HIGHER KURTZ RANDOMNESS

BJØRN KJOS-HANSSEN, ANDRÉ NIES, FRANK STEPHAN, AND LIANG YU

Abstract

A real x is Δ_{1}^{1}-Kurtz random (Π_{1}^{1}-Kurtz random) if it is in no closed null Δ_{1}^{1} set (Π_{1}^{1} set). We show that there is a cone of Π_{1}^{1}-Kurtz random hyperdegrees. We characterize lowness for Δ_{1}^{1}-Kurtz randomness as being Δ_{1}^{1}-dominated and Δ_{1}^{1} -semi-traceable.

1. Introduction

Traditionally one uses tools from recursion theory to obtain mathematical notions corresponding to our intuitive idea of randomness for reals. However, already Martin-Löf [11] suggested to use tools from higher recursion (or equivalently, effective descriptive set theory) when he introduced the notion of Δ_{1}^{1}-randomness. This approach was pursued to greater depths by Hjorth and Nies [8] and Chong, Nies and Yu [1]. Hjorth and Nies investigated a higher analog of the usual Martin-Löf randomness, and a new notion with no direct analog in (lower) recursion theory: a real is Π_{1}^{1}-random if it avoids each null Π_{1}^{1} set. Chong, Nies and Yu [1] studied Δ_{1}^{1}-randomness in more detail, viewing it as a higher analog of both Schnorr and recursive randomness. By now a classical result is the characterization of lowness for Schnorr randomness by recursive traceability (see, for instance, Nies' textbook [13]). Chong, Nies and Yu [1] proved a higher analog of this result, characterizing lowness for Δ_{1}^{1} randomness by Δ_{1}^{1} traceability.

Our goal is to carry out similar investigations for higher analogs of Kurtz randomness [3]. A real x is Kurtz random if avoids each Π_{1}^{0} null class. This is quite a weak notion of randomness: each weakly 1-generic set is Kurtz random, so for instance the law of large numbers can fail badly.

It is essential for Kurtz randomness that the tests are closed null sets. For higher analogs of Kurtz randomness one can require that these tests are closed and belong to a more permissive class such as $\Delta_{1}^{1}, \Pi_{1}^{1}$, or Σ_{1}^{1}.

Restrictions on the computational complexity of a real have been used successfully to analyze randomness notions. For instance, a Martin-Löf random real is weakly 2 -random iff it forms a minimal pair with \emptyset^{\prime} (see [13]). We prove a result of that kind in the present setting. Chong, Nies, and Yu [1] studied a property restricting the

[^0]complexity of a real: being Δ_{1}^{1}-dominated. This is the higher analog of being recursively dominated (or of hyperimmune-free degree). We show that a Δ_{1}^{1}-Kurtz random Δ_{1}^{1} dominated set is already Π_{1}^{1}-random. Thus Δ_{1}^{1}-Kurtz randomness is equivalent to a proper randomness notion on a conull set. We also study the distribution of higher Kurtz random reals in the hyperdegrees. For instance, there is a cone of $\Pi_{1}^{1}-$ Kurtz random hyperdegrees. However, its base is very complex, having the largest hyperdegree among all Σ_{2}^{1} reals.

Thereafter we turn to lowness for higher Kurtz randomness. Recursive traceability of a real x is easily seen to be equivalent to the condition that for each function $f \leq_{T} x$ there is a recursive function \hat{f} that agrees with f on at least one input in each interval of the form $\left[2^{n}, 2^{n+1}-1\right.$) (see [13, 8.2.21]). Following Kjos-Hanssen, Merkle, and Stephan [10] one says that x is recursively semi-traceable (or infinitely often traceable) if for each $f \leq_{T} x$ there is a recursive function \hat{f} that agrees with f on infinitely many inputs. It is straightforward to define the higher analog of this notion, Δ_{1}^{1}-semi-traceability. Our main result is that lowness for Δ_{1}^{1}-Kurtz randomness is equivalent to being Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable. We also show using forcing that being Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable is strictly weaker than being Δ_{1}^{1} traceable. Thus, lowness for Δ_{1}^{1} Kurtz randomness is strictly weaker than lowness for Δ_{1}^{1}-randomness.

2. Preliminaries

We assume that the reader is familiar with elements of higher recursion theory, as presented, for instance, in Sacks [16]. See [13, Ch. 9] for a summary.

A real is an element in 2^{ω}. Sometimes we write $n \in x$ to mean $x(n)=1$. Fix a standard Π_{2}^{0} set $H \subseteq \omega \times 2^{\omega} \times 2^{\omega}$ so that for all x and $n \in \mathcal{O}$, there is a unique real y satisfying $H(n, x, y)$. Moreover, if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then each real $z \leq_{h} x$ is Turing reducible to some y so that $H(n, x, y)$ holds for some $n \in \mathcal{O}$. Roughly speaking, y is the $|n|$-th Turing jump of x. These y 's are called H^{x} sets and denoted by H_{n}^{x}. For each $n \in \mathcal{O}$, let $\mathcal{O}_{n}=\left\{m \in \mathcal{O}| | m|<|n|\}\right.$. \mathcal{O}_{n} is a Δ_{1}^{1} set.

We use the Cantor pairing function, the bijection $p: \omega^{2} \rightarrow \omega$ given by $p(n, s)=$ $\frac{(n+s)^{2}+3 n+s}{2}$, and write $\langle n, s\rangle=p(n, s)$. For a finite string $\sigma,[\sigma]=\left\{x \succ \sigma \mid x \in 2^{\omega}\right\}$. For an open set U, there is a presentation $\hat{U} \subseteq 2^{<\omega}$ so that $\sigma \in \hat{U}$ if and only if $[\sigma] \subseteq U$. We sometimes identify U with \hat{U}. For a recursive functional Φ, we use $\Phi^{\sigma}[s]$ to denote the computation state of Φ^{σ} at stage s. For a tree T, we use $[T]$ to denote the set of infinite paths in T. Some times we identify a finite string $\sigma \in \omega^{<\omega}$ with a natural number without confusion.

The following results will be used in later sections.
Theorem 2.1 (Gandy). If $A \subseteq 2^{\omega}$ is a nonempty Σ_{1}^{1} set, then there is a real $x \in A$ so that $\mathcal{O}^{x} \leq_{h} \mathcal{O}$.
Theorem 2.2 (Spector [17] and Gandy [6]). $A \subset 2^{\omega}$ is Π_{1}^{1} if and only if there is an arithmetical predicate $P(x, y)$ such that

$$
y \in A \leftrightarrow \exists x \leq_{h} y P(x, y)
$$

Theorem 2.3 (Sacks[14]). If x is non-hyperarithmetical, then $\mu\left(\left\{y \mid y \geq_{h} x\right\}\right)=0$.
Theorem 2.4 (Sacks [16]). The set $\left\{x \mid x \geq_{h} \mathcal{O}\right\}$ is Π_{1}^{1}. Moreover, $x \geq_{h} \mathcal{O}$ if and only if $\omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}$.
A consequence of the last two theorems above is that the set $\left\{x \mid \omega_{1}^{x}>\omega_{1}^{\mathrm{CK}}\right\}$ is a Π_{1}^{1} null set.

Given a class $\boldsymbol{\Gamma}$, an element $x \in \omega^{\omega}$ is called a $\boldsymbol{\Gamma}$-singleton if $\{x\}$ is a $\boldsymbol{\Gamma}$ set. Note that if $x \in \omega^{\omega}$ is a Π_{1}^{1}-singleton, then too is $x_{0}=\{\langle n, m\rangle \mid x(n)=m\} \equiv_{T} x$. Hence we do not distinguish Π_{1}^{1}-singletons between Baire space and Cantor space.

A subset of 2^{ω} is Π_{0}^{0} if it is clopen. We can define $\boldsymbol{\Pi}_{\gamma}^{0}$ sets by a transfinite induction for all countable γ. Every such set can be coded by a real (for more details see [16]). Given a class $\boldsymbol{\Gamma}$ (for example, $\boldsymbol{\Gamma}=\Delta_{1}^{1}$) of subsets of 2^{ω}, a set A is $\boldsymbol{\Pi}_{\gamma}^{0}(\boldsymbol{\Gamma})$ if A is $\boldsymbol{\Pi}_{\gamma}^{0}$ and can be coded by a real in Γ.

In the case $\gamma=1$, every hyperarithmetic closed subset of reals is $\boldsymbol{\Pi}_{\mathbf{1}}^{0}\left(\Delta_{1}^{1}\right)$. We also have the following result with an easy proof.
Proposition 2.5. If $A \subseteq 2^{\omega}$ is Σ_{1}^{1} and Π_{1}^{0}, then A is $\Pi_{1}^{0}\left(\Sigma_{1}^{1}\right)$.
Proof. Let $z=\{\sigma \mid \exists x(x \in A \wedge x \succ \sigma)\}$. Then $x \in A$ if and only if $\forall n(x \upharpoonright n \in z)$. So A is $\Pi_{1}^{0}(z)$. Obviously z is Σ_{1}^{1}.
Note that Proposition 2.5 fails if we replace Σ_{1}^{1} with Π_{1}^{1} since $\mathcal{O}^{\mathcal{O}}$ is a Π_{1}^{1} singleton of hyperdegree greater than \mathcal{O}.

The ramified analytical hierarchy was introduced by Kleene, and applied by Fefferman [4] and Cohen [2] to study forcing, a tool that turns out to be powerful in the investigation of higher randomness theory. We recall some basic facts from Sacks [16] whose notations we mostly follow:

The ramified analytic hierarchy language $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ contains the following symbols:
(1) Number variables: j, k, m, n, \ldots;
(2) Numerals: $0,1,2, \ldots$;
(3) Constant: \dot{x};
(4) Ranked set variables: $x^{\alpha}, y^{\alpha}, \ldots$ where $\alpha<\omega_{1}^{\mathrm{CK}}$;
(5) Unranked set variables: x, y,ldots;
(6) Others symbols include:,$+ \cdot($ times), ' (successor) and \in.

Formulas are built in the usual way. A formula φ is ranked if all of its set variables are ranked. Due to its complexity, the language is not codable in a recursive set but rather in the countable admissible set $L_{\omega_{1}^{\mathrm{CK}}}$.

To code the language in a uniform way, we fix a Π_{1}^{1} path \mathcal{O}_{1} through \mathcal{O} (by [5] such a path exists). Then a ranked set variable x^{α} is coded by the number $(2, n)$ where $n \in \mathcal{O}_{1}$ and $|n|=\alpha$. Other symbols and formulas are coded recursively. With such a coding, the set of Gödel number of formulas is Π_{1}^{1}. Moreover, the set of Gödel numbers of ranked formulas of rank less than α is r.e. uniformly in the unique notation for α in \mathcal{O}_{1}. Hence there is a recursive function f so that $W_{f(n)}$ is the set of Gödel numbers of the ranked formula of rank less than $|n|$ when $n \in \mathcal{O}_{1}\left(\left\{W_{e}\right\}_{e}\right.$ is, as usual, an effective enumeration of r.e. sets).

One now defines a structure $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$, where x is a real, analogous to the way Gödel's L is defined, by induction on the recursive ordinals. Only at successor stages are new sets defined in the structure. The reals constructed at a successor stage are arithmetically definable from the reals constructed at earlier stages. The details may be found in [16]. We define $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$ for a formula φ of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ by allowing the unranked set variables to range over $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$, while the symbol x^{α} will be interpreted as the reals built before stage α. In fact, the domain of $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ is the set $\left\{y \mid y \leq_{h} x\right\}$ if and only if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ (see [16]).

A sentence φ of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$ is said to be Σ_{1}^{1} if it is ranked, or of the form $\exists x_{1}, \ldots, \exists x_{n} \psi$ for some formula ψ with no unranked set variables bounded by a quantifier.

The following result is a model-theoretic version of the Gandy-Spector Theorem.
Theorem 2.6 (Sacks [16]). The set $\left\{\left(n_{\varphi}, x\right) \mid \varphi \in \Sigma_{1}^{1} \wedge \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}$ is Π_{1}^{1}, where n_{φ} is the Gödel number of φ. Moreover, for each Π_{1}^{1} set $A \subseteq 2^{\omega}$, there is a formula $\varphi \in \Sigma_{1}^{1}$ so that
(1) $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Longrightarrow x \in A$;
(2) if $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Longleftrightarrow x \in A$.

Note that if φ is ranked, then both the sets $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}$ (the Gödel number of φ is omitted) and $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \neg \varphi\right\}$ are Π_{1}^{1}. So both sets are Δ_{1}^{1}. Moreover, if $A \subseteq 2^{\omega}$ is Δ_{1}^{1}, then there is a ranked formula φ so that $x \in A \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi$ (see Sacks [16]).
Theorem 2.7 (Sacks [14]). The set

$$
\left\{\left(n_{\varphi}, p\right) \mid \mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right\}\right)>p \wedge \varphi \in \Sigma_{1}^{1} \wedge p \text { is a rational number }\right\}
$$

is Π_{1}^{1} where n_{φ} is the Gödel number of φ.
Theorem 2.8 (Sacks [14]). There is a recursive function $f: \omega \times \omega \rightarrow \omega$ so that for all n which is Gödel number of a ranked formula:
(1) $f(n, p)$ is Gödel number of a ranked formula;
(2) the set $\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{f(n, p)}\right\} \supseteq\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{n}\right\}$ is open; and
(3) $\mu\left(\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{f(n, p)}\right\}-\left\{x \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi_{n}\right\}\right)<\frac{1}{p}$.

Theorem 2.9 (Sacks [14] and Tanaka [18]). If A is a Π_{1}^{1} set of positive measure, then A contains a hyperarithmetical real.

We also remind the reader of the higher analog of ML-randomness first studied by [8].
Definition 2.10. $A \Pi_{1}^{1}$-ML-test is a sequence $\left(G_{m}\right)_{m \in \omega}$ of open sets such that for each m, we have $\mu\left(G_{m}\right) \leq 2^{-m}$, and the relation $\left\{\langle m, \sigma\rangle \mid[\sigma] \subseteq G_{m}\right\}$ is Π_{1}^{1}. A real x is Π_{1}^{1}-ML-random if $x \notin \cap_{m} G_{m}$ for each Π_{1}^{1}-ML-test $\left(G_{m}\right)_{m \in \omega}$.

3. Higher Kurtz random reals and their distribution

Definition 3.1. Suppose we are given a point class $\boldsymbol{\Gamma}$ (i.e. a class of sets of reals). A real x is $\boldsymbol{\Gamma}$-Kurtz random if $x \notin A$ for every closed null set $A \in \boldsymbol{\Gamma}$. Further, x is said to be Kurtz random (y-Kurtz random) if $\boldsymbol{\Gamma}=\Pi_{1}^{0}\left(\boldsymbol{\Gamma}=\Pi_{1}^{0}(y)\right)$.

We focus on $\Delta_{1}^{1}, \Sigma_{1}^{1}$ and Π_{1}^{1}-Kurtz randomness. By the proof of Proposition 2.5, it is not difficult to see that a real x is Δ_{1}^{1}-Kurtz random if and only if x does not belong to any $\Pi_{1}^{0}\left(\Delta_{1}^{1}\right)$ null set.

Theorem 3.2. Π_{1}^{1}-Kurtz randomness $\subset \Sigma_{1}^{1}$-Kurtz randomness $=\Delta_{1}^{1}$-Kurtz-randomness.

Proof. It is obvious that Π_{1}^{1}-Kurtz randomness $\subseteq \Delta_{1}^{1}$-Kurtz randomness and Σ_{1}^{1}-Kurtz randomness $\subseteq \Delta_{1}^{1}$-Kurtz randomness. It suffices to prove that Σ_{1}^{1}-Kurtz randomness $=\Delta_{1}^{1}$-Kurtz-randomness and Π_{1}^{1}-Kurtz randomness $\subset \Delta_{1}^{1}$-Kurtz randomness.

Note that every Π_{1}^{1}-ML-random is Δ_{1}^{1}-Kurtz random and there is a Π_{1}^{1}-ML-random real $x \equiv_{h} \mathcal{O}$ (see [8] and [1]). But $\{x\}$ is a Π_{1}^{1} closed set. So x is not Π_{1}^{1}-Kurtz random. Hence Π_{1}^{1}-Kurtz randomness $\subset \Delta_{1}^{1}$-Kurtz randomness.

Suppose we are given a Π_{1}^{1} open set A of measure 1. Define

$$
x=\left\{\sigma \in 2^{<\omega} \mid \forall y(y \succ \sigma \Longrightarrow y \in A)\right\} .
$$

Then x is a Π_{1}^{1} real coding A (i.e. $y \in A$ if and only if there is a $\sigma \in x$ for which $y \succ \sigma$, or $y \in[\sigma])$. So there is a recursive function $f: 2^{<\omega} \rightarrow \omega$ so that $\sigma \in x$ if and only if $f(\sigma) \in \mathcal{O}$. Define a Π_{1}^{1} relation $R \subseteq \omega \times \omega$ so that $(k, n) \in R$ if and only if $n \in \mathcal{O}$ and $\mu\left(\bigcup\left\{[\sigma] \mid \exists m \in \mathcal{O}_{n}(f(\sigma)=m)\right\}\right)>1-\frac{1}{k}$. Obviously R is a Π_{1}^{1} relation which can be uniformized by a Π_{1}^{1} function f^{*} (see [12]). Since $\mu(A)=1$, f^{*} is a total function. So the range of f^{*} is bounded by a notation $n \in \mathcal{O}$. Define $B=\left\{y \mid \exists \sigma\left(y \succ \sigma \wedge f(\sigma) \in \mathcal{O}_{n}\right)\right\}$. Then $B \subseteq A$ is a Δ_{1}^{1} open set with measure 1 . So every Π_{1}^{1} open conull set has a Δ_{1}^{1} open conull subset. Hence Σ_{1}^{1}-Kurtz randomness equals Δ_{1}^{1}-Kurtz randomness.

It should be pointed out that, by the proof of Theorem 3.2, not every Π_{1}^{1}-ML-random real is Π_{1}^{1}-Kurtz random.

The following result clarifies the relationship between Δ_{1}^{1} - and Π_{1}^{1}-Kurtz randomness.
Proposition 3.3. If $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then x is Π_{1}^{1}-Kurtz random if and only if x is Δ_{1}^{1} Kurtz random.

Proof. Suppose that $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ and x is Δ_{1}^{1}-Kurtz random. If A is a Π_{1}^{1} closed null set so that $x \in A$, then by Theorem 2.6, there is a formula $\varphi(z, y)$ whose only unranked set variables are z and y so that the formula $\exists z \varphi(z, y)$ defines A. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, $x \in B=\left\{y \mid \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, y\right) \models \exists z^{\alpha} \varphi\left(z^{\alpha}, y\right)\right\} \subseteq A$ for some recursive ordinal α. Define $T=\left\{\sigma \in 2^{<\omega} \mid \exists y \in B(y \succ \sigma)\right\}$. Obviously $B \subseteq[T]$. Since B is $\Delta_{1}^{1},[T]$ is Σ_{1}^{1}. Since A is closed, $B \subseteq A$, and $[T]$ is the closure of B, we have $[T] \subseteq A$. Hence since A is null, so is $[T]$. By the proof of Theorem 3.2 , there is a Δ_{1}^{1} closed null set $C \supseteq[T]$. Hence $x \in C$, a contradiction.

From the proof of Theorem [3.2, one sees that every hyperdegree above \mathcal{O} contains a Δ_{1}^{1}-Kurtz random real. But this fails for Π_{1}^{1}-Kurtz randomness. We say that a hyperdegree \mathbf{d} is a base for a cone of $\boldsymbol{\Gamma}$-Kurtz randoms if for every hyperarithmetic degree $\mathbf{h} \geq \mathbf{d}$, \mathbf{h} contains a $\boldsymbol{\Gamma}$-Kurtz random real.

The hyperdegree of \mathcal{O} is a base for a cone of Δ_{1}^{1}-Kurtz randoms as proved in Theorem 3.2. In Corollary 5.3 we will show that not every nonzero hyperdegree is a base of a cone of Δ_{1}^{1}-Kurtz randoms.

Is there a base for a cone of Π_{1}^{1}-Kurtz randoms? If such a base \mathbf{b} exists, then \mathbf{b} is not hyperarithmetically reducible to any Π_{1}^{1} singleton. Intuitively, this means that such bases must be complex.

To obtain such a base we need a lemma.
Lemma 3.4. For any reals x and $z \geq_{T} x^{\prime}$, there is an x-Kurtz random real $y \equiv_{T} z$.
Proof. Fix an enumeration of the x-r.e. open sets $\left\{U_{n}^{x}\right\}_{n \in \omega}$.
We inductively define an increasing sequence of binary strings $\left\{\sigma_{s}\right\}_{s<\omega}$.
Stage 0 . Let σ_{0} be the empty string.
Stage $s+1$. Let $l_{0}=0, l_{1}=\left|\sigma_{s}\right|$, and $l_{n+1}=2^{l_{n}}$ for all $n>1$. For every $n>1$, let

$$
A_{n}=\left\{\sigma \in 2^{l_{n}-1} \mid \exists m<n \forall i \forall j\left(l_{m} \leq i, j<l_{m+1} \Longrightarrow \sigma(i)=\sigma(j)\right)\right\} .
$$

Then

$$
\left|A_{n}\right| \leq 2 \cdot 2^{l_{n-1}} .
$$

In other words,

$$
\mu\left(\bigcup\left\{[\sigma] \mid \sigma \succeq \sigma_{s} \wedge \sigma \notin A_{n}\right\}\right) \geq 2^{-l_{1}} \cdot\left(1-2^{l_{n}+1-l_{n+1}}\right)
$$

Case(1): There is some $m>l_{1}+1$ so that $\left|\left\{\sigma \succeq \sigma_{s} \mid \sigma \in 2^{m} \wedge[\sigma] \subseteq U_{s}^{x}\right\}\right|>2^{m-l_{1}-1}$. Let $n=m+1$. Then $l_{n+1}-1-l_{n}>2$ and $l_{n}>m$. So there must be some $\sigma \in 2^{l_{n}-1}-A_{n}$ so that there is a $\tau \preceq \sigma$ for which $[\tau] \subseteq U_{s}^{x}$ and $\tau \in 2^{m}$.

Let $\sigma_{s+1}=\sigma^{\wedge}(z(s))^{l_{n}-1}$.
Case(2): Otherwise. Let $\sigma_{s+1}=\sigma_{s}^{\curvearrowright}(z(s))^{l_{1}-1}$.
This finishes the construction at stage $s+1$.
Let $y=\bigcup_{s} \sigma_{s}$.
Obviously the construction is recursive in z. So $y \leq_{T} z$. Moreover, if U_{n}^{x} is of measure 1, then Case (1) happens at the stage $n+1$. So y is x-Kurtz random.

Let $l_{0}=0, l_{n+1}=2^{l_{n}}$ for all $n \in \omega$. To compute $z(n)$ from y, we y-recursively find the n-th l_{m} for which for all i, j with $l_{m} \leq i<j<l_{m+1}, y(i)=y(j)$. Then $z(n)=y\left(l_{m}\right)$.
Let $\mathcal{Q} \subseteq \omega \times 2^{\omega}$ be a universal Π_{1}^{1} set. In other words, \mathcal{Q} is a Π_{1}^{1} set so that every Π_{1}^{1} set is some $\mathcal{Q}_{n}=\{x \mid(n, x) \in \mathcal{Q}\}$. By Theorem 2.2.3 in $[9$, the real $x_{0}=\left\{n \mid \mu\left(\mathcal{Q}_{n}\right)=0\right\}$ is Σ_{1}^{1}. Let

$$
\mathfrak{c}=\left\{(n, \sigma) \mid n \in x_{0} \wedge \exists x((n, x) \in \mathcal{Q} \wedge \sigma \prec x)\right\} \subseteq \omega \times 2^{<\omega} .
$$

Then \mathfrak{c} can be viewed as a Σ_{2}^{1} real. Since every Π_{1}^{1} null closed set is $\Pi_{1}^{0}(\mathfrak{c})$, every \mathfrak{c}-Kurtz random real is Π_{1}^{1}-Kurtz random.
Theorem 3.5. \mathfrak{c} is a base for a cone of Π_{1}^{1}-Kurtz randoms.

Proof. For every real $y_{0} \geq_{h} \mathfrak{c}$, there is a real $y_{1} \equiv_{h} y_{0}$ so that $y_{1} \geq_{T} \mathfrak{c}^{\prime}$, the Turing jump of \boldsymbol{c}. By Lemma 3.4, there is a real $z \equiv_{T} y_{1}$ for which z is \mathfrak{c}-Kurtz random and so Π_{1}^{1}-Kurtz random.
Recall that every Σ_{2}^{1} real is constructible (see e.g. the last chapter of Moschovakis [12]). In the following we will determine the position of \mathfrak{c} within the constructible hierarchy. A real is called constructible if it belongs to some level L_{α} of Gödel's hierarchy of constructible sets

$$
L=\bigcup\left\{L_{\beta}: \beta \text { is an ordinal }\right\}
$$

More generally, for each real x we have the hierarchy

$$
L[x]=\bigcup\left\{L_{\beta}[x]: \beta \text { is an ordinal }\right\}
$$

of sets constructible from x.
Let

$$
\delta_{2}^{1}=\sup \left\{\alpha: \alpha \text { is an ordinal isomorphic to a } \Delta_{2}^{1} \text { wellordering of } \omega\right\},
$$

and

$$
\delta=\min \left\{\alpha \mid L \backslash L_{\alpha} \text { contains no } \Pi_{1}^{1} \text { singleton }\right\}
$$

Proposition 3.6 (Forklore). $\delta=\delta_{2}^{1}$.
Proof. If $\alpha<\delta$, then there is a Π_{1}^{1} singleton $x \in L_{\delta} \backslash L_{\alpha}$. Since $x \in L_{\omega_{1}^{x}}$ and ω_{1}^{x} is a $\Pi_{1}^{1}(x)$ wellordering, it must be that $\alpha<\omega_{1}^{x}<\delta_{2}^{1}$. So $\delta \leq \delta_{2}^{1}$.

If $\alpha<\delta_{2}^{1}$, there is a Δ_{2}^{1} wellordering relation $R \subseteq \omega \times \omega$ of order type α. So there are two recursive relations $S, T \subseteq\left(\omega^{\omega}\right)^{2} \times \omega^{3}$ so that

$$
\begin{gathered}
R(n, m) \Leftrightarrow \exists f \forall g \exists k S(f, g, n, m, k), \text { and } \\
\quad \neg R(n, m) \Leftrightarrow \exists f \forall g \exists k T(f, g, n, m, k) .
\end{gathered}
$$

Define a Π_{1}^{1} set $R_{0}=\{(f, n, m) \mid \forall g \exists k S(f, g, n, m, k)\}$. By the Gandy-Spector Theorem 2.2, there is an arithmetical relation S^{\prime} so that $R_{0}=\left\{(f, n, m) \mid \exists g \leq_{h}\right.$ $\left.f\left(S^{\prime}(f, g, n, m)\right)\right\}$. Recall that every nonempty Π_{1}^{1} set contains a Π_{1}^{1}-singleton (KondoAddison [16]). Then

$$
R(n, m) \Leftrightarrow \exists f \in L_{\delta} \exists g \in L_{\omega_{1}^{f}}[f]\left(S^{\prime}(f, g, n, m)\right) .
$$

In other words, R is Σ_{1}-definable over L_{δ}. By the same method, the complement of R is Σ_{1}-definable over L_{δ} too. So R is Δ_{1}-definable over L_{δ}. It is clear that L_{δ} is admissible. So $R \in L_{\delta}$. Hence $\alpha<\delta$. Thus $\delta_{2}^{1}=\delta$.

Note that if x is a Δ_{2}^{1}-real, then ω_{1}^{x} is isomorphic to a Δ_{2}^{1} wellordering of ω. So

$$
\sup \left\{\omega_{1}^{x} \mid x \text { is a } \Pi_{1}^{1} \text {-singleton }\right\} \leq \delta_{2}^{1}
$$

Since $x \in L_{\omega_{1}^{x}}$ for every Π_{1}^{1}-singleton x,

$$
\sup \left\{\omega_{1}^{x} \mid x \text { is a } \Pi_{1}^{1} \text {-singleton }\right\} \geq \delta=\delta_{2}^{1}
$$

Thus

$$
\sup \left\{\omega_{1}^{x} \mid x \text { is a } \Pi_{1}^{1} \text {-singleton }\right\}=\delta=\delta_{2}^{1} .
$$

Since every Π_{1}^{1} singleton is recursive in \mathfrak{c}, we have $\mathfrak{c} \notin L_{\delta_{2}^{1}}$ and $\omega_{1}^{\mathfrak{c}} \geq \delta_{2}^{1}$.

By the same argument as in Proposition 3.6 , the reals lying in $L_{\delta_{2}^{1}}$ are exactly the Δ_{2}^{1} reals. So \mathfrak{c} is not Δ_{2}^{1}. Moreover, since \mathfrak{c} is Σ_{2}^{1}, it is Σ_{1} definable over $L_{\delta_{2}^{1}}$. Hence $\mathfrak{c} \in L_{\delta_{2}^{1}+1}$. In other words, for any real z, if $\omega_{1}^{z}>\omega_{1}^{\mathfrak{c}}$, then $\mathfrak{c} \in L_{\omega_{1}^{z}}$ and so $\mathfrak{c} \leq_{h} z$. Then by [15], $\mathfrak{c} \in L_{\omega_{1}^{c}}$. Thus $\omega_{1}^{\mathfrak{c}}>\delta_{2}^{1}$. Since actually all Σ_{2}^{1} reals lie in $L_{\delta_{2}^{1}+1}$. This means that
\mathfrak{c} has the largest hyperdegree among all Σ_{2}^{1} reals.

4. Δ_{1}^{1}-TRACEABILITY AND DOMINABILITY

We begin with the characterization of Π_{1}^{1}-randomness within Δ_{1}^{1}-Kurtz randomness.
Definition 4.1. A real x is hyp-dominated if for all functions $f: \omega \rightarrow \omega$ with $f \leq_{h} x$, there is a hyperarithmetic function g so that $g(n)>f(n)$ for all n.
Recall that a real is Π_{1}^{1}-random if it does not belong to any Π_{1}^{1}-null set. The following result is a higher analog of the result that Kurtz randomness coincides with weak 2randomness for reals of hyperimmune-free degree.

Proposition 4.2. A real x is Π_{1}^{1}-random if and only if x is hyp-dominated and Δ_{1}^{1}-Kurtz random.
Proof. Every Π_{1}^{1}-random real is Δ_{1}^{1}-Kurtz random and also hyp-dominated (see [1]). We prove the other direction.

Suppose x is hyp-dominated and Δ_{1}^{1}-Kurtz random. We show that x is Π_{1}^{1}-MartinLöf random. If not, then fix a universal Π_{1}^{1}-Martin-Löf test $\left\{U_{n}\right\}_{n \in \omega}$ (see [8]). Then there is a recursive function $f: \omega \times 2^{<\omega} \rightarrow \omega$ so that for any pair $(n, \sigma), \sigma \in U_{n}$ if and only if $f(n, \sigma) \in \mathcal{O}$. Since x is hyp-dominated, $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$ (see [1]). Then we define a $\Pi_{1}^{1}(x)$ relation $R \subseteq \omega \times \omega$ so that $R(n, m)$ if and only if there is a σ so that $m \in \mathcal{O}$, $f(n, \sigma) \in \mathcal{O}_{m}=\left\{i \in \mathcal{O}| | i|<|m|\}\right.$ and $\sigma \prec x$. Then by the Π_{1}^{1}-uniformization relativized to x, there is a partial function p uniformizing R. Since $x \in \bigcap_{n} U_{n}, p$ is a total function. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, there must be some $m_{0} \in \mathcal{O}$ so that $p(n) \in \mathcal{O}_{m_{0}}$ for every n. Then define a Δ_{1}^{1}-Martin-Löf test $\left\{\hat{U}_{n}\right\}_{n \in \omega}$ so that $\sigma \in \hat{U}_{n}$ if and only if $f(n, \sigma) \in \mathcal{O}_{m_{0}}$. So $x \in \bigcap_{n} \hat{U}_{n}$. Let $\hat{f}(n)=\min \left\{l \mid \exists \sigma \in 2^{l}\left(\sigma \in \hat{U}_{n} \wedge x \in[\sigma]\right)\right\}$ be a $\Delta_{1}^{1}(x)$ function. Then there is a Δ_{1}^{1} function f dominating \hat{f}. Define $V_{n}=\{\sigma \mid \sigma \in$ $\left.2^{\leq f(n)} \wedge \sigma \in \hat{U}_{n}\right\}$ for every n. Then $P=\bigcap_{n} V_{n}$ is a Δ_{1}^{1} closed set and $x \in P$. So x is not Δ_{1}^{1}-Kurtz random, a contradiction.

Since is Π_{1}^{1}-Martin-Löf random and $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}, x$ is already Π_{1}^{1}-random (see [1).
Next we proceed to traceability.
Definition 4.3. (i) Let $h: \omega \rightarrow \omega$ be a nondecreasing unbounded function that is hyperarithmetical. A Δ_{1}^{1} trace with bound h is a uniformly Δ_{1}^{1} sequence $\left(T_{e}\right)_{e \in \omega}$ such that $\left|T_{e}\right| \leq h(e)$ for each e.
(ii) $x \in 2^{\omega}$ is Δ_{1}^{1}-traceable [1] if there is $h \in \Delta_{1}^{1}$ such that, for each $f \leq_{h} x$, there is a Δ_{1}^{1} trace with bound h such that, for each $e, f(e) \in T_{e}$.
(iii) $x \in 2^{\omega}$ is Δ_{1}^{1}-semi-traceable if for each $f \leq_{h} x$, there is a Δ_{1}^{1} function g so that, for infinitely many $n, f(n)=g(n)$. We say that g semi-traces f.
(iv) $x \in 2^{\omega}$ is Π_{1}^{1}-semi-traceable if for each $f \leq_{h} x$, there is a partial Π_{1}^{1} function p so that, for infinitely many n we have $f(n)=p(n)$.

Note that, if $\left(T_{e}\right)_{e \in \omega}$ is a uniformly Δ_{1}^{1} sequence of finite sets, then there is $g \in \Delta_{1}^{1}$ such that for each $e, D_{g(e)}=T_{e}$ (where D_{n} is the nth finite set according to some recursive ordering). Thus

$$
g(e)=\mu n \forall u\left[u \in D_{n} \leftrightarrow u \in T_{e}\right] .
$$

In this formulation, the definition of Δ_{1}^{1} traceability is very close to that of recursive traceability.

Also notice that the choice of a bound as a witness for traceability is immaterial:
Proposition 4.4 (As in Terwijn and Zambella [19). Let A be a real that is Δ_{1}^{1} traceable with bound h. Then A is Δ_{1}^{1} traceable with bound h^{\prime} for any monotone and unbounded Δ_{1}^{1} function h^{\prime}.

Lemma 4.5. x is Π_{1}^{1}-semi-traceable if and only if x is Δ_{1}^{1}-semi-traceable.
Proof. It is not difficult to see that if x is Π_{1}^{1}-semi-traceable, then $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. For otherwise, $x \geq_{h} \mathcal{O}$. So it suffices to show that \mathcal{O} is not Π_{1}^{1}-semi-traceable. Let $\left\{\phi_{i}\right\}_{i \in \omega}$ be an effective enumeration of partial recursive functions. Define a function $g \leq_{T} \mathcal{O}^{\prime}$ so that $g(i)=\sum_{j \leq i} m_{j}^{i}+1$ where m_{j}^{i} is the least number k so that $p_{j}(i, k) \in \mathcal{O}$; if there is no such k, then $m_{j}^{i}=0$. Note that for any Π_{1}^{1} partial function p, there must be some partial recursive function p_{j} so that for every pair $n, m, p(n)=m$ if and only if $p_{j}(n, m) \in \mathcal{O}$. Then by the definition of g, for any $i>j, g(k) \neq p(i)$. So g cannot be traced by p.

Suppose that x is Π_{1}^{1}-semi-traceable, $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, and $f \leq_{h} x$. Fix a Π_{1}^{1} partial function p for f. Since p is a Π_{1}^{1} function, there must be some recursive injection h so that $p(n)=m \Leftrightarrow h(n, m) \in \mathcal{O}$.

Let $R(n, m)$ be a $\Pi_{1}^{1}(x)$ relation so that $R(n, m)$ iff there exists $m>k \geq n$ for which $f(k)=p(k)$. Then some total function g uniformizes R such that g is $\Pi_{1}^{1}(x)$, and so $\Delta_{1}^{1}(x)$. Thus, for every n, there is some $m \in[g(n), g(g(n)))$ so that $f(m)=p(m)$. Let $g^{\prime}(0)=g(0)$, and $g^{\prime}(n+1)=g\left(g^{\prime}(n)\right)$ for all $n \in \omega$. Define a $\Pi_{1}^{1}(x)$ relation $S(n, m)$ so that $S(n, m)$ if and only if $m \in\left[g^{\prime}(n), g^{\prime}(n+1)\right.$) and $p(m)=f(m)$. Uniformizing S we obtain a $\Delta_{1}^{1}(x)$ function $g^{\prime \prime}$.

Define a $\Delta_{1}^{1}(x)$ set by $H=\left\{h(m, k) \mid \exists n\left(g^{\prime \prime}(n)=m \wedge f(m)=k\right)\right\}$. Since $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, $H \subseteq \mathcal{O}_{n}$ for some $n \in \mathcal{O}$. Since \mathcal{O}_{n} is a Δ_{1}^{1} set, we can define a Δ_{1}^{1} function \hat{f} by: $\hat{f}(i)=j$ if $h(i, j) \in \mathcal{O}_{n} ; \hat{f}(i)=1$, otherwise. Then there are infinitely many i so that $f(i)=\hat{f}(i)$.
Note that the Δ_{1}^{1}-dominated reals form a measure 1 set [1] but the set of Δ_{1}^{1}-semitraceable reals is null. Chong, Nies and Yu [1] constructed a non-hyperarithmetic Δ_{1}^{1}-traceable real.

Proposition 4.6. Every Δ_{1}^{1}-traceable real is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.
Proof. Obviously every Δ_{1}^{1}-traceable real is Δ_{1}^{1}-dominated.
Suppose we are given a Δ_{1}^{1}-traceable real x and $\Delta_{1}^{1}(x)$ function f. Let $g(n)=$ $\left\langle f\left(2^{n}\right), f\left(2^{n}+2\right), \ldots, f\left(2^{n+1}-1\right)\right\rangle$ for all $n \in \omega$. Then there is a Δ_{1}^{1} trace T for g so that $\left|T_{n}\right| \leq n$ for all n.

Then for all $2^{n}+1 \leq m \leq 2^{n+1}$, let $\hat{f}(m)=$ the $\left(m-2^{n}\right)$-th entry of the tuple of the $\left(m-2^{n}\right)$-th element of T_{n} if there exists such an m; otherwise, let $\hat{f}(m)=1$. It is not difficult to see that for every n there is at least one $m \in\left[2^{n}, 2^{n+1}\right)$ so that $f(m)=\hat{f}(m)$.

From the proof above, one can see the following corollary.
Corollary 4.7. A real x is Δ_{1}^{1}-traceable if and only if for every x-hyperarithmetic \hat{f}, there is a hyperarithmetic function f so that for every n, there is some $m \in\left[2^{n}, 2^{n+1}\right)$ so that $f(m)=\hat{f}(m)$.

The following proposition will be used in Theorem 4.13 to disprove the converse of Proposition 4.6.
Proposition 4.8. For any real x, the following are equivalent.
(1) x is Δ_{1}^{1}-semi-traceable and Δ_{1}^{1}-dominated.
(2) For every function $g \leq_{h} x$, there exist an increasing Δ_{1}^{1} function f and a Δ_{1}^{1} function $F: \omega \rightarrow[\omega]^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in[f(n), f(n+1))$ with $g(m) \in F(m)$.

Proof. $(1) \Longrightarrow(2)$: Immediate because $1 \leq n$.
$(2) \Longrightarrow(1)$. Suppose we are given a function $\hat{g} \leq_{h} x$. Without loss of generality, \hat{g} is nondecreasing. Let f and F be the corresponding Δ_{1}^{1} functions. Let $j(n)=$ $\sum_{i \leq f(n+1)} \sum_{k \in F(i)} k$ and note that j is a Δ_{1}^{1} function dominating \hat{g}.

To show that x is Δ_{1}^{1}-traceable, suppose we are given a function $\hat{g} \leq_{h} x$. Let $h(n)=$ $\left\langle g\left(2^{n}+1\right), g\left(2^{n}+2\right), \ldots, g\left(2^{n+1}-1\right)\right\rangle$. Then by assumption there are corresponding Δ_{1}^{1} functions f_{h} and F_{h}. For every n and $m \in\left[2^{n}, 2^{n+1}\right.$), let $g(m)=$ the $\left(m-2^{n}\right)^{\text {th }}$ column of the $\left(m-2^{n}\right)^{\text {th }}$ element in $F_{h}(n)$ if such an m exists; let $g(m)=1$ otherwise. Then g is a Δ_{1}^{1} function semi-tracing \hat{g}.
To separate Δ_{1}^{1}-traceability from the conjunction of Δ_{1}^{1}-semi-traceability and Δ_{1}^{1}-dominability, we have to modify Sacks' perfect set forcing.

Definition 4.9. (1) $A \Delta_{1}^{1}$ perfect tree $T \subseteq 2^{<\omega}$ is fat at n if for every $\sigma \in T$ with $|\sigma| \in\left[2^{n}, 2^{n+1}\right)$, we have $\sigma^{\wedge} 0 \in T$ and $\sigma^{\wedge} 1 \in T$. Then we also say that n is a fat number of T.
(2) $A \Delta_{1}^{1}$ perfect tree $T \subseteq 2^{<\omega}$ is clumpy if there are infinitely many n so that T is fat at n.
(3) Let $\mathbb{F}=(\mathcal{F}, \subseteq)$ be a partial order of which the domain \mathcal{F} is the collection of clumpy trees, ordered by inclusion.
Let φ be a sentence of $\mathfrak{L}\left(\omega_{1}^{\mathrm{CK}}, \dot{x}\right)$. Then we can define the forcing relation, $T \Vdash \varphi$, as done by Sacks in Section 4, IV [16].
(1) φ is ranked and $\forall x \in T\left(\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi\right)$, then $T \Vdash \varphi$.
(2) If $\varphi(y)$ is unranked and $T \Vdash \varphi(\psi(n))$ for some $\psi(n)$ of rank at most α, then $T \Vdash \exists y^{\alpha} \varphi\left(y^{\alpha}\right)$.
(3) If $T \Vdash \exists y^{\alpha} \varphi\left(y^{\alpha}\right)$, then $T \Vdash \exists y \varphi(y)$.
(4) If $\varphi(n)$ is unranked and $T \Vdash \varphi(m)$ for some number m, then $T \Vdash \exists n \varphi(n)$.
(5) If φ and ψ are unranked, $T \Vdash \varphi$ and $T \Vdash \psi$, then $T \Vdash \varphi \wedge \psi$.
(6) If φ is unranked and $\forall P(P \subseteq T \Longrightarrow P \Vdash \varphi)$, then $T \Vdash \neg \varphi$.

The following lemma can be deduced as done in [16].
Lemma 4.10. The relation $T \Vdash \varphi$, restricted to Σ_{1}^{1} formulas φ, is Π_{1}^{1}.
Lemma 4.11. (1) Let $\left\{\varphi_{i}\right\}_{i \in \omega}$ be a hyperarithmetic sequence of Σ_{1}^{1} sentences. Suppose for every i and $Q \subseteq T$, there exists some $R \subseteq Q$ so that $R \Vdash \varphi_{i}$. Then there exists some $Q \subseteq T$ so that for every $i, Q \Vdash \varphi_{i}$.
(2) $\forall \varphi \forall T \exists Q \subseteq T(Q \Vdash \varphi \vee Q \Vdash \neg \varphi)$.

Proof. Using the notation $P \upharpoonright n=\left\{\tau \in 2^{\leq n} \mid \tau \in P\right\}$, define \mathcal{R} by

$$
\mathcal{R}(R, i, \sigma, P) \Leftrightarrow\left(\sigma \in R, P \subseteq R, P \Vdash \varphi_{i}, P \upharpoonright|\sigma|=\{\tau \mid \tau \prec \sigma\},\right.
$$

and $\log |\sigma|-1$ is the $i^{\text {th }}$ fat number of $\left.R\right)$.
Note that \mathcal{R} is a Π_{1}^{1} relation. Then \mathcal{R} can be uniformized by a partial Π_{1}^{1} function $F: \mathcal{F} \times \omega \times 2^{<\omega} \rightarrow \mathcal{F}$. Using F, a hyperarithmetic family $\left\{P_{\sigma} \mid \sigma \in 2^{<\omega}\right\}$ can be defined by recursion on σ.
$P_{\emptyset}=T$.
If $\log |\sigma|-1$ is not a fat number of P_{σ}, then $P_{\sigma \sim 0}, P_{\sigma \wedge 1}=P_{\sigma}$.
Otherwise: If $\sigma \notin P_{\sigma}$, then $P_{\sigma^{\wedge} 0}=P_{\sigma \wedge 1}=\emptyset$.
Otherwise: $P_{\sigma \sim 0} \cap P_{\sigma \sim 1}=\emptyset, P_{\sigma^{\wedge}} \cup P_{\sigma \wedge 1} \subseteq P_{\sigma}$,
$P_{\sigma \sim 0} \upharpoonright|\sigma|, P_{\sigma \sim 1} \upharpoonright|\sigma|=\{\tau \mid \tau \prec \sigma\}$ and
$P_{\sigma \vee 0}, P_{\sigma \wedge 1} \Vdash \wedge_{j \leq i} \varphi_{j}$ where
i is the number so that $\log |\sigma|-1$ is the i-th fat number of T.
Let $Q=\bigcap_{n} \bigcup_{|\sigma|=n} P_{\sigma}$. Then $Q \in \mathcal{F}$. It is routine to check that for every $i, Q \Vdash \varphi_{i}$.
The proof of (2) is the same as the proof of Lemma 4.4 IV 16.
We say that a real x is generic if it is the union of roots of trees in a generic filter; equivalently, for each Σ_{1}^{1} sentence φ, there is a condition T such that $x \in T$ and either $T \Vdash \varphi$ or $T \Vdash \neg \varphi$. One can check (Lemma 4.8, IV [16]) that for every Σ_{1}^{1}-sentence φ,

$$
\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi \Leftrightarrow \exists P(x \in P \wedge P \Vdash \varphi) .
$$

Lemma 4.12. If x is a generic real, then
(1) $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ satisfies Δ_{1}^{1}-comprehension. So $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$.
(2) x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.
(3) x is not Δ_{1}^{1}-traceable.

Proof. (1). The proof of (1) is exactly same as the proof of Theorem 5.4 IV, 16.
(2). By Proposition 4.8, it suffices to show that for every function $g \leq_{h} x$, there are an increasing Δ_{1}^{1} function f and a Δ_{1}^{1} function $F: \omega \rightarrow \omega^{<\omega}$ with $|F(n)| \leq n$ so that for every n, there exists some $m \in[f(n), f(n+1))$ so that $g(m) \in F(m)$. Since $g \leq_{h} x$ and $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, there is a ranked formula φ so that for every $n, g(n)=m$ if and only if $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi(n, m)$. So there is a condition $S \Vdash \forall n \exists!m \varphi(n, m)$. Fix a condition $T \subseteq S$. As in the proof of Lemma 4.11, we can build a hyperarithmetic sequence of conditions $\left\{P_{\sigma}\right\}_{\sigma \in 2<\omega}$ so that

$$
P_{\sigma^{\wedge} i} \Vdash \varphi\left(|\sigma|, m_{\sigma^{\wedge} i}\right) \text { for } i \leq 1
$$

if $\log |\sigma|-1$ is a fat number of P_{σ} and $\sigma \in P_{\sigma}$. Let Q be as defined in the proof of Lemma 4.11. Let f be the Δ_{1}^{1} function such that $f(0)=0$, and $f(n+1)$ is the least number $k>f(n)$ so that m_{σ} is defined for some σ with $f(n)<|\sigma|<k$. Let $F(n)=\{0\} \cup\left\{m_{\sigma}| | \sigma \mid=n\right\}$, and note that F is a Δ_{1}^{1} function. Then

$$
Q \Vdash \forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i)) .
$$

So

$$
Q \Vdash \exists F \exists f(\forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))) .
$$

Since T is an arbitrary condition stronger than S, this means

$$
S \Vdash \exists F \exists f(\forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))) .
$$

Since $x \in S$,

$$
\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \exists F \exists f(\forall n|F(n)| \leq n \wedge \forall n \exists m \in[f(n), f(n+1)) \exists i \in F(m)(\varphi(m, i))) .
$$

So x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.
(3). Suppose $f: \omega \rightarrow \omega$ is a Δ_{1}^{1} function so that for every n, there is a number $m \in\left[2^{n}, 2^{n+1}\right.$) with $f(m)=x(m)$. Then there is a ranked formula φ so that $f(n)=$ $m \Leftrightarrow \mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \varphi(n, m)$. Moreover, $\mathfrak{A}\left(\omega_{1}^{\mathrm{CK}}, x\right) \models \forall n \exists m \in\left[2^{n}, 2^{n+1}\right)(\varphi(m, x(m)))$. So there is a condition $T \Vdash \forall n \exists m \in\left[2^{n}, 2^{n+1}\right)(\varphi(m, \dot{x}(m)))$ and $x \in T$. Let n be a number so that T is fat at n and $\sigma \in 2^{2^{n}-1}$ be a finite string in T. Let μ be a finite string so that $\mu(m)=1-f\left(m+2^{n}-1\right)$. Define $S=\left\{\sigma^{\wedge} \mu^{\wedge} \tau \mid \sigma^{\wedge} \mu^{\wedge} \tau \in T\right\} \subseteq T$. Then $S \Vdash \forall m \in\left[2^{n}, 2^{n+1}\right)(\neg \varphi(m, x(m)))$. But S is stronger than T, a contradiction. By Corollary 4.7, x is not Δ_{1}^{1}-traceable.

We may now separate Δ_{1}^{1}-traceability from the conjunction of Δ_{1}^{1}-semi-traceability and Δ_{1}^{1}-dominability.

Theorem 4.13. There are $2^{\aleph_{0}}$ many Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable reals which are not Δ_{1}^{1}-traceable.

Proof. This is immediate from Lemma 4.12. Note that there are $2^{\aleph_{0}}$ many generic reals.

5. Lowness for higher Kurtz Randomness

Given a relativizable class of reals \mathcal{C} (for instance, the class of random reals), we call a real x low for \mathcal{C} if $\mathcal{C}=\mathcal{C}^{x}$. We shall prove that lowness for Δ_{1}^{1}-randomness is different from lowness for Δ_{1}^{1}-Kurtz randomness. A real x is low for Δ_{1}^{1}-Kurtz tests if every $\Delta_{1}^{1}(x)$ open set with measure 1 has a Δ_{1}^{1} open subset of measure 1. Clearly, lowness for Δ_{1}^{1}-Kurtz tests implies lowness for Δ_{1}^{1}-Kurtz randomness.

Theorem 5.1. If x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable, then x is low for Δ_{1}^{1} Kurtz tests.

Proof. Suppose x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable and U is a $\Delta_{1}^{1}(x)$ open set with measure 1. Then there is a real $y \leq_{h} x$ so that U is $\Sigma_{1}^{0}(y)$. Hence for some Turing reduction Φ, if for all z we write U^{z} for the domain of Φ^{z}, then we have $U=U^{y}$.

Define a $\Delta_{1}^{1}(x)$ function \hat{f} by: $\hat{f}(n)$ is the shortest string $\sigma \prec y$ so that $\mu\left(U^{\sigma}[\sigma]\right)>$ $1-2^{-n}$. By the assumptions of the Theorem, there are an increasing Δ_{1}^{1} function g and a Δ_{1}^{1} function f so that for every n, there is an $m \in[g(n), g(n+1))$ so that $f(m)=\hat{f}(m)$. Without loss of generality, we can assume that $\mu\left(U^{f(m)}[m]\right)>1-2^{-m}$ for every m.

Define a Δ_{1}^{1} open set V so that $\sigma \in V$ if and only if there exists some n so that $[\sigma] \subseteq \bigcap_{g(n) \leq m<g(n+1)} U^{f(m)}[m]$. By the property of f and $g, V \subseteq U^{y}=U$. But for every n,

$$
\mu\left(\bigcap_{g(n) \leq m<g(n+1)} U^{f(m)}[m]\right)>1-\sum_{g(n) \leq m<g(n+1)} 2^{-m} \geq 1-2^{-g(n)+1} .
$$

So

$$
\mu(V) \geq \lim _{n} \mu\left(\bigcap_{g(n) \leq m<g(n+1)} U^{f(m)}[m]\right)=1
$$

Hence x is low for Δ_{1}^{1}-Kurtz tests.
Corollary 5.2. Lowness for Δ_{1}^{1}-randomness differs from lowness for Δ_{1}^{1}-Kurtz randomness.

Proof. By Theorem 4.13, there is a real x that is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable but not Δ_{1}^{1}-traceable. By Theorem 5.1, x is low for Δ_{1}^{1}-Kurtz randomness. Chong, Nies and Yu [1] proved that lowness for Δ_{1}^{1}-randomness is the same as Δ_{1}^{1}-traceability. Thus x is not low for Δ_{1}^{1}-randomness.

Corollary 5.3. There is a non-zero hyperdegree below \mathcal{O} which is not a base for a cone of Δ_{1}^{1}-Kurtz randoms.

Proof. Clearly there is a real $x<_{h} \mathcal{O}$ which is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable. Then the hyperdegree of x is not a base for a cone of Δ_{1}^{1}-Kurtz randoms.

Actually the converse of Theorem 5.1 is also true.
Lemma 5.4. If x is low for Δ_{1}^{1}-Kurtz randomness, then x is Δ_{1}^{1}-dominated.
Proof. Firstly we show that if x is low for Δ_{1}^{1}-Kurtz tests, then x is Δ_{1}^{1}-dominated. Suppose $f \leq_{h} x$ is an increasing function. Let $S_{f}=\{z \mid \forall n(z(f(n))=0)\}$. Obviously S_{f} is a $\Delta_{1}^{1}(x)$ closed null set. So there is a Δ_{1}^{1} closed null set $[T] \supseteq S_{f}$ where $T \subseteq 2^{<\omega}$ is a Δ_{1}^{1} tree. Define

$$
g(n)=\min \left\{m \left\lvert\, \frac{\left|\left\{\sigma \in 2^{m} \mid \sigma \in T\right\}\right|}{2^{m}}<2^{-n}\right.\right\}+1
$$

Since $\mu([T])=0, g$ is a well defined Δ_{1}^{1} function. We claim that g dominates f.

For every $n, S_{f(n)}=\left\{\sigma \in 2^{f(n)} \mid \forall i \leq n(\sigma(f(i))=0)\right\}$ has cardinality $2^{f(n)-n}$. But if $g(n) \leq f(n)$, then since $S \subseteq[T]$, we have

$$
\left|S_{f(n)}\right| \leq 2^{f(n)-g(n)} \cdot\left|\left\{\sigma \in 2^{g(n)} \mid \sigma \in T\right\}\right|<2^{f(n)-g(n)} \cdot 2^{g(n)-n}=2^{f(n)-n} .
$$

This is a contradiction. So x is Δ_{1}^{1}-dominated.
Now suppose x is not Δ_{1}^{1}-dominated witnessed by some $f \leq_{h} x$. Then S_{f} is not contained in any Δ_{1}^{1} closed null set. Actually, it is not difficult to see that for any σ with $[\sigma] \cap S_{f} \neq \emptyset,[\sigma] \cap S_{f}$ is not contained in any Δ_{1}^{1} closed null set (otherwise, as proved above, one can show that f is dominated by some Δ_{1}^{1} function). Then, by an induction, we can construct a Δ_{1}^{1}-Kurtz random real $z \in S_{f}$ as follows:

Fix an enumeration P_{0}, P_{1}, \ldots of the Δ_{1}^{1} closed null sets.
At stage $n+1$, we have constructed some $z \upharpoonright l_{n}$ so that $[z] \upharpoonright l_{n} \cap S_{f} \neq \emptyset$. Then there is a $\tau \succ z \upharpoonright l_{n}$ so that $[\tau] \cap S_{f} \neq \emptyset$ but $[\tau] \cap S_{f} \cap P_{n}=\emptyset$. Fix such a τ, let $l_{n+1}=|\tau|$ and $z \upharpoonright l_{n+1}=\tau$.

Then $z \in S_{f}$ is Δ_{1}^{1}-Kurtz random.
So x is not low for Δ_{1}^{1}-Kurtz randomness.
Lemma 5.5. If x is low for Δ_{1}^{1}-Kurtz randomness, then x is Δ_{1}^{1}-semi-traceable.
Proof. The proof is analogous to that of the main result in [7].
Firstly we show that if x is low for Δ_{1}^{1}-Kurtz tests, then x is Δ_{1}^{1}-semi-traceable.
Suppose that x is low for Δ_{1}^{1}-Kurtz tests and $f \leq_{h} x$. Partition ω into finite intervals $D_{m, k}$ for $0<k<m$ so that $\left|D_{m, k}\right|=2^{m-k-1}$. Moreover, if $m<m^{\prime}$, then $\max D_{m, k}<\min D_{m^{\prime}, k^{\prime}}$ for any $k<m$ and $k^{\prime}<m^{\prime}$. Let $n_{m}=\max \left\{i \mid i \in D_{m, k} \wedge k<\right.$ $m\}$ for every $m \in \omega$. Note that $\left\{n_{m}\right\}_{m \in \omega}$ is a recursive increasing sequence.

For every function h, let

$$
P^{h}=\left\{x \in 2^{\omega} \mid \forall m\left(x\left(h \upharpoonright n_{m}\right)=0\right)\right\}
$$

be a closed null set. Obviously P^{f} is a $\Delta_{1}^{1}(x)$ closed null set. Then there is a Δ_{1}^{1} closed null set $Q \supseteq P^{f}$. We define a Δ_{1}^{1} function g as follows.

For each $k \in \omega$, let d_{k} be the least number d so that

$$
\left|\left\{\sigma \in 2^{d} \mid \exists x \in Q(x \succ \sigma)\right\}\right| \leq 2^{d-k-1}
$$

Note that $\left\{d_{k}\right\}_{k \in \omega}$ is a Δ_{1}^{1} sequence. Define

$$
Q_{k}=\left\{\sigma \mid \sigma \in 2^{d_{k}} \wedge \exists x \in Q(x \succ \sigma)\right\} .
$$

Then $\left\{Q_{k}\right\}_{k \in \omega}$ is a Δ_{1}^{1} sequence of clopen sets and $\left|Q_{k}\right| \leq 2^{d_{k}-k-1}$ for each $k<d_{k}$. Then Greenberg and Miller [7] constructed a finite tree $S \subseteq \omega^{<\omega}$ and a finite sequence $\left\{S_{m}\right\}_{k<m \leq l}$ for some l with the following properties:
(1) $[S]=\left\{h \in \omega^{\omega} \mid P^{h} \subseteq\left[Q_{k}\right]\right\}$;
(2) $S_{m} \subseteq S \cap \omega^{n_{m}}$;
(3) $\left|S_{m}\right| \leq 2^{m-k-1}$;
(4) every leaf of S extends some string in $\bigcup_{k<m \leq l} S_{m}$.

Moreover, both the finite tree S and sequence $\left\{S_{m}\right\}_{k<m \leq l}$ can be obtained uniformly from Q_{k}.

Now for each m with $k<m \leq l$ and $\sigma \in S_{m}$, we pick a distinct $i \in D_{m, k}$ and define $g(i)=\sigma(i)$. For the other undefined $i \in D_{m, k}$, let $g(i)=0$.

So g is a well-defined Δ_{1}^{1} function.
For each $k, P^{f} \subseteq Q \subseteq\left[Q_{k}\right]$. So $f \in[S]$. Hence there must be some $i>n_{k}$ so that $f(i)=g(i)$.

Thus x is Δ_{1}^{1}-semi-traceable.
Now suppose x is not Δ_{1}^{1}-semi-traceable as witnessed by $f \leq_{h} x$. Then P^{f} is not contained in any Δ_{1}^{1} closed null set. It is shown in [7] that for any σ, assuming that $[\sigma] \cap P^{f} \neq \emptyset,[\sigma] \cap P^{f}$ is not contained in any Δ_{1}^{1} closed null set. Then by an easy induction, one can construct a Δ_{1}^{1}-Kurtz random real in P^{f}.

So x is not low for Δ_{1}^{1}-Kurtz randomness.
So we have the following theorem.
Theorem 5.6. For any real $x \in 2^{\omega}$, the following are equivalent:
(1) x is low for Δ_{1}^{1}-Kurtz tests;
(2) x is low for Δ_{1}^{1}-Kurtz randomness;
(3) x is Δ_{1}^{1}-dominated and Δ_{1}^{1}-semi-traceable.

It is unknown whether there exists a nonhyperarithmetic real which is low for $\Pi_{1}^{1}-$ Kurtz randomness. However, we can prove the following containment.
Proposition 5.7. If x is low for Π_{1}^{1}-Kurtz randomness, then x is low for Δ_{1}^{1}-Kurtz randomness.

Proof. Assume that x is low for Π_{1}^{1}-Kurtz randomness, y is Δ_{1}^{1}-Kurtz random and there is a $\Delta_{1}^{1}(x)$ closed null set A with $y \in A$. By Theorem 2.7, the set

$$
B=\bigcup\left\{C \mid C \text { is a } \Delta_{1}^{1} \text { closed null set }\right\}
$$

is a Π_{1}^{1} null set. So $A-B$ is a $\Sigma_{1}^{1}(x)$ set. Since y is Δ_{1}^{1}-Kurtz random, $y \notin B$. Hence $y \in A-B$ and so $A-B$ is a $\Sigma_{1}^{1}(x)$ nonempty set. Thus there must be some real $z \in A-B$ with $\omega_{1}^{z}=\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$. Since $z \notin B, z$ is Δ_{1}^{1}-Kurtz random. So by Proposition 3.3, z is Π_{1}^{1}-Kurtz random. This contradicts the fact that x is low for Π_{1}^{1}-Kurtz randomness.

References

[1] Chi Tat Chong, André Nies, and Liang Yu. Higher randomness notions and their lowness properties. Israel journal of mathematics, 2008.
[2] Paul J. Cohen. Set theory and the continuum hypothesis. W. A. Benjamin, Inc., New YorkAmsterdam, 1966.
[3] Rodney G. Downey, Evan J. Griffiths, and Stephanie Reid. On Kurtz randomness. Theor. Comput. Sci., 321(2-3):249-270, 2004.
[4] S. Feferman. Some applications of the notions of forcing and generic sets. Fund. Math., 56:325345, 1964/1965.
[5] S. Feferman and C. Spector. Incompleteness along paths in progressions of theories. J. Symbolic Logic, 27:383-390, 1962.
[6] R. O. Gandy. Proof of Mostowski's conjecture. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 8:571-575, 1960.
[7] Noam Greenberg and Joseph S. Miller. Lowness for Kurtz randomness. J. Symbolic Logic, 74(2):665-678, 2009.
[8] G Hjorth and A Nies. Randomness in effective descriptive set theory. J. London. Math. Soc., 75(2):495-508, 2007.
[9] Alexander S. Kechris. Measure and category in effective descriptive set theory. Ann. Math. Logic, 5:337-384, 1972/73.
[10] Wolfgang Kjos-Hanssen, Bjorn; Merkle and Frank Stephan. Kolmogorov complexity and the recursion theorem. Symposium on Theoretical Aspects of Computer Science 2006, LNCS 3884, Springer, 149-161, 2006.
[11] Per Martin-Löf. On the notion of randomness. In Intuitionism and Proof Theory (Proc. Conf., Buffalo, N.Y., 1968), pages 73-78. North-Holland, Amsterdam, 1970.
[12] Yiannis N. Moschovakis. Descriptive set theory, volume 100 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1980.
[13] A. Nies. Computability and Randomness. Oxford University Press, 2009. 443+xvi pages.
[14] Gerald E. Sacks. Measure-theoretic uniformity in recursion theory and set theory. Trans. Amer. Math. Soc., 142:381-420, 1969.
[15] Gerald E. Sacks. Countable admissible ordinals and hyperdegrees. Advances in Math., 20(2):213-262, 1976.
[16] Gerald E. Sacks. Higher recursion theory. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1990.
[17] C. Spector. Hyperarithmetical quantifiers. Fund. Math., 48:313-320, 1959/1960.
[18] Hisao Tanaka. A basis result for Π_{1}^{1}-sets of postive measure. Comment. Math. Univ. St. Paul., 16:115-127, 1967/1968.
[19] Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and lowness. J. Symbolic Logic, 66(3):1199-1205, 2001.

Department of Mathematics, University of Hawail at Manoa, 2565 McCarthy Mall, Honolulu, HI 96822, USA

E-mail address: bjoern@math.hawaii.edu
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand

E-mail address: andrenies@gmail.com
Departments of Mathematics and Computer Science, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore.

E-mail address: fstephan@comp.nus.edu.sg
Institute of Mathematical Science, Nanjing University, Nanjing, JiangSu Province, 210093, P.R. of China

E-mail address: yuliang.nju@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 03D32, Secondary 03D30, 03E15, 03E35, 68Q30.

 Kjos-Hanssen's research was partially supported by NSF (U.S.A.) grants DMS-0652669 and DMS0901020. Nies is partially supported by the Marsden Fund of New Zealand, grant No. 08-UOA-184. Stephan is supported in part by NUS grants number R146-000-114-112 and R252-000-308-112. Yu is supported by NSF of China No. 10701041 and Research Fund for the Doctoral Program of Higher Education, No. 20070284043.

