HIGHER KURTZ RANDOMNESS

BJØRN KJOS-HANSSEN, ANDRÉ NIES, FRANK STEPHAN, AND LIANG YU

ABSTRACT. A real x is Δ_1^1 -Kurtz random (Π_1^1 -Kurtz random) if it is in no closed null Δ_1^1 set (Π_1^1 set). We show that there is a cone of Π_1^1 -Kurtz random hyperdegrees. We characterize lowness for Δ_1^1 -Kurtz randomness as being Δ_1^1 -dominated and Δ_1^1 -semi-traceable.

1. INTRODUCTION

Traditionally one uses tools from recursion theory to obtain mathematical notions corresponding to our intuitive idea of randomness for reals. However, already Martin-Löf [11] suggested to use tools from higher recursion (or equivalently, effective descriptive set theory) when he introduced the notion of Δ_1^1 -randomness. This approach was pursued to greater depths by Hjorth and Nies [8] and Chong, Nies and Yu [1]. Hjorth and Nies investigated a higher analog of the usual Martin-Löf randomness, and a new notion with no direct analog in (lower) recursion theory: a real is Π_1^1 -random if it avoids each null Π_1^1 set. Chong, Nies and Yu [1] studied Δ_1^1 -randomness in more detail, viewing it as a higher analog of both Schnorr and recursive randomness. By now a classical result is the characterization of lowness for Schnorr randomness by recursive traceability (see, for instance, Nies' textbook [13]). Chong, Nies and Yu [1] proved a higher analog of this result, characterizing lowness for Δ_1^1 randomness by Δ_1^1 traceability.

Our goal is to carry out similar investigations for higher analogs of Kurtz randomness [3]. A real x is Kurtz random if avoids each Π_1^0 null class. This is quite a weak notion of randomness: each weakly 1-generic set is Kurtz random, so for instance the law of large numbers can fail badly.

It is essential for Kurtz randomness that the tests are *closed* null sets. For higher analogs of Kurtz randomness one can require that these tests are closed and belong to a more permissive class such as Δ_1^1 , Π_1^1 , or Σ_1^1 .

Restrictions on the computational complexity of a real have been used successfully to analyze randomness notions. For instance, a Martin-Löf random real is weakly 2-random iff it forms a minimal pair with \emptyset' (see [13]). We prove a result of that kind in the present setting. Chong, Nies, and Yu [1] studied a property restricting the

²⁰¹⁰ Mathematics Subject Classification. Primary 03D32, Secondary 03D30, 03E15, 03E35, 68Q30.

Kjos-Hanssen's research was partially supported by NSF (U.S.A.) grants DMS-0652669 and DMS-0901020. Nies is partially supported by the Marsden Fund of New Zealand, grant No. 08-UOA-184. Stephan is supported in part by NUS grants number R146-000-114-112 and R252-000-308-112. Yu is supported by NSF of China No. 10701041 and Research Fund for the Doctoral Program of Higher Education, No. 20070284043.

complexity of a real: being Δ_1^1 -dominated. This is the higher analog of being recursively dominated (or of hyperimmune-free degree). We show that a Δ_1^1 -Kurtz random Δ_1^1 dominated set is already Π_1^1 -random. Thus Δ_1^1 -Kurtz randomness is equivalent to a proper randomness notion on a conull set. We also study the distribution of higher Kurtz random reals in the hyperdegrees. For instance, there is a cone of Π_1^1 -Kurtz random hyperdegrees. However, its base is very complex, having the largest hyperdegree among all Σ_2^1 reals.

Thereafter we turn to lowness for higher Kurtz randomness. Recursive traceability of a real x is easily seen to be equivalent to the condition that for each function $f \leq_T x$ there is a recursive function \hat{f} that agrees with f on at least one input in each interval of the form $[2^n, 2^{n+1} - 1)$ (see [13, 8.2.21]). Following Kjos-Hanssen, Merkle, and Stephan [10] one says that x is recursively semi-traceable (or infinitely often traceable) if for each $f \leq_T x$ there is a recursive function \hat{f} that agrees with f on infinitely many inputs. It is straightforward to define the higher analog of this notion, Δ_1^1 -semi-traceability. Our main result is that lowness for Δ_1^1 -Kurtz randomness is equivalent to being Δ_1^1 -dominated and Δ_1^1 -semi-traceable. We also show using forcing that being Δ_1^1 -dominated and Δ_1^1 -semi-traceable is strictly weaker than being Δ_1^1 traceable. Thus, lowness for Δ_1^1 Kurtz randomness is strictly weaker than lowness for Δ_1^1 -randomness.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory, as presented, for instance, in Sacks [16]. See [13, Ch. 9] for a summary.

A real is an element in 2^{ω} . Sometimes we write $n \in x$ to mean x(n) = 1. Fix a standard Π_2^0 set $H \subseteq \omega \times 2^{\omega} \times 2^{\omega}$ so that for all x and $n \in \mathcal{O}$, there is a unique real y satisfying H(n, x, y). Moreover, if $\omega_1^x = \omega_1^{\text{CK}}$, then each real $z \leq_h x$ is Turing reducible to some y so that H(n, x, y) holds for some $n \in \mathcal{O}$. Roughly speaking, y is the |n|-th Turing jump of x. These y's are called H^x sets and denoted by H_n^x . For each $n \in \mathcal{O}$, let $\mathcal{O}_n = \{m \in \mathcal{O} \mid |m| < |n|\}$. \mathcal{O}_n is a Δ_1^1 set.

We use the Cantor pairing function, the bijection $p: \omega^2 \to \omega$ given by $p(n,s) = \frac{(n+s)^2+3n+s}{2}$, and write $\langle n, s \rangle = p(n,s)$. For a finite string σ , $[\sigma] = \{x \succ \sigma \mid x \in 2^{\omega}\}$. For an open set U, there is a presentation $\hat{U} \subseteq 2^{<\omega}$ so that $\sigma \in \hat{U}$ if and only if $[\sigma] \subseteq U$. We sometimes identify U with \hat{U} . For a recursive functional Φ , we use $\Phi^{\sigma}[s]$ to denote the computation state of Φ^{σ} at stage s. For a tree T, we use [T] to denote the set of infinite paths in T. Some times we identify a finite string $\sigma \in \omega^{<\omega}$ with a natural number without confusion.

The following results will be used in later sections.

Theorem 2.1 (Gandy). If $A \subseteq 2^{\omega}$ is a nonempty Σ_1^1 set, then there is a real $x \in A$ so that $\mathcal{O}^x \leq_h \mathcal{O}$.

Theorem 2.2 (Spector [17] and Gandy [6]). $A \subset 2^{\omega}$ is Π_1^1 if and only if there is an arithmetical predicate P(x, y) such that

$$y \in A \leftrightarrow \exists x \leq_h y P(x, y).$$

HIGHER KURTZ RANDOMNESS

Theorem 2.3 (Sacks[14]). If x is non-hyperarithmetical, then $\mu(\{y|y \ge_h x\}) = 0$.

Theorem 2.4 (Sacks [16]). The set $\{x | x \geq_h \mathcal{O}\}$ is Π_1^1 . Moreover, $x \geq_h \mathcal{O}$ if and only if $\omega_1^x > \omega_1^{CK}$.

A consequence of the last two theorems above is that the set $\{x \mid \omega_1^x > \omega_1^{\text{CK}}\}$ is a Π_1^1 null set.

Given a class Γ , an element $x \in \omega^{\omega}$ is called a Γ -singleton if $\{x\}$ is a Γ set. Note that if $x \in \omega^{\omega}$ is a Π_1^1 -singleton, then too is $x_0 = \{\langle n, m \rangle \mid x(n) = m\} \equiv_T x$. Hence we do not distinguish Π_1^1 -singletons between Baire space and Cantor space.

A subset of 2^{ω} is Π_0^0 if it is clopen. We can define Π_{γ}^0 sets by a transfinite induction for all countable γ . Every such set can be coded by a real (for more details see [16]). Given a class Γ (for example, $\Gamma = \Delta_1^1$) of subsets of 2^{ω} , a set A is $\Pi_{\gamma}^0(\Gamma)$ if A is Π_{γ}^0 and can be coded by a real in Γ .

In the case $\gamma = 1$, every hyperarithmetic closed subset of reals is $\Pi_1^0(\Delta_1^1)$. We also have the following result with an easy proof.

Proposition 2.5. If $A \subseteq 2^{\omega}$ is Σ_1^1 and Π_1^0 , then A is $\Pi_1^0(\Sigma_1^1)$.

Proof. Let $z = \{\sigma \mid \exists x (x \in A \land x \succ \sigma)\}$. Then $x \in A$ if and only if $\forall n (x \upharpoonright n \in z)$. So A is $\Pi_1^0(z)$. Obviously z is Σ_1^1 .

Note that Proposition 2.5 fails if we replace Σ_1^1 with Π_1^1 since $\mathcal{O}^{\mathcal{O}}$ is a Π_1^1 singleton of hyperdegree greater than \mathcal{O} .

The ramified analytical hierarchy was introduced by Kleene, and applied by Fefferman [4] and Cohen [2] to study forcing, a tool that turns out to be powerful in the investigation of higher randomness theory. We recall some basic facts from Sacks [16] whose notations we mostly follow:

The ramified analytic hierarchy language $\mathfrak{L}(\omega_1^{CK}, \dot{x})$ contains the following symbols:

- (1) Number variables: j, k, m, n, \ldots ;
- (2) Numerals: $0, 1, 2, \ldots$;
- (3) Constant: \dot{x} ;
- (4) Ranked set variables: $x^{\alpha}, y^{\alpha}, \ldots$ where $\alpha < \omega_1^{\text{CK}}$;
- (5) Unranked set variables: x, y, ldots;
- (6) Others symbols include: $+, \cdot$ (times), ' (successor) and \in .

Formulas are built in the usual way. A formula φ is *ranked* if all of its set variables are ranked. Due to its complexity, the language is not codable in a recursive set but rather in the countable admissible set $L_{\omega_{cK}}$.

To code the language in a uniform way, we fix a Π_1^1 path \mathcal{O}_1 through \mathcal{O} (by [5] such a path exists). Then a ranked set variable x^{α} is coded by the number (2, n)where $n \in \mathcal{O}_1$ and $|n| = \alpha$. Other symbols and formulas are coded recursively. With such a coding, the set of Gödel number of formulas is Π_1^1 . Moreover, the set of Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique notation for α in \mathcal{O}_1 . Hence there is a recursive function f so that $W_{f(n)}$ is the set of Gödel numbers of the ranked formula of rank less than |n| when $n \in \mathcal{O}_1$ ($\{W_e\}_e$ is, as usual, an effective enumeration of r.e. sets). One now defines a structure $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x)$, where x is a real, analogous to the way Gödel's L is defined, by induction on the recursive ordinals. Only at successor stages are new sets defined in the structure. The reals constructed at a successor stage are arithmetically definable from the reals constructed at earlier stages. The details may be found in [16]. We define $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi$ for a formula φ of $\mathfrak{L}(\omega_1^{\operatorname{CK}}, \dot{x})$ by allowing the unranked set variables to range over $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x)$, while the symbol x^{α} will be interpreted as the reals built before stage α . In fact, the domain of $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x)$ is the set $\{y \mid y \leq_h x\}$ if and only if $\omega_1^x = \omega_1^{\operatorname{CK}}$ (see [16]).

A sentence φ of $\mathfrak{L}(\omega_1^{CK}, \dot{x})$ is said to be Σ_1^1 if it is ranked, or of the form $\exists x_1, \ldots, \exists x_n \psi$ for some formula ψ with no unranked set variables bounded by a quantifier.

The following result is a model-theoretic version of the Gandy-Spector Theorem.

Theorem 2.6 (Sacks [16]). The set $\{(n_{\varphi}, x) \mid \varphi \in \Sigma_1^1 \land \mathfrak{A}(\omega_1^{CK}, x) \models \varphi\}$ is Π_1^1 , where n_{φ} is the Gödel number of φ . Moreover, for each Π_1^1 set $A \subseteq 2^{\omega}$, there is a formula $\varphi \in \Sigma_1^1$ so that

(1) $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi \implies x \in A;$ (2) if $\omega_1^{\operatorname{CK}} = \omega_1^{\operatorname{CK}}$, then $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi \iff x \in A.$

Note that if φ is ranked, then both the sets $\{x \mid \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi\}$ (the Gödel number of φ is omitted) and $\{x \mid \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \neg \varphi\}$ are Π_1^1 . So both sets are Δ_1^1 . Moreover, if $A \subseteq 2^{\omega}$ is Δ_1^1 , then there is a ranked formula φ so that $x \in A \Leftrightarrow \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi$ (see Sacks [16]).

Theorem 2.7 (Sacks [14]). The set

 $\{(n_{\varphi}, p) \mid \mu(\{x \mid \mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi\}) > p \land \varphi \in \Sigma_1^1 \land p \text{ is a rational number}\}$ is Π_1^1 where n_{φ} is the Gödel number of φ .

Theorem 2.8 (Sacks [14]). There is a recursive function $f : \omega \times \omega \to \omega$ so that for all n which is Gödel number of a ranked formula:

- (1) f(n, p) is Gödel number of a ranked formula;
- (2) the set $\{x \mid \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi_{f(n,p)}\} \supseteq \{x \mid \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi_n\}$ is open; and (3) $\mu(\{x \mid \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi_{f(n,p)}\} - \{x \mid \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi_n\}) < \frac{1}{p}.$

Theorem 2.9 (Sacks [14] and Tanaka [18]). If A is a Π_1^1 set of positive measure, then A contains a hyperarithmetical real.

We also remind the reader of the higher analog of ML-randomness first studied by [8].

Definition 2.10. A Π_1^1 -ML-test is a sequence $(G_m)_{m\in\omega}$ of open sets such that for each m, we have $\mu(G_m) \leq 2^{-m}$, and the relation $\{\langle m, \sigma \rangle \mid [\sigma] \subseteq G_m\}$ is Π_1^1 . A real xis Π_1^1 -ML-random if $x \notin \bigcap_m G_m$ for each Π_1^1 -ML-test $(G_m)_{m\in\omega}$.

3. HIGHER KURTZ RANDOM REALS AND THEIR DISTRIBUTION

Definition 3.1. Suppose we are given a point class Γ (i.e. a class of sets of reals). A real x is Γ -Kurtz random if $x \notin A$ for every closed null set $A \in \Gamma$. Further, x is said to be Kurtz random (y-Kurtz random) if $\Gamma = \Pi_1^0$ ($\Gamma = \Pi_1^0(y)$). We focus on Δ_1^1 , Σ_1^1 and Π_1^1 -Kurtz randomness. By the proof of Proposition 2.5, it is not difficult to see that a real x is Δ_1^1 -Kurtz random if and only if x does not belong to any $\Pi_1^0(\Delta_1^1)$ null set.

Theorem 3.2. Π_1^1 -Kurtz randomness $\subset \Sigma_1^1$ -Kurtz randomness $= \Delta_1^1$ -Kurtz-randomness.

Proof. It is obvious that Π_1^1 -Kurtz randomness $\subseteq \Delta_1^1$ -Kurtz randomness and Σ_1^1 -Kurtz randomness $\subseteq \Delta_1^1$ -Kurtz randomness. It suffices to prove that Σ_1^1 -Kurtz randomness $= \Delta_1^1$ -Kurtz-randomness and Π_1^1 -Kurtz randomness $\subset \Delta_1^1$ -Kurtz randomness.

Note that every Π_1^1 -ML-random is Δ_1^1 -Kurtz random and there is a Π_1^1 -ML-random real $x \equiv_h \mathcal{O}$ (see [8] and [1]). But $\{x\}$ is a Π_1^1 closed set. So x is not Π_1^1 -Kurtz random. Hence Π_1^1 -Kurtz randomness $\subset \Delta_1^1$ -Kurtz randomness.

Suppose we are given a Π_1^1 open set A of measure 1. Define

$$x = \{ \sigma \in 2^{<\omega} \mid \forall y (y \succ \sigma \implies y \in A) \}.$$

Then x is a Π_1^1 real coding A (i.e. $y \in A$ if and only if there is a $\sigma \in x$ for which $y \succ \sigma$, or $y \in [\sigma]$). So there is a recursive function $f: 2^{<\omega} \to \omega$ so that $\sigma \in x$ if and only if $f(\sigma) \in \mathcal{O}$. Define a Π_1^1 relation $R \subseteq \omega \times \omega$ so that $(k, n) \in R$ if and only if $n \in \mathcal{O}$ and $\mu(\bigcup \{[\sigma] \mid \exists m \in \mathcal{O}_n(f(\sigma) = m)\}) > 1 - \frac{1}{k}$. Obviously R is a Π_1^1 relation which can be uniformized by a Π_1^1 function f^* (see [12]). Since $\mu(A) = 1$, f^* is a total function. So the range of f^* is bounded by a notation $n \in \mathcal{O}$. Define $B = \{y \mid \exists \sigma(y \succ \sigma \land f(\sigma) \in \mathcal{O}_n)\}$. Then $B \subseteq A$ is a Δ_1^1 open set with measure 1. So every Π_1^1 open conull set has a Δ_1^1 open conull subset. Hence Σ_1^1 -Kurtz randomness.

It should be pointed out that, by the proof of Theorem 3.2, not every Π_1^1 -ML-random real is Π_1^1 -Kurtz random.

The following result clarifies the relationship between Δ_1^1 - and Π_1^1 -Kurtz randomness.

Proposition 3.3. If $\omega_1^x = \omega_1^{\text{CK}}$, then x is Π_1^1 -Kurtz random if and only if x is Δ_1^1 -Kurtz random.

Proof. Suppose that $\omega_1^x = \omega_1^{CK}$ and x is Δ_1^1 -Kurtz random. If A is a Π_1^1 closed null set so that $x \in A$, then by Theorem 2.6, there is a formula $\varphi(z, y)$ whose only unranked set variables are z and y so that the formula $\exists z \varphi(z, y)$ defines A. Since $\omega_1^x = \omega_1^{CK}$, $x \in B = \{y \mid \mathfrak{A}(\omega_1^{CK}, y) \models \exists z^{\alpha} \varphi(z^{\alpha}, y)\} \subseteq A$ for some recursive ordinal α . Define $T = \{\sigma \in 2^{<\omega} \mid \exists y \in B(y \succ \sigma)\}$. Obviously $B \subseteq [T]$. Since B is Δ_1^1 , [T] is Σ_1^1 . Since A is closed, $B \subseteq A$, and [T] is the closure of B, we have $[T] \subseteq A$. Hence since A is null, so is [T]. By the proof of Theorem 3.2, there is a Δ_1^1 closed null set $C \supseteq [T]$. Hence $x \in C$, a contradiction. \Box

From the proof of Theorem 3.2, one sees that every hyperdegree above \mathcal{O} contains a Δ_1^1 -Kurtz random real. But this fails for Π_1^1 -Kurtz randomness. We say that a hyperdegree **d** is a *base for a cone of* Γ -*Kurtz randoms* if for every hyperarithmetic degree $\mathbf{h} \geq \mathbf{d}$, **h** contains a Γ -Kurtz random real. The hyperdegree of \mathcal{O} is a base for a cone of Δ_1^1 -Kurtz randoms as proved in Theorem 3.2. In Corollary 5.3 we will show that not every nonzero hyperdegree is a base of a cone of Δ_1^1 -Kurtz randoms.

Is there a base for a cone of Π_1^1 -Kurtz randoms? If such a base **b** exists, then **b** is not hyperarithmetically reducible to any Π_1^1 singleton. Intuitively, this means that such bases must be complex.

To obtain such a base we need a lemma.

Lemma 3.4. For any reals x and $z \ge_T x'$, there is an x-Kurtz random real $y \equiv_T z$.

Proof. Fix an enumeration of the x-r.e. open sets $\{U_n^x\}_{n\in\omega}$.

We inductively define an increasing sequence of binary strings $\{\sigma_s\}_{s<\omega}$.

Stage 0. Let σ_0 be the empty string.

Stage
$$s + 1$$
. Let $l_0 = 0$, $l_1 = |\sigma_s|$, and $l_{n+1} = 2^{l_n}$ for all $n > 1$. For every $n > 1$, let

$$A_n = \{ \sigma \in 2^{l_n - 1} \mid \exists m < n \forall i \forall j (l_m \le i, j < l_{m+1} \implies \sigma(i) = \sigma(j)) \}.$$

Then

$$|A_n| \le 2 \cdot 2^{l_{n-1}}.$$

In other words,

$$\mu(\bigcup\{[\sigma] \mid \sigma \succeq \sigma_s \land \sigma \notin A_n\}) \ge 2^{-l_1} \cdot (1 - 2^{l_n + 1 - l_{n+1}}).$$

Case(1): There is some $m > l_1 + 1$ so that $|\{\sigma \succeq \sigma_s \mid \sigma \in 2^m \land [\sigma] \subseteq U_s^x\}| > 2^{m-l_1-1}$. Let n = m + 1. Then $l_{n+1} - 1 - l_n > 2$ and $l_n > m$. So there must be some $\sigma \in 2^{l_n-1} - A_n$ so that there is a $\tau \preceq \sigma$ for which $[\tau] \subseteq U_s^x$ and $\tau \in 2^m$. Let $\sigma_{s+1} = \sigma^{\frown}(z(s))^{l_n-1}$.

Case(2): Otherwise. Let $\sigma_{s+1} = \sigma_s^{(z(s))^{l_1-1}}$. This finishes the construction at stage s + 1.

Let $y = \bigcup_s \sigma_s$.

Obviously the construction is recursive in z. So $y \leq_T z$. Moreover, if U_n^x is of measure 1, then Case (1) happens at the stage n + 1. So y is x-Kurtz random.

Let $l_0 = 0, l_{n+1} = 2^{l_n}$ for all $n \in \omega$. To compute z(n) from y, we y-recursively find the *n*-th l_m for which for all i, j with $l_m \leq i < j < l_{m+1}, y(i) = y(j)$. Then $z(n) = y(l_m)$.

Let $\mathcal{Q} \subseteq \omega \times 2^{\omega}$ be a universal Π_1^1 set. In other words, \mathcal{Q} is a Π_1^1 set so that every Π_1^1 set is some $\mathcal{Q}_n = \{x \mid (n, x) \in \mathcal{Q}\}$. By Theorem 2.2.3 in [9], the real $x_0 = \{n \mid \mu(\mathcal{Q}_n) = 0\}$ is Σ_1^1 . Let

$$\mathfrak{c} = \{(n,\sigma) \mid n \in x_0 \land \exists x ((n,x) \in \mathcal{Q} \land \sigma \prec x)\} \subseteq \omega \times 2^{<\omega}$$

Then \mathfrak{c} can be viewed as a Σ_2^1 real. Since every Π_1^1 null closed set is $\Pi_1^0(\mathfrak{c})$, every \mathfrak{c} -Kurtz random real is Π_1^1 -Kurtz random.

Theorem 3.5. c is a base for a cone of Π_1^1 -Kurtz randoms.

Proof. For every real $y_0 \ge_h \mathfrak{c}$, there is a real $y_1 \equiv_h y_0$ so that $y_1 \ge_T \mathfrak{c}'$, the Turing jump of \mathfrak{c} . By Lemma 3.4, there is a real $z \equiv_T y_1$ for which z is \mathfrak{c} -Kurtz random and so Π_1^1 -Kurtz random.

Recall that every Σ_2^1 real is constructible (see e.g. the last chapter of Moschovakis [12]). In the following we will determine the position of \mathbf{c} within the constructible hierarchy. A real is called constructible if it belongs to some level L_{α} of Gödel's hierarchy of constructible sets

 $L = \bigcup \{ L_{\beta} : \beta \text{ is an ordinal} \}.$

More generally, for each real x we have the hierarchy

$$L[x] = \bigcup \{ L_{\beta}[x] : \beta \text{ is an ordinal} \}$$

of sets constructible from x.

Let

 $\delta_2^1 = \sup\{\alpha : \alpha \text{ is an ordinal isomorphic to a } \Delta_2^1 \text{ wellordering of } \omega\},\$

and

 $\delta = \min\{\alpha \mid L \setminus L_\alpha \text{ contains no } \Pi^1_1 \text{ singleton}\}.$

Proposition 3.6 (Forklore). $\delta = \delta_2^1$.

Proof. If $\alpha < \delta$, then there is a Π_1^1 singleton $x \in L_{\delta} \setminus L_{\alpha}$. Since $x \in L_{\omega_1^x}$ and ω_1^x is a $\Pi_1^1(x)$ wellordering, it must be that $\alpha < \omega_1^x < \delta_2^1$. So $\delta \leq \delta_2^1$.

If $\alpha < \delta_2^1$, there is a Δ_2^1 wellordering relation $R \subseteq \omega \times \omega$ of order type α . So there are two recursive relations $S, T \subseteq (\omega^{\omega})^2 \times \omega^3$ so that

$$R(n,m) \Leftrightarrow \exists f \forall g \exists k S(f,g,n,m,k), \text{ and}$$
$$\neg R(n,m) \Leftrightarrow \exists f \forall g \exists k T(f,g,n,m,k).$$

Define a Π_1^1 set $R_0 = \{(f, n, m) \mid \forall g \exists k S(f, g, n, m, k)\}$. By the Gandy-Spector Theorem 2.2, there is an arithmetical relation S' so that $R_0 = \{(f, n, m) \mid \exists g \leq_h f(S'(f, g, n, m))\}$. Recall that every nonempty Π_1^1 set contains a Π_1^1 -singleton (Kondo-Addison [16]). Then

$$R(n,m) \Leftrightarrow \exists f \in L_{\delta} \exists g \in L_{\omega!}[f](S'(f,g,n,m)).$$

In other words, R is Σ_1 -definable over L_{δ} . By the same method, the complement of R is Σ_1 -definable over L_{δ} too. So R is Δ_1 -definable over L_{δ} . It is clear that L_{δ} is admissible. So $R \in L_{\delta}$. Hence $\alpha < \delta$. Thus $\delta_2^1 = \delta$.

Note that if x is a Δ_2^1 -real, then ω_1^x is isomorphic to a Δ_2^1 wellow dering of ω . So

$$\sup\{\omega_1^x \mid x \text{ is a } \Pi_1^1 \text{-singleton}\} \leq \delta_2^1.$$

Since $x \in L_{\omega_1^x}$ for every Π_1^1 -singleton x,

$$\sup\{\omega_1^x \mid x \text{ is a } \Pi_1^1 \text{-singleton}\} \ge \delta = \delta_2^1.$$

Thus

$$\sup\{\omega_1^x \mid x \text{ is a } \Pi_1^1\text{-singleton}\} = \delta = \delta_2^1$$

Since every Π_1^1 singleton is recursive in \mathfrak{c} , we have $\mathfrak{c} \notin L_{\delta_2^1}$ and $\omega_1^{\mathfrak{c}} \geq \delta_2^1$.

By the same argument as in Proposition 3.6, the reals lying in $L_{\delta_2^1}$ are exactly the Δ_2^1 reals. So \mathfrak{c} is not Δ_2^1 . Moreover, since \mathfrak{c} is Σ_2^1 , it is Σ_1 definable over $L_{\delta_2^1}$. Hence $\mathfrak{c} \in L_{\delta_2^1+1}$. In other words, for any real z, if $\omega_1^z > \omega_1^{\mathfrak{c}}$, then $\mathfrak{c} \in L_{\omega_1^z}$ and so $\mathfrak{c} \leq_h z$. Then by [15], $\mathfrak{c} \in L_{\omega_1^{\mathfrak{c}}}$. Thus $\omega_1^{\mathfrak{c}} > \delta_2^1$. Since actually all Σ_2^1 reals lie in $L_{\delta_2^1+1}$. This means that

 \mathfrak{c} has the largest hyperdegree among all Σ_2^1 reals.

4. Δ_1^1 -traceability and dominability

We begin with the characterization of Π_1^1 -randomness within Δ_1^1 -Kurtz randomness.

Definition 4.1. A real x is hyp-dominated if for all functions $f : \omega \to \omega$ with $f \leq_h x$, there is a hyperarithmetic function g so that g(n) > f(n) for all n.

Recall that a real is Π_1^1 -random if it does not belong to any Π_1^1 -null set. The following result is a higher analog of the result that Kurtz randomness coincides with weak 2-randomness for reals of hyperimmune-free degree.

Proposition 4.2. A real x is Π_1^1 -random if and only if x is hyp-dominated and Δ_1^1 -Kurtz random.

Proof. Every Π_1^1 -random real is Δ_1^1 -Kurtz random and also hyp-dominated (see [1]). We prove the other direction.

Suppose x is hyp-dominated and Δ_1^1 -Kurtz random. We show that x is Π_1^1 -Martin-Löf random. If not, then fix a universal Π_1^1 -Martin-Löf test $\{U_n\}_{n\in\omega}$ (see [8]). Then there is a recursive function $f: \omega \times 2^{<\omega} \to \omega$ so that for any pair $(n, \sigma), \sigma \in U_n$ if and only if $f(n, \sigma) \in \mathcal{O}$. Since x is hyp-dominated, $\omega_1^x = \omega_1^{CK}$ (see [1]). Then we define a $\Pi_1^1(x)$ relation $R \subseteq \omega \times \omega$ so that R(n,m) if and only if there is a σ so that $m \in \mathcal{O}$, $f(n, \sigma) \in \mathcal{O}_m = \{i \in \mathcal{O} \mid |i| < |m|\}$ and $\sigma \prec x$. Then by the Π_1^1 -uniformization relativized to x, there is a partial function p uniformizing R. Since $x \in \bigcap_n U_n$, p is a total function. Since $\omega_1^x = \omega_1^{CK}$, there must be some $m_0 \in \mathcal{O}$ so that $p(n) \in \mathcal{O}_{m_0}$ for every n. Then define a Δ_1^1 -Martin-Löf test $\{\hat{U}_n\}_{n\in\omega}$ so that $\sigma \in \hat{U}_n$ if and only if $f(n,\sigma) \in \mathcal{O}_{m_0}$. So $x \in \bigcap_n \hat{U}_n$. Let $\hat{f}(n) = \min\{l \mid \exists \sigma \in 2^l(\sigma \in \hat{U}_n \land x \in [\sigma])\}$ be a $\Delta_1^1(x)$ function. Then there is a Δ_1^1 function f dominating \hat{f} . Define $V_n = \{\sigma \mid \sigma \in 2^{\leq f(n)} \land \sigma \in \hat{U}_n\}$ for every n. Then $P = \bigcap_n V_n$ is a Δ_1^1 closed set and $x \in P$. So x is not Δ_1^1 -Kurtz random, a contradiction.

Since is Π_1^1 -Martin-Löf random and $\omega_1^x = \omega_1^{\text{CK}}$, x is already Π_1^1 -random (see [1]).

Next we proceed to traceability.

Definition 4.3. (i) Let $h: \omega \to \omega$ be a nondecreasing unbounded function that is hyperarithmetical. A Δ_1^1 trace with bound h is a uniformly Δ_1^1 sequence $(T_e)_{e\in\omega}$ such that $|T_e| \leq h(e)$ for each e.

- (ii) $x \in 2^{\omega}$ is Δ_1^1 -traceable [1] if there is $h \in \Delta_1^1$ such that, for each $f \leq_h x$, there is a Δ_1^1 trace with bound h such that, for each e, $f(e) \in T_e$.
- (iii) $x \in 2^{\omega}$ is Δ_1^1 -semi-traceable if for each $f \leq_h x$, there is a Δ_1^1 function g so that, for infinitely many n, f(n) = g(n). We say that g semi-traces f.
- (iv) $x \in 2^{\omega}$ is Π_1^1 -semi-traceable if for each $f \leq_h x$, there is a partial Π_1^1 function p so that, for infinitely many n we have f(n) = p(n).

Note that, if $(T_e)_{e \in \omega}$ is a uniformly Δ_1^1 sequence of finite sets, then there is $g \in \Delta_1^1$ such that for each e, $D_{g(e)} = T_e$ (where D_n is the *n*th finite set according to some recursive ordering). Thus

$$g(e) = \mu n \,\forall u \, [u \in D_n \leftrightarrow u \in T_e].$$

In this formulation, the definition of Δ_1^1 traceability is very close to that of recursive traceability.

Also notice that the choice of a bound as a witness for traceability is immaterial:

Proposition 4.4 (As in Terwijn and Zambella [19]). Let A be a real that is Δ_1^1 traceable with bound h. Then A is Δ_1^1 traceable with bound h' for any monotone and unbounded Δ_1^1 function h'.

Lemma 4.5. x is Π_1^1 -semi-traceable if and only if x is Δ_1^1 -semi-traceable.

Proof. It is not difficult to see that if x is Π_1^1 -semi-traceable, then $\omega_1^x = \omega_1^{\text{CK}}$. For otherwise, $x \geq_h \mathcal{O}$. So it suffices to show that \mathcal{O} is not Π_1^1 -semi-traceable. Let $\{\phi_i\}_{i\in\omega}$ be an effective enumeration of partial recursive functions. Define a function $g \leq_T \mathcal{O}'$ so that $g(i) = \sum_{j\leq i} m_j^i + 1$ where m_j^i is the least number k so that $p_j(i,k) \in \mathcal{O}$; if there is no such k, then $m_j^i = 0$. Note that for any Π_1^1 partial function p, there must be some partial recursive function p_j so that for every pair n, m, p(n) = m if and only if $p_j(n,m) \in \mathcal{O}$. Then by the definition of g, for any i > j, $g(k) \neq p(i)$. So gcannot be traced by p.

Suppose that x is Π_1^1 -semi-traceable, $\omega_1^x = \omega_1^{\text{CK}}$, and $f \leq_h x$. Fix a Π_1^1 partial function p for f. Since p is a Π_1^1 function, there must be some recursive injection h so that $p(n) = m \Leftrightarrow h(n,m) \in \mathcal{O}$.

Let R(n,m) be a $\Pi_1^1(x)$ relation so that R(n,m) iff there exists $m > k \ge n$ for which f(k) = p(k). Then some total function g uniformizes R such that g is $\Pi_1^1(x)$, and so $\Delta_1^1(x)$. Thus, for every n, there is some $m \in [g(n), g(g(n)))$ so that f(m) = p(m). Let g'(0) = g(0), and g'(n+1) = g(g'(n)) for all $n \in \omega$. Define a $\Pi_1^1(x)$ relation S(n,m) so that S(n,m) if and only if $m \in [g'(n), g'(n+1))$ and p(m) = f(m). Uniformizing S we obtain a $\Delta_1^1(x)$ function g''.

Define a $\Delta_1^1(x)$ set by $H = \{h(m,k) \mid \exists n(g''(n) = m \land f(m) = k)\}$. Since $\omega_1^x = \omega_1^{CK}$, $H \subseteq \mathcal{O}_n$ for some $n \in \mathcal{O}$. Since \mathcal{O}_n is a Δ_1^1 set, we can define a Δ_1^1 function \hat{f} by: $\hat{f}(i) = j$ if $h(i, j) \in \mathcal{O}_n$; $\hat{f}(i) = 1$, otherwise. Then there are infinitely many i so that $f(i) = \hat{f}(i)$.

Note that the Δ_1^1 -dominated reals form a measure 1 set [1] but the set of Δ_1^1 -semitraceable reals is null. Chong, Nies and Yu [1] constructed a non-hyperarithmetic Δ_1^1 -traceable real.

Proposition 4.6. Every Δ_1^1 -traceable real is Δ_1^1 -dominated and Δ_1^1 -semi-traceable.

Proof. Obviously every Δ_1^1 -traceable real is Δ_1^1 -dominated.

Suppose we are given a Δ_1^1 -traceable real x and $\Delta_1^1(x)$ function f. Let $g(n) = \langle f(2^n), f(2^n+2), \ldots, f(2^{n+1}-1) \rangle$ for all $n \in \omega$. Then there is a Δ_1^1 trace T for g so that $|T_n| \leq n$ for all n.

Then for all $2^n + 1 \le m \le 2^{n+1}$, let $\hat{f}(m) =$ the $(m - 2^n)$ -th entry of the tuple of the $(m - 2^n)$ -th element of T_n if there exists such an m; otherwise, let $\hat{f}(m) = 1$. It is not difficult to see that for every n there is at least one $m \in [2^n, 2^{n+1})$ so that $f(m) = \hat{f}(m)$.

From the proof above, one can see the following corollary.

10

Corollary 4.7. A real x is Δ_1^1 -traceable if and only if for every x-hyperarithmetic \hat{f} , there is a hyperarithmetic function f so that for every n, there is some $m \in [2^n, 2^{n+1})$ so that $f(m) = \hat{f}(m)$.

The following proposition will be used in Theorem 4.13 to disprove the converse of Proposition 4.6.

Proposition 4.8. For any real x, the following are equivalent.

- (1) x is Δ_1^1 -semi-traceable and Δ_1^1 -dominated.
- (2) For every function $g \leq_h x$, there exist an increasing Δ_1^1 function f and a Δ_1^1 function $F : \omega \to [\omega]^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in [f(n), f(n+1))$ with $g(m) \in F(m)$.

Proof. (1) \implies (2): Immediate because $1 \le n$.

(2) \implies (1). Suppose we are given a function $\hat{g} \leq_h x$. Without loss of generality, \hat{g} is nondecreasing. Let f and F be the corresponding Δ_1^1 functions. Let $j(n) = \sum_{i \leq f(n+1)} \sum_{k \in F(i)} k$ and note that j is a Δ_1^1 function dominating \hat{g} .

To show that x is Δ_1^1 -traceable, suppose we are given a function $\hat{g} \leq_h x$. Let $h(n) = \langle g(2^n + 1), g(2^n + 2), \dots, g(2^{n+1} - 1) \rangle$. Then by assumption there are corresponding Δ_1^1 functions f_h and F_h . For every n and $m \in [2^n, 2^{n+1})$, let g(m) = the $(m - 2^n)^{\text{th}}$ column of the $(m - 2^n)^{\text{th}}$ element in $F_h(n)$ if such an m exists; let g(m) = 1 otherwise. Then g is a Δ_1^1 function semi-tracing \hat{g} .

To separate Δ_1^1 -traceability from the conjunction of Δ_1^1 -semi-traceability and Δ_1^1 -dominability, we have to modify Sacks' perfect set forcing.

- **Definition 4.9.** (1) $A \Delta_1^1$ perfect tree $T \subseteq 2^{<\omega}$ is fat at n if for every $\sigma \in T$ with $|\sigma| \in [2^n, 2^{n+1})$, we have $\sigma^{-}0 \in T$ and $\sigma^{-}1 \in T$. Then we also say that n is a fat number of T.
 - (2) A Δ_1^1 perfect tree $T \subseteq 2^{<\omega}$ is clumpy if there are infinitely many n so that T is fat at n.
 - (3) Let $\mathbb{F} = (\mathcal{F}, \subseteq)$ be a partial order of which the domain \mathcal{F} is the collection of clumpy trees, ordered by inclusion.

Let φ be a sentence of $\mathfrak{L}(\omega_1^{\mathrm{CK}}, \dot{x})$. Then we can define the forcing relation, $T \Vdash \varphi$, as done by Sacks in Section 4, IV [16].

- (1) φ is ranked and $\forall x \in T(\mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi)$, then $T \Vdash \varphi$.
- (2) If $\varphi(y)$ is unranked and $T \Vdash \varphi(\psi(n))$ for some $\psi(n)$ of rank at most α , then $T \Vdash \exists y^{\alpha} \varphi(y^{\alpha})$.
- (3) If $T \Vdash \exists y^{\alpha} \varphi(y^{\alpha})$, then $T \Vdash \exists y \varphi(y)$.
- (4) If $\varphi(n)$ is unranked and $T \Vdash \varphi(m)$ for some number m, then $T \Vdash \exists n \varphi(n)$.

- (5) If φ and ψ are unranked, $T \Vdash \varphi$ and $T \Vdash \psi$, then $T \Vdash \varphi \land \psi$.
- (6) If φ is unranked and $\forall P(P \subseteq T \implies P \not\models \varphi)$, then $T \models \neg \varphi$.

The following lemma can be deduced as done in [16].

Lemma 4.10. The relation $T \Vdash \varphi$, restricted to Σ_1^1 formulas φ , is Π_1^1 .

Lemma 4.11. (1) Let $\{\varphi_i\}_{i \in \omega}$ be a hyperarithmetic sequence of Σ_1^1 sentences. Suppose for every i and $Q \subseteq T$, there exists some $R \subseteq Q$ so that $R \Vdash \varphi_i$. Then there exists some $Q \subseteq T$ so that for every $i, Q \Vdash \varphi_i$. (2) $\forall d \forall T \exists Q \subseteq T(Q) \parallel \langle q \rangle \land Q \parallel \langle q \rangle$

(2) $\forall \varphi \forall T \exists Q \subseteq T(Q \Vdash \varphi \lor Q \Vdash \neg \varphi).$

Proof. Using the notation $P \upharpoonright n = \{\tau \in 2^{\leq n} \mid \tau \in P\}$, define \mathcal{R} by

$$\mathcal{R}(R, i, \sigma, P) \Leftrightarrow (\sigma \in R, P \subseteq R, P \Vdash \varphi_i, P \upharpoonright |\sigma| = \{\tau \mid \tau \prec \sigma\},\$$

and $\log |\sigma| - 1$ is the *i*th fat number of *R*).

Note that \mathcal{R} is a Π_1^1 relation. Then \mathcal{R} can be uniformized by a partial Π_1^1 function $F: \mathcal{F} \times \omega \times 2^{<\omega} \to \mathcal{F}$. Using F, a hyperarithmetic family $\{P_{\sigma} \mid \sigma \in 2^{<\omega}\}$ can be defined by recursion on σ .

$$P_{\emptyset} = T.$$

If $\log |\sigma| - 1$ is not a fat number of P_{σ} , then $P_{\sigma^{\frown}0}, P_{\sigma^{\frown}1} = P_{\sigma}$. Otherwise: If $\sigma \notin P_{\sigma}$, then $P_{\sigma^{\frown}0} = P_{\sigma^{\frown}1} = \emptyset$. Otherwise: $P_{\sigma^{\frown}0} \cap P_{\sigma^{\frown}1} = \emptyset, P_{\sigma^{\frown}0} \cup P_{\sigma^{\frown}1} \subseteq P_{\sigma}$, $P_{\sigma^{\frown}0} \upharpoonright |\sigma|, P_{\sigma^{\frown}1} \upharpoonright |\sigma| = \{\tau \mid \tau \prec \sigma\}$ and $P_{\sigma^{\frown}0}, P_{\sigma^{\frown}1} \Vdash \wedge_{j \leq i} \varphi_j$ where *i* is the number so that $\log |\sigma| - 1$ is the *i*-th fat number of *T*.

Let $Q = \bigcap_n \bigcup_{|\sigma|=n} P_{\sigma}$. Then $Q \in \mathcal{F}$. It is routine to check that for every $i, Q \Vdash \varphi_i$.

The proof of (2) is the same as the proof of Lemma 4.4 IV [16].

We say that a real x is generic if it is the union of roots of trees in a generic filter; equivalently, for each Σ_1^1 sentence φ , there is a condition T such that $x \in T$ and either $T \Vdash \varphi$ or $T \Vdash \neg \varphi$. One can check (Lemma 4.8, IV [16]) that for every Σ_1^1 -sentence φ ,

$$\mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \varphi \Leftrightarrow \exists P(x \in P \land P \Vdash \varphi).$$

Lemma 4.12. If x is a generic real, then

- (1) $\mathfrak{A}(\omega_1^{CK}, x)$ satisfies Δ_1^1 -comprehension. So $\omega_1^x = \omega_1^{CK}$.
- (2) x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable.
- (3) x is not Δ_1^1 -traceable.

Proof. (1). The proof of (1) is exactly same as the proof of Theorem 5.4 IV, [16].

(2). By Proposition 4.8, it suffices to show that for every function $g \leq_h x$, there are an increasing Δ_1^1 function f and a Δ_1^1 function $F: \omega \to \omega^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in [f(n), f(n+1))$ so that $g(m) \in F(m)$. Since $g \leq_h x$ and $\omega_1^x = \omega_1^{CK}$, there is a ranked formula φ so that for every n, g(n) = m if and only if $\mathfrak{A}(\omega_1^{CK}, x) \models \varphi(n, m)$. So there is a condition $S \Vdash \forall n \exists ! m \varphi(n, m)$. Fix a condition $T \subseteq S$. As in the proof of Lemma 4.11, we can build a hyperarithmetic sequence of conditions $\{P_\sigma\}_{\sigma \in 2^{<\omega}}$ so that

$$P_{\sigma^{\uparrow}i} \Vdash \varphi(|\sigma|, m_{\sigma^{\uparrow}i}) \text{ for } i \leq 1$$

if $\log |\sigma| - 1$ is a fat number of P_{σ} and $\sigma \in P_{\sigma}$. Let Q be as defined in the proof of Lemma 4.11. Let f be the Δ_1^1 function such that f(0) = 0, and f(n+1) is the least number k > f(n) so that m_{σ} is defined for some σ with $f(n) < |\sigma| < k$. Let $F(n) = \{0\} \cup \{m_{\sigma} \mid |\sigma| = n\}$, and note that F is a Δ_1^1 function. Then

$$Q \Vdash \forall n | F(n) | \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m,i)).$$

So

$$Q \Vdash \exists F \exists f(\forall n | F(n)) \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m,i))).$$

Since T is an arbitrary condition stronger than S, this means

$$S \Vdash \exists F \exists f(\forall n | F(n)) \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m,i))).$$

Since $x \in S$,

$$\mathfrak{A}(\omega_1^{\mathrm{CK}}, x) \models \exists F \exists f(\forall n | F(n)) \le n \land \forall n \exists m \in [f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))).$$

So x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable.

(3). Suppose $f: \omega \to \omega$ is a Δ_1^1 function so that for every n, there is a number $m \in [2^n, 2^{n+1})$ with f(m) = x(m). Then there is a ranked formula φ so that $f(n) = m \Leftrightarrow \mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \varphi(n, m)$. Moreover, $\mathfrak{A}(\omega_1^{\operatorname{CK}}, x) \models \forall n \exists m \in [2^n, 2^{n+1})(\varphi(m, x(m)))$. So there is a condition $T \Vdash \forall n \exists m \in [2^n, 2^{n+1})(\varphi(m, \dot{x}(m)))$ and $x \in T$. Let n be a number so that T is fat at n and $\sigma \in 2^{2^{n-1}}$ be a finite string in T. Let μ be a finite string so that $\mu(m) = 1 - f(m + 2^n - 1)$. Define $S = \{\sigma^{\frown}\mu^{\frown}\tau \mid \sigma^{\frown}\mu^{\frown}\tau \in T\} \subseteq T$. Then $S \Vdash \forall m \in [2^n, 2^{n+1})(\neg \varphi(m, x(m)))$. But S is stronger than T, a contradiction. By Corollary 4.7, x is not Δ_1^1 -traceable. \Box

We may now separate Δ_1^1 -traceability from the conjunction of Δ_1^1 -semi-traceability and Δ_1^1 -dominability.

Theorem 4.13. There are 2^{\aleph_0} many Δ_1^1 -dominated and Δ_1^1 -semi-traceable reals which are not Δ_1^1 -traceable.

Proof. This is immediate from Lemma 4.12. Note that there are 2^{\aleph_0} many generic reals.

5. Lowness for higher Kurtz randomness

Given a relativizable class of reals C (for instance, the class of random reals), we call a real x low for C if $C = C^x$. We shall prove that lowness for Δ_1^1 -randomness is different from lowness for Δ_1^1 -Kurtz randomness. A real x is low for Δ_1^1 -Kurtz tests if every $\Delta_1^1(x)$ open set with measure 1 has a Δ_1^1 open subset of measure 1. Clearly, lowness for Δ_1^1 -Kurtz tests implies lowness for Δ_1^1 -Kurtz randomness.

Theorem 5.1. If x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable, then x is low for Δ_1^1 -Kurtz tests.

Proof. Suppose x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable and U is a $\Delta_1^1(x)$ open set with measure 1. Then there is a real $y \leq_h x$ so that U is $\Sigma_1^0(y)$. Hence for some Turing reduction Φ , if for all z we write U^z for the domain of Φ^z , then we have $U = U^y$.

Define a $\Delta_1^1(x)$ function \hat{f} by: $\hat{f}(n)$ is the shortest string $\sigma \prec y$ so that $\mu(U^{\sigma}[\sigma]) > 1 - 2^{-n}$. By the assumptions of the Theorem, there are an increasing Δ_1^1 function g and a Δ_1^1 function f so that for every n, there is an $m \in [g(n), g(n+1))$ so that $f(m) = \hat{f}(m)$. Without loss of generality, we can assume that $\mu(U^{f(m)}[m]) > 1 - 2^{-m}$ for every m.

Define a Δ_1^1 open set V so that $\sigma \in V$ if and only if there exists some n so that $[\sigma] \subseteq \bigcap_{g(n) \leq m < g(n+1)} U^{f(m)}[m]$. By the property of f and $g, V \subseteq U^y = U$. But for every n,

$$\mu(\bigcap_{g(n) \le m < g(n+1)} U^{f(m)}[m]) > 1 - \sum_{g(n) \le m < g(n+1)} 2^{-m} \ge 1 - 2^{-g(n)+1}.$$

So

$$\mu(V) \ge \lim_{n} \mu\left(\bigcap_{g(n) \le m < g(n+1)} U^{f(m)}[m]\right) = 1$$

Hence x is low for Δ_1^1 -Kurtz tests.

Corollary 5.2. Lowness for Δ_1^1 -randomness differs from lowness for Δ_1^1 -Kurtz randomness.

Proof. By Theorem 4.13, there is a real x that is Δ_1^1 -dominated and Δ_1^1 -semi-traceable but not Δ_1^1 -traceable. By Theorem 5.1, x is low for Δ_1^1 -Kurtz randomness. Chong, Nies and Yu [1] proved that lowness for Δ_1^1 -randomness is the same as Δ_1^1 -traceability. Thus x is not low for Δ_1^1 -randomness.

Corollary 5.3. There is a non-zero hyperdegree below \mathcal{O} which is not a base for a cone of Δ_1^1 -Kurtz randoms.

Proof. Clearly there is a real $x <_h \mathcal{O}$ which is Δ_1^1 -dominated and Δ_1^1 -semi-traceable. Then the hyperdegree of x is not a base for a cone of Δ_1^1 -Kurtz randoms.

Actually the converse of Theorem 5.1 is also true.

Lemma 5.4. If x is low for Δ_1^1 -Kurtz randomness, then x is Δ_1^1 -dominated.

Proof. Firstly we show that if x is low for Δ_1^1 -Kurtz tests, then x is Δ_1^1 -dominated. Suppose $f \leq_h x$ is an increasing function. Let $S_f = \{z \mid \forall n(z(f(n)) = 0)\}$. Obviously S_f is a $\Delta_1^1(x)$ closed null set. So there is a Δ_1^1 closed null set $[T] \supseteq S_f$ where $T \subseteq 2^{<\omega}$ is a Δ_1^1 tree. Define

$$g(n) = \min\{m \mid \frac{|\{\sigma \in 2^m \mid \sigma \in T\}|}{2^m} < 2^{-n}\} + 1.$$

Since $\mu([T]) = 0$, g is a well defined Δ_1^1 function. We claim that g dominates f.

For every $n, S_{f(n)} = \{ \sigma \in 2^{f(n)} \mid \forall i \leq n(\sigma(f(i)) = 0) \}$ has cardinality $2^{f(n)-n}$. But if $g(n) \leq f(n)$, then since $S \subseteq [T]$, we have

$$|S_{f(n)}| \le 2^{f(n)-g(n)} \cdot |\{\sigma \in 2^{g(n)} \mid \sigma \in T\}| < 2^{f(n)-g(n)} \cdot 2^{g(n)-n} = 2^{f(n)-n}$$

This is a contradiction. So x is Δ_1^1 -dominated.

Now suppose x is not Δ_1^1 -dominated witnessed by some $f \leq_h x$. Then S_f is not contained in any Δ_1^1 closed null set. Actually, it is not difficult to see that for any σ with $[\sigma] \cap S_f \neq \emptyset$, $[\sigma] \cap S_f$ is not contained in any Δ_1^1 closed null set (otherwise, as proved above, one can show that f is dominated by some Δ_1^1 function). Then, by an induction, we can construct a Δ_1^1 -Kurtz random real $z \in S_f$ as follows:

Fix an enumeration P_0, P_1, \ldots of the Δ_1^1 closed null sets.

At stage n + 1, we have constructed some $z \upharpoonright l_n$ so that $[z] \upharpoonright l_n \cap S_f \neq \emptyset$. Then there is a $\tau \succ z \upharpoonright l_n$ so that $[\tau] \cap S_f \neq \emptyset$ but $[\tau] \cap S_f \cap P_n = \emptyset$. Fix such a τ , let $l_{n+1} = |\tau|$ and $z \upharpoonright l_{n+1} = \tau$.

Then $z \in S_f$ is Δ_1^1 -Kurtz random.

So x is not low for Δ_1^1 -Kurtz randomness.

Lemma 5.5. If x is low for Δ_1^1 -Kurtz randomness, then x is Δ_1^1 -semi-traceable.

Proof. The proof is analogous to that of the main result in [7].

Firstly we show that if x is low for Δ_1^1 -Kurtz tests, then x is Δ_1^1 -semi-traceable.

Suppose that x is low for Δ_1^1 -Kurtz tests and $f \leq_h x$. Partition ω into finite intervals $D_{m,k}$ for 0 < k < m so that $|D_{m,k}| = 2^{m-k-1}$. Moreover, if m < m', then $\max D_{m,k} < \min D_{m',k'}$ for any k < m and k' < m'. Let $n_m = \max\{i \mid i \in D_{m,k} \land k < m\}$ for every $m \in \omega$. Note that $\{n_m\}_{m \in \omega}$ is a recursive increasing sequence.

For every function h, let

$$P^h = \{ x \in 2^{\omega} \mid \forall m(x(h \upharpoonright n_m) = 0) \}$$

be a closed null set. Obviously P^f is a $\Delta_1^1(x)$ closed null set. Then there is a Δ_1^1 closed null set $Q \supseteq P^f$. We define a Δ_1^1 function g as follows.

For each $k \in \omega$, let d_k be the least number d so that

$$\left|\left\{\sigma \in 2^d \mid \exists x \in Q(x \succ \sigma)\right\}\right| \le 2^{d-k-1}.$$

Note that $\{d_k\}_{k\in\omega}$ is a Δ_1^1 sequence. Define

$$Q_k = \{ \sigma \mid \sigma \in 2^{d_k} \land \exists x \in Q(x \succ \sigma) \}.$$

Then $\{Q_k\}_{k\in\omega}$ is a Δ_1^1 sequence of clopen sets and $|Q_k| \leq 2^{d_k-k-1}$ for each $k < d_k$. Then Greenberg and Miller [7] constructed a finite tree $S \subseteq \omega^{<\omega}$ and a finite sequence $\{S_m\}_{k< m \leq l}$ for some l with the following properties:

- (1) $[S] = \{h \in \omega^{\omega} \mid P^{h} \subseteq [Q_{k}]\};$ (2) $S_{m} \subseteq S \cap \omega^{n_{m}};$ (3) $|S_{m}| \leq 2^{m-k-1};$
- (4) every leaf of S extends some string in $\bigcup_{k < m < l} S_m$.

14

Moreover, both the finite tree S and sequence $\{S_m\}_{k < m \leq l}$ can be obtained uniformly from Q_k .

Now for each m with $k < m \leq l$ and $\sigma \in S_m$, we pick a distinct $i \in D_{m,k}$ and define $g(i) = \sigma(i)$. For the other undefined $i \in D_{m,k}$, let g(i) = 0.

So g is a well-defined Δ_1^1 function.

For each k, $P^f \subseteq Q \subseteq [Q_k]$. So $f \in [S]$. Hence there must be some $i > n_k$ so that f(i) = g(i).

Thus x is Δ_1^1 -semi-traceable.

Now suppose x is not Δ_1^1 -semi-traceable as witnessed by $f \leq_h x$. Then P^f is not contained in any Δ_1^1 closed null set. It is shown in [7] that for any σ , assuming that $[\sigma] \cap P^f \neq \emptyset$, $[\sigma] \cap P^f$ is not contained in any Δ_1^1 closed null set. Then by an easy induction, one can construct a Δ_1^1 -Kurtz random real in P^f .

So x is not low for Δ_1^1 -Kurtz randomness.

So we have the following theorem.

Theorem 5.6. For any real $x \in 2^{\omega}$, the following are equivalent:

- (1) x is low for Δ_1^1 -Kurtz tests;
- (2) x is low for Δ_1^1 -Kurtz randomness;
- (3) x is Δ_1^1 -dominated and Δ_1^1 -semi-traceable.

It is unknown whether there exists a nonhyperarithmetic real which is low for Π_1^1 -Kurtz randomness. However, we can prove the following containment.

Proposition 5.7. If x is low for Π_1^1 -Kurtz randomness, then x is low for Δ_1^1 -Kurtz randomness.

Proof. Assume that x is low for Π_1^1 -Kurtz randomness, y is Δ_1^1 -Kurtz random and there is a $\Delta_1^1(x)$ closed null set A with $y \in A$. By Theorem 2.7, the set

 $B = \bigcup \{ C \mid C \text{ is a } \Delta_1^1 \text{ closed null set} \}$

is a Π_1^1 null set. So A - B is a $\Sigma_1^1(x)$ set. Since y is Δ_1^1 -Kurtz random, $y \notin B$. Hence $y \in A - B$ and so A - B is a $\Sigma_1^1(x)$ nonempty set. Thus there must be some real $z \in A - B$ with $\omega_1^z = \omega_1^x = \omega_1^{CK}$. Since $z \notin B$, z is Δ_1^1 -Kurtz random. So by Proposition 3.3, z is Π_1^1 -Kurtz random. This contradicts the fact that x is low for Π_1^1 -Kurtz randomness.

References

- Chi Tat Chong, André Nies, and Liang Yu. Higher randomness notions and their lowness properties. *Israel journal of mathematics*, 2008.
- [2] Paul J. Cohen. Set theory and the continuum hypothesis. W. A. Benjamin, Inc., New York-Amsterdam, 1966.
- [3] Rodney G. Downey, Evan J. Griffiths, and Stephanie Reid. On Kurtz randomness. Theor. Comput. Sci., 321(2-3):249–270, 2004.
- [4] S. Feferman. Some applications of the notions of forcing and generic sets. Fund. Math., 56:325–345, 1964/1965.

BJØRN KJOS-HANSSEN, ANDRÉ NIES, FRANK STEPHAN, AND LIANG YU

- [5] S. Feferman and C. Spector. Incompleteness along paths in progressions of theories. J. Symbolic Logic, 27:383–390, 1962.
- [6] R. O. Gandy. Proof of Mostowski's conjecture. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8:571–575, 1960.
- [7] Noam Greenberg and Joseph S. Miller. Lowness for Kurtz randomness. J. Symbolic Logic, 74(2):665–678, 2009.
- [8] G Hjorth and A Nies. Randomness in effective descriptive set theory. J. London. Math. Soc., 75(2):495–508, 2007.
- [9] Alexander S. Kechris. Measure and category in effective descriptive set theory. Ann. Math. Logic, 5:337–384, 1972/73.
- [10] Wolfgang Kjos-Hanssen, Bjorn; Merkle and Frank Stephan. Kolmogorov complexity and the recursion theorem. Symposium on Theoretical Aspects of Computer Science 2006, LNCS 3884, Springer, 149–161, 2006.
- [11] Per Martin-Löf. On the notion of randomness. In Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), pages 73–78. North-Holland, Amsterdam, 1970.
- [12] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.
- [13] A. Nies. Computability and Randomness. Oxford University Press, 2009. 443+xvi pages.
- [14] Gerald E. Sacks. Measure-theoretic uniformity in recursion theory and set theory. Trans. Amer. Math. Soc., 142:381–420, 1969.
- [15] Gerald E. Sacks. Countable admissible ordinals and hyperdegrees. Advances in Math., 20(2):213–262, 1976.
- [16] Gerald E. Sacks. *Higher recursion theory*. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.
- [17] C. Spector. Hyperarithmetical quantifiers. Fund. Math., 48:313–320, 1959/1960.
- [18] Hisao Tanaka. A basis result for Π¹₁-sets of postive measure. Comment. Math. Univ. St. Paul., 16:115–127, 1967/1968.
- [19] Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and lowness. J. Symbolic Logic, 66(3):1199–1205, 2001.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HAWAII AT MANOA, 2565 McCarthy Mall, Honolulu, HI 96822, USA

E-mail address: bjoern@math.hawaii.edu

16

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF AUCKLAND, PRIVATE BAG 92019, AUCKLAND, NEW ZEALAND

E-mail address: andrenies@gmail.com

DEPARTMENTS OF MATHEMATICS AND COMPUTER SCIENCE, NATIONAL UNIVERSITY OF SIN-GAPORE, 2 SCIENCE DRIVE 2, SINGAPORE 117543, REPUBLIC OF SINGAPORE.

E-mail address: fstephan@comp.nus.edu.sg

INSTITUTE OF MATHEMATICAL SCIENCE, NANJING UNIVERSITY, NANJING, JIANGSU PROVINCE, 210093, P.R. OF CHINA

E-mail address: yuliang.nju@gmail.com