, Oxford, 2009. Sections 5.3, 8.4, 8.5.

Part 3

Partial relativization and weak reducibilities

Partial relativization

Let $C \subseteq 2^{\mathbb{N}}$ be a relativizable class (for instance, a lowness property, saying that a set is close to being computable). Usually the relation " $A \in C^{B}$ " is not transitive. For instance, if C is the usual lowness $A' \leq_{\mathcal{T}} \emptyset'$, we have

$$\mathcal{C}^{\mathcal{B}} = \{ \mathcal{A} \colon (\mathcal{A} \oplus \mathcal{B})' \leq_{\mathcal{T}} \mathcal{B}' \}.$$

Take low sets A, D such that $\emptyset' \equiv_T A \oplus D$, then

$$A \in \mathcal{C}^{\emptyset}, \ \emptyset \in \mathcal{C}^{D}, \ \mathsf{but} \ A \not\in \mathcal{C}^{D}.$$

To obtain transitivity, one relativizes only partially. We will say that *A* has property C by *B*, or plop *B*. For instance, if C is lowness we have

$$\mathcal{C}^{by B} = \{ A \colon A' \leq_T B' \},\$$

and the relation " $A \in C^{by B}$ " is transitive.

Dictionary

plop |pläp|

noun

a short sound as of a small, solid object dropping into water without a splash.

verb (plopped , plop-ping)

fall or cause to fall with such a sound : [intrans.] the stone plopped into the pond [trans.] | she plopped a sugar cube into the cup.

• (**plop oneself down**) sit or lie down gently but clumsily : *he plopped himself* down on the nearest chair.

ORIGIN early 19th cent .: imitative.

A preordering \leq_W on $2^{\mathbb{N}}$ is called weak reducibility if

- \leq_W is Σ_n^0 for some *n* as a relation on sets;
- $A \leq_T B$ implies $A \leq_W B$;
- $X' \not\leq_W X$ for each set X.

The idea is that *B* does not know everything about *A* (as in the case of $A \leq_T B$), only a certain aspect of what *A* can do. For instance, let

 $A \leq_{cdom} B \Leftrightarrow$ each A-computable function is dominated by a B-computable function. B knows how quickly the functions computed by A grow.

A further example: $A \leq_{LK} B \Leftrightarrow \forall x \ K^B(x) \leq^+ K^A(x)$.

Given a relativizable class C, there are two ways to obtain a weak reducibility $A \leq_W B$:

• $A \leq_W B \Leftrightarrow A \in \mathcal{C}^{by B}$,

for the right type of partial relativization.

• $A \leq_W B \Leftrightarrow \mathcal{C}^A \subseteq \mathcal{C}^B$.

That is, apply the first to the class $\{X: C^X \subseteq C\}$.

For each weak reducibility \leq_W we have

- a lowness property $Z \leq_W \emptyset$,
- a highness properties $\emptyset' \leq_W Z$.

They are disjoint by the last condition.

An further example of a weak reducibility due to Nies (2005) is

 $A \leq_{LR} B \Leftrightarrow$ each *B*-random set is *A*-random.

- The associated lowness property is being low for random.
- The highness property is equivalent to being uniformly almost everywhere dominating, by Kjos-Hanssen, Miller, Solomon (to appear).

- *J^X* denotes the universal pc functional with oracle *X*. An order function is a nondecreasing, unbounded, computable function.
- A computably enumerable trace with bound *h* is a uniformly computably enumerable sequence (*T_x*)_{x∈ℕ} such that |*T_x*| ≤ *h*(*x*) for each *x*.
- A is called jump traceable if there is a c.e. trace $(T_e)_{e \in \mathbb{N}}$ for J^A , and an order function h such that $|T_e| \le h(e)$ for each e.

Definition 14 (Simpson, 2006, implicitly)

A is jump traceable plop *B*, written $A \leq_{JT} B$, if there is a c.e. trace $(T_e)_{e \in \mathbb{N}}$ relative to *B* for J^A , and an order function *h* such that $|T_e| \leq h(e)$ for each *e*.

In contrast, to define jump traceable relative to *B*, one would require the existence of a *B*-c.e. trace for $J^{A \oplus B}$ instead of J^A , but the bound for this trace need only be computable in *B*.

The rules of thumb for plopping successfully:

- write A instead of $A \oplus B$ (in the right places)
- leave computable bounds in peace.

The weak reducibility \leq_{JT}

It is not hard to show that \leq_{JT} is a Σ_3^0 relation on sets, that $A \leq_T B$ implies $A \leq_{JT} B$, and that $A' \not\leq_{JT} A$.

Proposition 15

The relation \leq_{JT} is transitive.

Proof. Suppose *A* is jump traceable by *B* via a trace $(S_n)_{n \in \mathbb{N}}$ with computable bound *g*, and *B* is jump traceable by *C* via a trace $(T_i)_{i \in \mathbb{N}}$ with a computable bound *h*. There is a computable function β such that

 $J^{B}(\beta(\langle n, k \rangle)) \simeq$ the *k*-th element enumerated into S_{n} .

Let $V_n = \bigcup_{k < g(n)} T_{\beta(\langle n, k \rangle)}$, then $\# V_n \le g(n) \cdot h(\beta(\langle n, g(n) \rangle))$ and *A* is jump traceable by *C* via the trace $(V_n)_{n \in \mathbb{N}}$.

Theorem 16 (Nies 05)

Lowness for ML-randomness is the same as lowness for prefix-free complexity K.

This becomes: \leq_{LR} is equivalent to \leq_{LK} ,

by Kjos, Miller, Solomon, to appear. A different proof is needed, though.

Theorem 17 (Figueira, N, Stephan 07)

Let *C* be plain descriptive string complexity. Then A is jump traceable $\Leftrightarrow \forall x [C(x) \leq^+ C^A(x) + h(C^A(x))]$ for some order function *h*.

Plopping the proof, this becomes: $A \leq_{JT} B \Leftrightarrow$ $\forall x \left[C^B(x) \leq^+ C^A(x) + h(C^A(x)) \right]$ for some order function *h*.

Theorem 18 (Nies 2002)

Let A be c.e. Then

A is jump traceable \Leftrightarrow A is superlow (i.e., $A' \leq_{tt} \emptyset'$).

Let $A = \emptyset'$ and try to plop this theorem to a set *B*. We have

$$\emptyset' \leq_{JT} B \Rightarrow \emptyset'' \leq_{tt} B'$$
 (*B* is superhigh)

by a result of Simpson.

The converse direction, however, fails: there is a superhigh jump traceable set *B* (Kjos-H and Nies). Then $B \not\geq_{JT} \emptyset'$.

Weak reducibility	Lowness property	Highness prop.
\leq_T	computable	$\geq_{\mathcal{T}} \emptyset'$
$\leq_{LR} \Leftrightarrow \leq_{LK}$	Low(MLR) = low for K	u.a.e.d
≤JT	jump traceable	$\geq_{JT} \emptyset'$
$A' \leq_{tt} B'$	superlow	superhigh
$A' \leq_T B'$	low	high
SCT	comp. traceable	$\geq_T \emptyset'$
≤ _{cdom}	comp. dominated	$\geq_T \emptyset'$
\leq_{BLR} (Cole & Simpson)	jump tr. & superlow	$\geq_{JT} \emptyset'$

Diagram of weak reducibilities

We say that A is a base for \leq_W if $A \leq_W Z$ for some Z that is ML-random relative to A.

- (Ng) For both ≤_{SJT} and ≤ CT, the cone below Ø' has size continuum.
- (Ng) The only bases for \leq_{JT} are the jump traceable sets.
- (Barmpalias) Some set A is a base for ≤_{LR} but not low for randomness.

Directions of study for weak reducibilities

- Degree theoretic questions: existence of minimal degrees, of minimal pairs, of nontrivial suprema.
- The cardinality of single degrees, and lower cones. Each *LR* degree countable (Nies 2005 showed this for \leq_{LK} . Now use Kjos/Miller/Solomon that $\leq_{LK} \Leftrightarrow \leq_{LR}$), while the *LR* lower cone below \emptyset' (and in fact below each non-GL₂) is uncountable (Barmpalias, Lewis, Soskova).
- Implications between weak redu's. For instance, does \leq_{SJT} imply \leq_{LR} ?
- Theory of Borel equivalences. For instance, is ≡_{LR} Borel complete for countable Borel equivalence relations?

Barmpalias et al. papers on \leq_{LR}

G. Barmpalias, J. Miller, A. Nies. Randomness notions and partial relativization. To appear.

S. Ng, Thesis.

A. Nies. Computability and randomness, Oxford, 2009. Section 8.4

Part 4 Randomness lower down

Definition 19

Let $k \ge 1$. A *k*-trace is a sequence $(T_x)_{x \in \Sigma^*}$ of subsets of Σ^* such that

- $|T_x| = k$ for each x
- The function $x \rightarrow$ (code for) T_x is in P.

 $(T_x)_{n\in\mathbb{N}}$ is a trace for the function $f: \Sigma^* \to \Sigma^*$ if $f(x) \in T_x$ for each x.

We say that *A* is *k*-traceable if each function $f \in P^A$ has a *k*-trace.

Definition 20 (Ambos-Spies 1986)

Let $f : \mathbb{N} \mapsto \mathbb{N}$ be a strictly increasing, time constructible function. *A* is *f*-super sparse if

- $A \subseteq \{0^{f(i)} : i \in \mathbb{N}\}$
- Some machine determines $A(0^{f(i-1)})$ in time O(f(i)).

Let *f* be the iteration of the function $n \rightarrow 2^n$. Ambos-Spies constructed an *f*-supersparse set in EXPTIME – P.

Theorem 21 (Ambos-Spies 1986)

Each f-supersparse set is 2-traceable.

Question 22

Is each k-traceable set low for polynomial randomness [polynomial Schnorr randomness]?