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Abstract. We adjust methods of computable model theory to effective
analysis. We use index sets and infinitary logic to obtain classification-
type results for compact computable metric spaces. We show that ev-
ery compact computable metric space can be uniquely described, up to
isometry, by a computable Π3 formula, and that orbits of elements are
uniformly given by computable Π2 formulas. We show that deciding if
two compact computable metric spaces are isometric is a Π0

2 complete
problem within the class of compact computable spaces, which in itself is
Π0

3 . On the other hand, if there is an isometry, then ∅′′ can compute one.
In fact, there is a set low relative to ∅′ which can compute an isometry.
We show that the result can not be improved to ∅′. We also give further
results for special classes of compact spaces, and for other related classes
of Polish spaces.

1 Introduction

An equivalence relation on a standard Borel space is called smooth if it is
Borel reducible to the equality relation on R. By a result of Gromov (see
[7, proof of 14.2.1]), the isometry relation on compact metric spaces is
smooth. Thus, every compact metric space can be uniquely described, up
to isometry, by a single real. In invariant descriptive set theory, a smooth
equivalence relation E is considered trivial: by Silver’s theorem, either
E is Borel equivalent to equality on R, or E has only countably many
classes.

Recall that every compact metric space is separable and complete.
Separable complete metric spaces occurring in mathematical practice are
usually computable. For instance, [0, 1]n, the Hilbert cube, `2, C[0, 1],
and the Urysohn space are computable with any of the standard met-
rics [11,10]. In this paper, we adapt methods of computable model the-
ory [2,6] to computable analysis [11,3,15] in order to study the classifica-
tion problem for compact computable metric spaces. Although our paper
is mostly restricted to the study of compact computable metric spaces up
to isometry, we hope that our ideas and methods will find further appli-
cations to other topics of modern computable analysis, such as the study
of computable Banach spaces and computable topological spaces.



In contrast to computable analysis, the main objects of computable
algebra are countable algebraic structures. These are structures with do-
main N and in which the basic operations can be represented by com-
putable functions on N. In computable model theory and effective al-
gebra there are several approaches to classification problems (see, e.g.,
[8,9,4,5]). We focus on two approaches which use index sets and infinitary
computable logic, respectively.

Index sets and isomorphism problems. The first approach uses the fact
that all partially computable functions can be effectively listed. As a con-
sequence, there exists an effective listing of all partial computable alge-
braic structures (Ae)e∈N which includes all infinite computable algebras.
For a class K of computable algebras, the difficulty of the classification
problems is reflected in the following sets:

1. the index set IK = {e : Ae ∈ K} of K, and

2. the isomorphism problem EK = {(e, j) ∈ I2K : Ae ∼= Aj} for K.

The complexity of the index sets is measured using the arithmetical, hy-
perarithmetical, and analytical hierarchies [2]. Recall that the arithmeti-
cal hierarchy is defined via iterating quantifiers over computable predi-
cates, and the hyprarithmetical hierarchy extends the arithmetical hier-
archy to computable ordinals. Deciding if two algebras from K are iso-
morphic might be simpler than detecting whether an algebra belongs to
this class. In this case one usually considers the complexity of EK within
IK. For example, EK is Π0

2 within a Π0
3 set IK if there exists a Π0

2 set
S ⊂ N2 such that EK = S ∩ (IK × IK).

A collection of computable models K is called classifiable if both IK
and EK are hyperarithmetical. (Usually K will be closed under isomor-
phism on computable models.) See [8,9,4,5] for further background and
results in this direction.

Infinitary computable logic. Ash [1] introduced computable infinitary for-
mulas in the context of computable algebras. An infinitary computable
language extends a first-order language by allowing infinite conjunctions
and disjunctions over computably enumerable families of formulas. The
definition [1,2] uses a recursion scheme. Computable formulas have proved
to be of a great importance in computable algebra; see the book of Ash
and Knight [2]. We say that a class K of computable structures closed
under isomorphism admits a syntactic description, if there exists a com-
putable infinitary sentence Φ such that, for any computable M , we have
M |= Φ if and only if M ∈ K. Note that this condition implies that
the index set is hyperarithmetical [8]. The converse is known without the
restriction to indices for computable structures. Vanden Boom [14] has



shown that every hyperarithmetical invariant class can be described by a
computable sentence.

There is also a syntactic counterpart of requiring that EK is hyper-
arithmetical.

Definition 1. We say that a class K of computable structures admits
a syntactic classification if there is a hyperarithmetical bound on the
complexity of infinitary formulas which describe the orbits of tuples of
elements in M ∈ K under the action of the automorphism group of M .

To adjust the effective classification methods to computable analysis,
we need some basic definitions. Following the tradition rooted in the works
of Turing [12,13], we say that a real x is computable if for each k we can
compute a rational within 2−k of x.

Definition 2 ([3,11]). Let (M,d) be a complete separable metric space,
and let (qi)i∈N be a dense sequence of points in M . The triple

M = (M,d, (qi)i∈N)

is a computable metric space if d(qi, qk) is a computable real uniformly in
i, k. We say that (qi)i∈N is a computable structure on M, and that the qi
are the special points ofM. A Cauchy name for x is a sequence (rp)p∈N of
special points converging rapidly to x in the sense that d(rp, rp+1) < 2−p.

We introduce computable infinitary formulas in the context of com-
putable metric spaces (see preliminaries). In Theorem 6 we prove that
every computable compact metric space is uniquely described by a com-
putable Π3 infinitary sentence. Further, the orbits of special elements in
a compact computable Polish space (under the action of its automor-
phism group) are given uniformly by computable infinitary Π2 formulas.
As a consequence, computable compact metric spaces admit a syntac-
tic characterization. In Theorem 10 we will apply Theorem 6 to show
that the index set of compact computable metric spaces is Π0

3 -complete,
and the isomorphism problem for compact computable metric spaces is
Π0

2 -complete within this index set. Thus, the collection of compact com-
putable metric spaces is classifiable in the sense given above.

2 Preliminaries

We view a metric space (X, d) as a structure in the signature S =
{R<q, R>q : q ∈ Q+}, where R<q and R>q are binary relation symbols.
The intended meaning of R<q(x, y) is that d(x, y) < q. The intended



meaning of R>q(x, y) is that d(x, y) > q. We denote the first-order lan-
guage of S by L.

For a tuple x ∈ Xn consider the n × n distance matrix Dn(x) =
d(xi, xj)i,j<n. We often view this matrix as a tuple in Rn2

with the max
norm ||.||max. Sometimes we suppress the subscript n. Note that for any

matrix A ∈ Qn2
and any positive rational p, there is a quantifier free

positive first-order formula φA,n,p(x) in the signature above expressing
that ||Dn(x)−A||max < p.

In this paper, the main objects are computable metric spaces. Notice
that, in the notations of Definition 2, a separable space is computable if
and only if R<r(qi, qk) and R>r(qi, qk) are uniformly Σ0

1 .

Definition 3. Since all partial functions can be effectively listed, we ob-
tain a uniformly computable sequence of partial computable structures
(Me)e∈N so that some of these Me are computable structures on met-
ric spaces: we view Me as a partial computable function ψ such that
rp = ψ(i, j, p)p∈N converges rapidly (in the sense above) to d(i, j). It is a
Π0

2 property of ψ to be total and describe a metric space. We denote the
completion of Me, after modding out by equivalent points, by cp(Me).

Fact 4 For (M,d, (pi)i∈N) a computable metric space, and W a c.e. set,
(pi)i∈W is a computable structure on the space cp((pi)i∈W ), d).

Proof. If W is infinite, we use a computable bijection f : ω →W to define
a computable structure (ri)i∈N on cp((pi)i∈W ), d) by the rule ri = pf(i).

Infinitary computable formulas. The language Lcω1ω is a countable
fragment of Lω1ω. The atomic formulas are (syntactically) open finitary
formulas in the language of metric spaces introduced above, with ¬ but
without =. We allow computably enumerable conjunctions, computably
enumerable disjunctions, and quantification over a variable.

In contrast to computable model theory, a computable structure on
a space is not the whole space but a dense subset of it. Thus, for a
computable metric structure Me and φ a computable infinitary formula,
cp(Me) |= φ and Me |= φ have different interpretations.

The hierarchy of such formulas is defined similarly to the countable
case; see the book of Ash and Knight [2]. In our specific case, the impor-
tant modification is that D<q(x, y), for a rational q and special points x
and y, should be understood as a Σ1 formula, and similarly for D>q(x, y).

Informally, in the calculation of the complexity of a formula we also
count alternations of infinitary conjunctions and disjunctions. When we
count these alternations, we do not distinguish the infinitary conjunction



from ∀, and disjunction from ∃. So, for example, a prefix of the form
∃
∧
∀
∨
∃ will have only 3 alternations. More formally, the complexity of∨

i ψi is determined using inf{β : ψi ∈ Σβ}, and similarly for conjunctions.
See [2] for formal definitions. We will omit the adjective “infinitary” when
it is clear from the context.

Fact 5 Let ψ be a computable formula of complexity Σn, where n ∈ ω.
Then the set {e : Me |= ψ} is Σ0

n. (Similarly for Πn.)

Proof. By induction on the complexity of ψ we can show that, if Me is
a (partial) computable metric structure and Me |= ψ, then ∅(n−1) will
eventually recognize it.

3 Existential theories and infinitary formulas

Theorem 6.

(i) Within the class of computable Polish spaces, each compact member
is uniquely described up to isometry by a computable Π3 axiom.

(ii) The orbits of special elements in a compact computable metric space
(under the action of its self-isometry group) are given uniformly by
computable Π2 formulas.

Proof. We will need a result due to Friedman, Fokina, Körwien and Nies
(2012) which itself is based on Gromov’s work (see [7, proof of 14.2.1]).

Proposition 7 Let X,Y be compact metric spaces. Suppose that tuples
ã ∈ Xk, b̃ ∈ Y k satisfy the same existential positive finitary formulas.
Then there is an isometry from X to Y mapping ã to b̃.

Proof. It is well-known that any isometric self-embedding of a compact
metric space is onto (see [7, proof of 14.2.1]). Thus, by symmetry, it
suffices to find an isometric embedding of X into Y mapping ã to b̃.
The following lemma from [7, Exercise 14.2.3] slightly extends the above-
mentioned result of Gromov.

Lemma 8. Suppose that for every ε > 0, for any n and tuple x ∈ Xn

there is a tuple y ∈ Y n such that
∣∣∣∣∣∣D(ã, x)−D(̃b, y)

∣∣∣∣∣∣
max

< ε. Then there

is an an isometric embedding of X to Y mapping ã to b̃.

It now suffices to show that if ã ∈ Xn, b̃ ∈ Y n satisfy the same ex-
istential positive formulas, the hypothesis of the lemma is satisfied. For
every n × n rational matrix A, there is a formula φA,n,ε(x) saying that



||Dn(x)−A||max < ε/2. Given x ∈ Xn choose a rational (k+n)× (k+n)
matrix A such that

||D(ã, x)−A||max < ε/2.

Thus ∃xφA,n+k,ε/2(ã, x) holds in X. Hence there is y ∈ Y n such that

φA,n+k,ε/2(̃b, y) holds in Y . This implies
∣∣∣∣∣∣D(ã, x)−D(̃b, y)

∣∣∣∣∣∣
max

< ε as

required.

We prove (i) of the theorem. Note that a complete metric space is com-
pact iff it is totally bounded, namely, satisfies the computable sentence∧

q∈Q+

∨
n∈N
∃x0 . . . xn−1∀y

∨
i<n

d(xi, y) < q. (1)

We can replace each quantifier by a quantifier restricted to special points,
and also replace d(xi, y) < q by ¬(d(xi, y) > q) with the meaning d(xi, y) ≤
q. Let θ be the resulting computable sentence. The quantifier

∨
i<n is fini-

tary and does not contribute any extra complexity to the formula. Thus,
θ is computable Π3. Clearly, Me |= θ if and only if cp(Me) |= θ.

We take Me a computable structure on a Polish space. For the tu-
ple ã = ∅ of special points we let ψ be a conjunction of all formu-
las ∃xφB,k,ε(x) (with quantification over special points, B a rational
k × k matrix, ε a positive rational) which are true on Me. Note that
cp(Me) |= ∃xφB,k,ε(x) if and only if the corresponding restricted formula
holds on Me. Thus, the conjunction is in fact c.e. since we can enumerate
all such sentences which are true on Me. Therefore, ψ is computable Π2.
The desired computable axiom is F = θ ∧ ψ which is of complexity Π3.

We prove (ii). The orbit of a tuple ã of special points in a compact com-
putable Polish space is definable by the conjunction of ∃xφA,n+k,ε/2(ã, x)
which hold onMe. Given ã we can effectively list all formulas φA,n+k,ε/2(ã, x)
such that Me |= ∃xφA,n+k,ε/2(ã, x). Thus, the conjunction of all such for-
mulas, with ã replaced by a tuple of variables ỹ, is effective. Similarly to
the proof of (1) above, we have Me |= ∃xφA,n+k,ε/2(ã, x) ⇔ cp(Me) |=
∃xφA,n+k,ε/2(ã, x), for every ã ∈Me and every parameters A,n, k and ε.

4 Descriptive complexity of index sets

Recall from Definition 3 that cp(Me)e∈ω is an effective listing which
includes all computable metric spaces. Recall also that a metric space
X is connected iff for each nonempty open sets U, V , we have C =
X − (U ∪ V ) = ∅ ⇒ U ∩ V 6= ∅.



Proposition 9. (i) The set {e : cp(Me) is locally compact} is Π1
1–complete.

(ii) The set {e : cp(Me) is connected} is Π1
1–hard.

Theorem 10. (i) The index set CSp of compact computable metric spaces
is Π0

3 -complete. (ii) The isomorphism problem for compact computable
metric spaces is Π0

2 -complete within Π0
3 .

For the proof see the appendix. Next we study the complexity of
whether a computable metric space is a continuum.

Proposition 11. The index set CCSp of compact and connected com-
putable metric spaces is Π0

3 -complete.

Proof. Suppose now we are given a compact computable metric space
X = cp(Me). For connectedness, we need to check if for each non-empty
open U and V , we have C = X − (U ∪ V ) = ∅ ⇒ U ∩ V 6= ∅. We may
restrict U and V to finite unions of basic open sets of the form Bε(p)
where ε ∈ Q+ and p is a special point. We may effectively in e obtain
a ∅′-computable map g from 2ω onto X. Thus C = ∅ is equivalent to
g−1(C) = ∅. Since the latter is a Π0

1 (∅′) class, this condition is Σ0
2 . The

condition U ∩ V 6= ∅ is Σ0
1 since this set contains a special point unless

empty. Thus being connected is in fact Π0
2 within the Π0

3 set CSp.

Let S be any Π0
3–complete set, and choose a uniformly c.e. double

sequence (Vi,n) of initial segments of ω such that i ∈ S ↔ ∀nVi,n 6= ω.
Let ak = 1−2−k. Given i, we can compute an index e for the computable
metric space the Cartesian product Πn∈ω[0, a|Vi,n|] with the canonical
computable structure obtained from the enumerations of the Vi,n, and
the metric inherited from the standard metric on the Hilbert cube [0, 1]ω.
Clearly Me is connected, and Me is compact iff i ∈ S.

5 ∆0
3 categoricity

Definition 12. Let S ⊆ ω be an oracle. An isometry Φ from a com-
putable metric space (X, d, (qi)i∈N) to a computable metric space

(Y, d, (pi)i∈N) is computable in S if there is a Turing machine with oracle
S which, on inputs i, k, outputs the k-th term of a Cauchy name for Φ(qi).

We say that a computable metric space is ∆0
n–categorical if between

each of its computable presentations, there is an isometry computable
relative to ∅(n−1).

Theorem 13 Each compact computable metric space is ∆0
3 categorical.



Proof. Let X = (X, d, (pi)i∈N) and Y = (Y, d, (qj)j∈N) be compact com-
putable metric spaces. Suppose that X can be isometrically embedded
into Y. We show that then there is a ∆0

3 embedding; this is sufficient by
symmetry.

Recall distance matrices Dn from Section 2. Let εn = 2−n. There is a
computable triangular array of Y -special points 〈yni 〉i<n such that, where
yn = 〈yn0 , . . . , ynn−1〉, we have

||Dn(〈p0, . . . , pn−1〉)−Dn(yn)||max < εn.

We define a ∅′′ computable triangular array of Y -special points 〈wni 〉i≤n,0<n
such that for each n, where wn = 〈wn0 , . . . , wnn−1〉, we have

|{k > n : d(yk �n, w
n) < εn}| =∞. (2)

We use compactness of Y and its finite powers Y n throughout. Let w1
0 ∈ Y

be a special point such that A1 = {k : d(yk0 , w
1
0) < ε1} is infinite. Then

(2) holds for n = 1.

(a) Increasing the dimension. Let w1
1 be a special point in Y such that

C1 = {k ∈ A1 : d(yk1 , w
1
1) < ε1} is infinite.

(b) Refining the sequence. Let w2 ∈ Y 2 be a special point in the ball
Bε1(〈w1

0, w
1
1〉) such that A2 = {k ∈ C1 : d(yk �2, w2) < ε2} is infinite.

We continue this process. Suppose wn (and hence An) has been defined
(a) Let wnn be a special point in Y such that

Cn = {k ∈ An : k > n ∧ d(ykn, w
n
n) < εn}

is infinite.

(b) Let wn+1 ∈ Y n+1 be a special point in Bεn((wn)̂ wnn) such that

An+1 = {k ∈ Cn : d(yk �n+1, w
n+1) < εn+1}

is infinite. Then (2) holds for n+ 1.
Note that the sequence 〈wni 〉i≤n,0<n is indeed ∅′′-computable because

we uniformly in the previously defined special points obtain indices for
the potential c.e. sets Cn, An+1. It takes ∅′′ as an oracle to pick the next
special points in such a way that the relevant set is infinite. Also note
that d(wnr , w

n+1
r ) < εn for each n > r. Thus, the sequence of points in Y

zr = limn>r w
n
r is computable in ∅′′. It now suffices to show that the map

xi 7→ zi preserves distances. Let i < j. Given n, by (2) pick k > n such
that d(yk �n, wn) < εn. Then, by the definitions,

|d(zi, zj)− d(wni , w
n
j )| ≤ 2εn

|d(wni , w
n
j )− d(yki , y

k
j )| ≤ εn

|d(yki , y
k
j )− d(xi, xj)| ≤ εn.



Therefore, |d(zi, zj)− d(xi, xj)| ≤ 4εn.

The bound on the complexity of an isomorphism we obtained in Theo-
rem 13 is not optimal. We can prove the following strengthening saying
that some isomorphism is low relative to ∅′.

Theorem 14. Let X = (X, d, (pi)i∈N) and Y = (Y, d, (qj)j∈N) be isomet-
ric compact computable metric spaces. Then there is a set S with S′ ≤T ∅′′
which computes an isometry.

The proof is an extension of the previous argument in that we build a
nonempty Π0

1 (∅′) class of isometries. Since the space is compact, the level
size of the corresponding tree is bounded by a ∅′–computable function.
Then, by the low basis theorem relative to ∅′, we obtain an isometry as
required. We have also shown that the bound in Theorem 13 can not
be improved to ∆0

2, by building a metric space with two computable
presentations and no ∆0

2 isometry between them. Proofs of these results
will appear in a journal paper.

6 Appendix: Proof of Theorem 10

(i) Recall that, for a sentence φ ∈ Lcω1ω, the expressions Me |= φ and
cp(Me) |= φ have different interpretations: In the former we treat φ as a
computable formula with quantifiers ranging over special points. In the
latter φ is understood as an formula from Lω1ω with quantifiers ranging
over the completion. We use notation from the proof of Theorem 6 (1).
The sentence F has the following property. For each e, if Me is a structure
on a Polish space, then

Me |= F ⇔ cp(Me) |= F .

Thus, we have CSp = {e : cp(Me) |= θ} = {e : Me |= θ}. Now, by Fact 5,
we have that CSp is Π0

3 .

We now prove Π0
3 -completeness of CSp. The standard computable

structure on Baire space ωω is given by the collection of finite strings
of natural numbers. We fix a Π0

3 -complete set S and a computable pred-
icate P such that x ∈ S ⇔ ∀y∃<∞zP (x, y, z). By Fact 4, it is sufficient
to construct a uniformly c.e. family (Cx)x∈N of substructures of the stan-
dard structure on ωω which satisfies x ∈ S ⇔ cp(Cx) is compact. By
uniformity, there will exist a total computable f such that Cx = Mf(x)

witnessing the desired reduction.



Construction. At stage -1, enumerate 01y into the structure Cx for every
y. At stage s ≥ 0, we enumerate 01yz with z ≤ s into Cx if P (x, y, z)
holds.

If x ∈ S then each of the 01y will have only finitely many extending
strings, and the space cp(Cx) is compact. If x /∈ S, then there is at least
one string 01y witnessing that cp(Cx) is not compact.

Remark 15. It follows from the Π0
3 -completeness of CSp and Fact 5 that

the complexity of the sentence F from Theorem 6 can not be reduced.

(ii) Given e, j ∈ CSp, we can effectively produce a computable Π2 for-
mula ψ in the notation of Theorem 6(1) which completely describes the
isomorphism type of Mj . To see if cp(Me) ∼= cp(Mj) it suffices to check
if Me |= ψ. By Fact 5, Ψj = {i : Mi |= ψ} is Π0

2 , and it is actually uni-
formly Π2 in the index of the formula ψ. Thus, the condition e ∈ Ψj is
Π0

2 uniformly in e and j.

For the completeness, fix a Π0
2 -complete set S and a computable bi-

nary predicate R such that x ∈ S ⇔ ∃∞yR(x, y). Let j be any computable
index of the standard structure on Cantor space. For every x, we construct
a c.e. closed subspace Cx of the standard structure on Cantor space. By
Fact 4, we will get a computable structure on a compact space.

In the construction, if we see another y for which R(x, y) holds, we
enumerate all finite strings of length ≤ y from the standard structure into
Cx. As a result, we will have Cx isomorphic to the whole Cantor space
if, and only if, x ∈ S. Let f be a total computable function such that
Cx = Mf(x). We have Mj

∼= Mf(x) if and only if x ∈ S, as desired.
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