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Classical versions of Kolmogorov complexity are incomputable. Nevertheless, in 1975 
Solovay showed that there are computable functions f ≥ K + O (1) such that for infinitely 
many strings σ , f (σ ) = K(σ ) + O (1), where K denotes prefix-free Kolmogorov complexity. 
Such an f is now called a Solovay function. We prove that many classical results about 
K can be obtained by replacing K by a Solovay function. For example, the three following 
properties of a function g all hold for the function K.

(i) The sum of the terms ∑n 2
−g(n) is a Martin-Löf random real.

(ii) A sequence A is Martin-Löf random if and only if g(A ! n) > n − O (1).
(iii) A sequence A is K-trivial if and only if K(A ! n) < g(n) + O (1).

We show that when fixing any of these three properties, then among all computable 
functions exactly the Solovay functions possess this property. Furthermore, this characteri-
zation extends accordingly to the larger class of right-c.e. functions.

 2015 Elsevier Inc. All rights reserved.

1. Introduction and overview

1.1. Introduction

A fundamental aspect of Kolmogorov complexity is its inherent noncomputability. That is, standard complexities mea-
suring compressibility, such as plain (Kolmogorov) complexity C(σ ) or prefix-free (Kolmogorov) complexity K(σ ), are as 
complicated to calculate as the halting problem, and hence undecidable. This nonalgorithmic aspect of Kolmogorov com-
plexity is useful in the sense that it can enable new proofs of various undecidability results such as Gödel’s Incompleteness 
Theorems (see [24, Chapter 2] for the First Incompleteness Theorem, and [19] for the Second Incompleteness Theorem). 
On the other hand, this aspect also hinders the use of Kolmogorov complexity as a tool for measuring common informa-
tion in real data. This hindrance necessitates the use of replacements for the classical complexities by computable text 
compressions (see for example, Cilibrasi and Vitányi [11]).

Nevertheless, it is remarkable how much of the classical theory of Kolmogorov complexities can be carried out by using 
good effective upper bounds. For example, for plain complexity we know that the identity machine describing σ by σ itself 
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This should say: C(A|n) >= n - g(n)+O(1)
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will give us f (σ ) = |σ | as a simple computable upper bound, and Kolmogorov’s basic counting argument shows that this 
bound is achieved for each n by some σ of length n. Thus the function f (σ ) = |σ | is a good computable upper bound for 
C(σ ) in the sense that

(i) C(σ ) ≤ f (σ ) + O(1), and
(ii) ∃∞σ f (σ ) ≤ C(σ ) + O(1).

This upper bound has a number of uses. One is Chaitin’s result [9] that if A is C-trivial, which means that C(A ! n) ≤
C(n) +O(1) for all n, then A is computable.

The situation for prefix-free complexity is not so clear. Similar to the simple upper bound |σ | for C(σ ), the function |σ | +
K(|σ |) is an upper bound for K(σ ) that is infinitely often tight up to an additive constant. However, this upper bound is 
not computable but only right-c.e., i.e., the binary relation “g(n) < k” is c.e. Nevertheless, by a theorem of Solovay there are 
such infinitely often tight upper bounds for K that are computable and such functions are now called Solovay functions.

Definition 1.1. A function g is a Solovay function if g is computable and it holds that

(i) K(σ ) ≤ g(σ ) + O(1), and
(ii) ∃∞σ g(σ ) ≤ K(σ ) +O(1).

A function g is a weak Solovay function if g is right-c.e. and satisfies (i) and (ii).

In what follows we derive a number of fundamental results about Solovay functions and weak Solovay functions. Recall 
that the three following properties of a function g all hold for the function K, by well-known results or, in case of the third 
one, by definition.

(i) The sum
∑

n 2
−g(n) is a Martin-Löf random real.

(ii) A sequence A is Martin-Löf random if and only if C(A ! n) ≥ n − g(n) − O(1).
(iii) A sequence A is K-trivial if and only if K(A ! n) ≤ g(n) + O(1).

Our main results are that when fixing any of these three properties, then the property is true for all weak Solovay func-
tions but indeed is false for all right-c.e. functions that are not weak Solovay functions. That is, among all right-c.e. functions 
exactly the weak Solovay functions possess this property. This characterization extends trivially to the special case of Solo-
vay functions in the sense that among all computable functions exactly the Solovay functions possess the property under 
consideration. Note that in case of the first property the latter characterization was shown in a conference article by the 
first two authors of this paper [5], whereas the corresponding characterization of weak Solovay functions was subsequently 
demonstrated by Hölzl, Kräling and Merkle [17], see Section 2.2 for further details.

Quite aside from their intrinsic interest, Solovay functions have found many uses in the study of algorithmic randomness, 
many using the results proven in this paper some of which had been reported in earlier conference papers [5,6]. Recall 
that A is called K-trivial if and only if there is a constant b ∈ N such that K(A!n) ≤ K(n) + b for all n. Barmpalias and 
Sterkenburg [2] used Solovay functions to show that calculating the number of K-trivials with constant d is sharply "0

3. 
More recently, Solovay functions were used for the characterization of K-trivial points in computable metric spaces by 
Melnikov and Nies [25]. A research announcement by Bienvenu, Day, et al. [4] contains a new, golden-run-free proof that 
K-triviality implies lowness for K. One ingredient is our new, golden-run-free proof, based on Solovay functions, that every 
K-trivial is Turing below a c.e. K-trivial (Section 4.4). For background on the golden run method see Nies [32, Section 5.4].

1.2. Overview

The properties (i), (ii), and (iii) of K stated in the last section, which characterize weak Solovay functions, are discussed in 
Sections 2, 3, and 4, respectively. In Section 2.1 we review Solovay’s construction of a Solovay function before we discuss in 
Section 2.2 the characterization of weak Solovay functions by property (i), i.e., by the fact that the sum of the terms 2−g(n)

is a Martin-Löf random real.
In Section 3, for a start we investigate into conditions formulated in terms of complexity gaps that are sufficient or 

necessary for being Martin-Löf random. We derive several negative results in this direction, for example, there is no func-
tion h that tends to infinity such that K(A ! n) ≥ n − h(n) − O(1) implies that A is Martin-Löf random. These results will 
be used in subsequent proofs but have some interest in their own. In particular, they contrast a positive result by Csima 
and Montalbán [12], who gave a sufficient condition for K-triviality in terms of a complexity gap. Section 3.2 is then about 
characterizations of Martin-Löf randomness via weak Solovay functions and vice versa. Recall that the Gács–Miller–Yu Theo-
rem [15,28] gives a characterization of Martin-Löf randomness in terms of plain Kolmogorov complexity C: a sequence A is 
Martin-Löf random if and only if C(A!n) ≥ n − K(n) − O(1); moreover, there exists a computable upper bound f for K such 
that A is Martin-Löf random if and only if C(A!n) ≥ n − f (n) − O(1). We show that any right-c.e. function f characterizes 
Martin-Löf randomness by the latter condition if and only if f is a weak Solovay function.



JID:YJCSS AID:2891 /FLA [m3G; v1.157; Prn:26/06/2015; 12:41] P.3 (1-17)

L. Bienvenu et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3

In Section 4, we explore the relationship between K-triviality and Solovay functions, showing that for any weak Solovay 
function g , a sequence A is K-trivial if and only if K(A ! n) ≤ g(n) + O(1). Again the characterization works both ways. 
Namely, if f is right-c.e. and has the property that K(A ! n) ≤ f (n) +O(1) is equivalent to A being K-trivial, then f must be 
a weak Solovay function, and a similar characterization holds for Solovay functions. Nies [31] used the golden run method 
to prove that every K-trivial is truth-table reducible to a c.e. K-trivial. Using the connection between Solovay functions and 
K-trivials, we get a new and easy proof of the slightly weaker result that every K-trivial is Turing reducible to a c.e. K-trivial.

Finally, in Section 5, we look at the c-hitting set of a Solovay function g , which is the set of numbers n such that 
g(n) ≤ K(n) + c. Any such set, unless finite, is shown to be Turing complete, and sparse, in the sense that it is hyperimmune.

1.3. Notation and preliminaries

Here we gather some notation that will be used throughout the paper. String refers to a binary string, and 2<ω denotes 
the set of all strings. The length of a string x is denoted by |x|. Both, plain and prefix-free Kolmogorov complexity are defined 
on the set of finite strings, but as usual are also applied to other objects such as integers, rational numbers, pairs of strings, 
etc., as long as they can be effectively encoded by finite strings. Unless explicitly stated otherwise, sequence refers to an 
infinite binary sequence. A subset A of the natural numbers may be identified with its characteristic sequence A(0)A(1) . . . . 
Occasionally, sequences are referred to as reals, see the discussion on page 4. The set of all sequences is denoted by 2ω . 
For i = 0, 1, . . . , the i-th bit of a sequence A is denoted by A(i), while the prefix of A of length i is written A!i, that 
is, A = A(0)A(1) . . . , and A!i = A(0) . . . A(i − 1) for i > 0, while A!0 is equal to the empty string. For a string σ , the 
cylinder [σ ] is the set of sequences A such that σ is a prefix of A. If S is a set of strings, we write [S] for the set of 
sequences having some prefix in S , i.e., S = ⋃

σ∈S [σ ]. We denote by λ the uniform measure on 2ω , which is the probability 
measure one gets when each bit of a sequence is chosen at random with probabilities (1/2, 1/2) and independently of all 
the other bits.

An order is a nondecreasing, unbounded function from N to N. For a given order h, let h−1(k) be the largest integer n
such that h(n) ≤ k. Note that for any order h, the function h−1 is itself an order, and is computable if and only if h is.

A function f : D → R is left-c.e. (also known as approximable or semi-computable from below) if there is a computable 
function (x, t) )→ ft(x) such that for all x ∈ D , ft(x) is nondecreasing in t and converges to f (x). The value ft(x) is called 
the approximation of f (x) at stage t . The notion of a right-c.e. function is defined accordingly, where now the approxima-
tions ft(x) are required to be nonincreasing in t . Note that for any left-c.e. or right-c.e. function one can assume that the 
approximations ft(x) are given as a pair of natural numbers p and q, which represent the dyadic rational p2−q . Furthermore, 
in the important case of right-c.e. functions with values in the natural numbers such as plain and prefix-free Kolmogorov 
complexity, by rounding approximations down to the next natural number below, one can assume that the approxima-
tions f0(x), f1(x), . . . are natural numbers, and that hence for each x all but finitely many of the approximations ft(x) are 
equal to f (x).

We will assume that the reader is familiar with the rudiments of algorithmic randomness, the definitions of plain and 
prefix-free complexity, and the like. We only remind the reader of some of the most salient points. A bounded request set, 
also known as Kraft–Chaitin or KC-set, is a computably enumerable set W of pairs (σ , n) where the first coordinate is a 
string and the second an integer and such that 

∑
(σ ,n)∈W 2−n is finite. Enumerating a pair (σ , n) into a request set is often 

said to incur a cost of 2−n; the request set being bounded refers to the fact that the total cost is finite. Given such a bounded 
request set W , the Kraft–Chaitin theorem, due to Levin [22] and Chaitin [8], asserts that K(σ ) ≤ n +O(1) for all (σ , n) ∈ W .

The classical application of the Kraft–Chaitin Theorem is the Levin–Schnorr characterization of Martin-Löf randomness.

Theorem 1.2. (See Levin–Schnorr [23,33].) A sequence X is Martin-Löf random if and only if K(X ! n) ≥ n − O(1).

Another consequence of the Kraft–Chaitin Theorem is that every right-c.e. function of finite weight is an upper bound 
for Kolmogorov complexity.

Lemma 1.3. (See Levin [22], Chaitin [8].) Let f : N →N be a right-c.e. function. Then the two following assertions are equivalent.

(i) K ≤ f + O(1).
(ii)

∑
n 2

− f (n) is finite.

Proof. The implication (i)⇒(ii) is trivial as 
∑

n 2
−K(n) ≤ 1. For the implication (ii)⇒(i), fix some computable func-

tion (n, t) )→ ft(n) with values in the natural numbers such that for all n, the sequence f0(n), f1(n), . . . converges non-
increasingly to f (n), and let the set Dn be equal to { f0(n), . . . , f (n)}, hence ∑

%∈Dn
2−% ≤ 2− f (n)+1. Then the set of all pairs 

of the form (%, n) such that % ∈ Dn is a bounded request set and we are done by applying the Kraft–Chaitin theorem. !
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2. Basics on Solovay functions

2.1. Existence

Theorem 2.1. (See Solovay [34].) There exists a Solovay function.

Proof. Let us start by an observation. For some constant c, given strings p and x such that the standard universal prefix-free 
machine U on input p outputs x after exactly t steps of computation, we have

K (〈x, p, t〉) ≤ |p| + c,

where 〈., ., .〉 is the usual effective bijection from 2<ω ×2<ω ×2<ω to 2<ω . This holds because there is a prefix-free machine 
that on input p simulates U on input p and outputs 〈x, p, t〉 in case the simulated computation terminates in exactly t steps 
with output x. Suppose now that p is in addition a shortest U-description for x, i.e., U(p) = x and K(x) = |p|. We then have

|p| = K(x) ≤ K (〈x, p, t〉) + O(1) ≤ |p| + O(1).

Now let the function gS be defined by

gS(〈x, p, t〉) =
{ |p| if U on input p outputs x in

exactly t steps of computations,
2|〈x, p, t〉| otherwise.

By construction, we have K ≤ gS + O(1). Furthermore, gS(〈x, p, t〉) is at most K(〈x, p, t〉) + O(1) for all triples 〈x, p, t〉 such 
that p is a shortest U-description for x and U on input p outputs x in exactly t steps of computation. Thus, gS is as 
desired. !

2.2. A criterion for being a Solovay function

The next theorem provides the fundamental characterization of Solovay functions in terms of the sum 
∑

n 2
− f (n) . It was 

first proven in an earlier conference paper by Bienvenu and Downey [5] for computable functions, and then extended by 
Hölzl, Kräling and Merkle [17] to right-c.e. functions. The survey paper [7] by Bienvenu and Shen gives a further extension, 
namely to real-valued right-c.e. functions which only change finitely often at each value.

Theorem 2.2. Let f : N → N be a right-c.e. function. Then f is a weak Solovay function if and only if 
∑

n 2
− f (n) is finite and is a 

Martin-Löf random real.

There are two different ways to define the notion of a Martin-Löf random real, however, both options lead to the same 
randomness notion. One option is to define Martin-Löf randomness for infinite binary sequences first, and define a real 
number to be Martin-Löf random if its binary expansion is. One other option is to directly adapt the definition of Martin-Löf
randomness to real numbers, by saying that an open set U of R is effectively open, or &0

1 , if it can be written as 
⋃

i(ai, bi), 
for a c.e. set of pairs {(ai, bi)}i∈ω , and considering the Lebesgue measure on R instead of the uniform measure on 2ω , the 
rest of the definition remaining the same. The second approach has been applied elegantly by Kučera and Slaman [21] for 
proving that left-computable Martin-Löf random reals are Solovay complete. Hölzl, Kräling and Merkle [17] use a similar 
argument in their proof of Theorem 2.2. We include this proof for ease of reference.

Proof of Theorem 2.2. We first show the backwards direction of the equivalence asserted in the theorem. We assume that 
f is not a Solovay function and construct a sequence U0, U1, . . . of sets that is a Martin-Löf test and covers ' f = ∑

n 2
− f (n) . 

First, we fix an appropriate computable approximation from above to f , i.e., a computable function (n, s) )→ f s(n) such that 
for all n the sequence f0(n), f1(n), . . . is a nonascending sequence of natural numbers that converges to f (n), where we 
assume in addition that f s(n) − f s+1(n) is always equal to either 0 or 1. Let a0 = 0 and given ai , let ai+1 = ai + di , where di
is obtained as follows. With some appropriate ordering of pairs understood, search for the next pair that either is of the 
form (n, 0) or is of the form (n, s + 1) where f s(n) − f s+1(n) = 1, and then let

di = 2− f0(n) or di = 2− fs+1(n) − 2− fs(n) = 2− fs(n),

respectively. In this situation, say that the increase from ai to ai+1 of size di occurs due to n. Furthermore, let bi be the sum 
of all increases d j such that j ≤ i and d j and di occur due to the same n. By construction, all di and ai are dyadic rationals 
and the ai converge nondecreasingly to ' f .

For given c, the component Uc is obtained as follows. Say that the index i is c-matched if di occurs due to n and it holds 
that

2c+2bi ≤ 2−K(n). (1)
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For every index i for which it could be verified that i is c-matched by approximating K from above, add an interval of 
size 2di to Uc , where this interval either starts at ai or at the supremum of all reals that are already in Uc , whichever is 
larger.

By construction, 2c+2 times the sum of all di such that i is matched is at most 'K < 1, hence the measure of Uc is 
at most 2−(c+1) . Moreover, the sets U0, U1, . . . are uniformly c.e., hence they form a Martin-Löf test. This test covers ' f
because by the assumption that f is not a Solovay function, and by the fact stated above that information content measures 
are upper bounds for K up to an additive constant, it holds that

lim
n→∞( f (n) − K(n)) = ∞.

Hence for every c there is an index i(c) such that all i ≥ i(c) will eventually become c-matched, where then Uc will 
accordingly be increased by an interval of length 2di to the right of ai(c) . The lengths of these intervals add up to β =
2(' f − ai(c)), hence Uc will cover, except for some gaps, the open interval between ai(c) and ai(c) + β , which contains ' f .

It remains to show that ' f cannot be a member of such a gap. Such a gap can only occur in case an interval of size 2di
is added to Uc in a situation where ai is strictly larger than the supremum of all reals that are already in Uc , where then 
the supremum of the gap is ai ≤ ' f . Consequently, the real ' f cannot be a member of the gap unless it is equal to the 
rational number ai and is hence not Martin-Löf random.

Next we show the forward direction of the equivalence asserted in the theorem. If f is a weak Solovay function, we 
already know by definition that α = ∑

n 2
− f (n) is finite. Let us now prove that α is a Martin-Löf random real. Suppose 

it is not. Then for arbitrarily large c there exists k such that K(α!k) ≤ k − c (this because of the Levin–Schnorr theorem, 
Theorem 1.2). Given α!k, one can effectively find some s such that

∑

n>s

2− f (n) ≤ 2−k.

Thus, by a standard bounded request argument, one has K(n|α!k) ≤ f (n) − k + O(1) for all n > s. Thus, for all n > s:

K(n) ≤ f (n) + K(α!k) − k + O(1) ≤ f (n) + (k − c) − k − O(1) ≤ f (n) − c − O(1).

And since c can be taken arbitrarily large, this shows that limn→+∞ f (n) − K(n) = +∞, i.e., f is not a Solovay function. !

The characterization of weak Solovay functions in Theorem 2.2 holds also when relativized to any oracle by virtually 
the same proof. In fact, Hölzl, Kräling and Merkle [17] demonstrated the relativized version, as a joint generalization of, 
first, the already mentioned corresponding characterization of Solovay functions by Bienvenu and Downey [5], and, second, 
a remarkable characterization of the sequences that are weakly low for K by Miller [29]. For the sake of completeness, we 
shortly review the latter result, which now becomes a special case of Theorem 2.2. Recall that the K-trivial sequences are 
exactly those that are low for K, i.e., a sequence A is K-trivial if and only if KA ≥ K − O(1). The notion of lowness for K can 
be weakened as follows. We say that A is weakly low for K if KA(n) ≥ K(n) − O(1) for infinitely many n.

Theorem 2.3 (Miller). The two following assertions are equivalent for all sequences A.

(i) A is weakly low for K.
(ii) 'K = ∑

n 2
−K(n) is Martin-Löf random relative to A.

Proof. The function K is right-c.e., hence A-right-c.e., and is an upper bound for KA up to an additive constant. So by 
definition of weakly low the first statement holds if and only if K is a weak Solovay function relative to A. The theorem is 
then immediate from the relativization of Theorem 2.2 to A. !

Weak Solovay functions are by definition upper bounds for K, hence always tend to infinity. We demonstrate next that 
indeed some Solovay functions do so nondecreasingly.

Corollary 2.4. There exists a Solovay function that is an order.

Proof. Take a left-c.e. Martin-Löf random real ' and write ' = ∑
n 2

−kn where (kn) is a computable sequence of integers. 
Now, transform this sum as follows: rewrite each term 2−kn as a sum of finitely many terms 2−k′

n where k′
n = max{ki | i ≤ n}. 

Let l0, l1, . . . be the sequence of values k′
n with repetitions obtained this way and consider the function f : i )→ li . Then the 

function f is a computable order, and the sum
∑

i 2
− f (i) is equal to the Martin-Löf random number ', hence f is a Solovay 

function by Theorem 2.2. !



JID:YJCSS AID:2891 /FLA [m3G; v1.157; Prn:26/06/2015; 12:41] P.6 (1-17)

6 L. Bienvenu et al. / Journal of Computer and System Sciences ••• (••••) •••–•••

3. Connections to Martin-Löf randomness

3.1. A “no-gap” theorem for randomness

In this section we will see how Solovay functions relate to Martin-Löf randomness, via the Gács–Miller–Yu theorem, 
which is stated below as Theorem 3.4. To do so, we first investigate into gap phenomena for Martin-Löf randomness, which 
are interesting in their own right.

By definition, a sequence is K-trivial if there is a constant c such that for all n we have that K(A!n) ≤ K(n) + c. Csima 
and Montalbán [12] proved that there is an order h such that K(A!n) ≤ K(n) + h(n) implies that A is K-trivial; in fact their 
function h is "0

4. Since there is a prefix-free machine that on input p outputs |U(p)| whenever U(p) is defined, there 
is a constant c such that for all strings σ it holds that K(|σ |) − c ≤ K(σ ). Hence their result can be restated as follows: 
a sufficient condition for a sequence to be K-trivial is that for all n the prefix-free Kolmogorov complexity of the length n
prefix of the sequence lies in the gap formed by K (n) − c and K (n) +h(n). In what follows, we will show “no-gap theorems” 
for the concept of Martin-Löf randomness in the sense that for the latter concept it is not possible to obtain similarly 
sufficient or necessary conditions in terms of gap functions.

Chaitin [10] proved that when a sequence A is Martin-Löf random, then one does not just have K(A!n) ≥ n − O(1), 
but in fact K(A!n) − n tends to infinity. Together with the Levin–Schnorr characterization, this shows a dichotomy: given a 
sequence A ∈ 2ω , either A is not Martin-Löf random, in which case K(A!n) −n takes arbitrarily large negative values, or A is 
Martin-Löf random, in which case K(A!n) − n tends to +∞. This means for example that there is no sequence A ∈ 2ω such 
that K(A!n) = n + O(1). One may ask whether this dichotomy is due to a gap phenomenon, that is: is there a function h
that tends to infinity, such that for every Martin-Löf random sequence A, K(A!n) ≥ n + h(n) − O(1)? Similarly, is there a 
function h that tends to infinity such that for every sequence A, K(A!n) ≥ n − h(n) − O(1) implies that A is Martin-Löf
random? We answer both questions, as well as their plain complexity counterparts, in the negative.

Theorem 3.1. There exists no function h: N →N that tends to infinity and such that

K(A!n) ≥ n − h(n) − O(1)

is a sufficient condition for Martin-Löf randomness of A.
Similarly, there is no function h: N →N that tends to infinity and such that

C(A!n) ≥ n − K(n) − h(n) − O(1)

is a sufficient condition for Martin-Löf randomness of A.

In fact, for both statements we will build counterexamples that are not even Church stochastic (see Downey and 
Hirschfeldt [13] for the definition of Church stochasticity).

Proof. First, notice that since we want to prove this for any function that tends to infinity, we can restrict our attention to 
the nondecreasing ones. Indeed, if h is a function that tends to infinity, the function

h̃(n) = min{h(i) | i ≥ n}
also tends to infinity and ̃h ≤ h.

Now, assume we are in the simple case where the function h is nondecreasing and computable. A standard technique 
to get a nonrandom binary sequence B such that K(B!n) ≥ n − h(n) − O(1) is the following: take a Martin-Löf random 
sequence A, and insert zeroes into A in positions h−1(0), h−1(1), h−1(2), . . . . It is easy to see that the resulting sequence B
is not Martin-Löf random (indeed, not even Church stochastic), and that the Kolmogorov complexity of its initial segments 
is as desired. This approach was refined by Merkle, Miller et al. [27] where the authors used an insertion of zeroes on a 
co-c.e. set of positions in order to construct a left-c.e. sequence B that is not Mises–Wald–Church stochastic, but has initial 
segments of very high complexity.

Of course, the problem here is that the function h in the hypothesis may be noncomputable, and in particular may 
grow slower than any computable nondecreasing function. In that case, the direct construction we just described does not 
necessarily work: indeed, inserting zeroes at a noncomputable set of positions may not affect the complexity of A. To 
overcome this problem, we invoke the Kučera–Gács theorem, see Kučera [20], Gács [16], or Merkle and Mihailović [26]. 
This theorem states that any sequence, and thus any function from N to N, is Turing-reducible to some Martin-Löf random 
sequence. Hence, instead of choosing any Martin-Löf sequence A, we pick one that computes the function h−1 and then 
insert zeroes into A at positions h−1(0), h−1(1), . . . (by this we mean that we construct a sequence B by adding h−1(0) bits 
of A, then a zero, then h−1(1) bits of A, etc.). Intuitively, the resulting sequence B should not be random, as the bits of 
A can be used to compute the places where the zeroes have been inserted. This intuition however is not quite correct, as 
inserting the zeroes may destroy the Turing reduction * from A to h−1. In other words, looking at B , we may not be able 
to distinguish the bits of A from the inserted zeroes.
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The trick to solve this last problem is to delay the insertion of the zeroes to “give enough time” to the reduction * to 
compute the positions of the inserted zeroes. More precisely, we insert the k-th zero in position nk = h−1(k) + t(k) where 
t(k) is the time needed by * to compute h−1(k) from A. This way, nk is computable from A!nk in time at most nk . From 
this, it is not too hard to construct a computable selection rule that selects precisely the inserted zeroes, witnessing that B is 
not Church stochastic, hence is not Martin-Löf random. Moreover, since the “insertion delay” only makes the inserted zeroes 
more sparse, we have K(B!n) ≥ n −h(n) −O(1). And similarly, since A is Martin-Löf random, we have by the Gács–Miller–Yu
theorem (Theorem 3.4 below): C(B!n) ≥ n − K(n) − h(n) −O(1).

The formal details are as follows. Let h be a nondecreasing function. By the Kučera–Gács theorem, let A be a Martin-Löf
random sequence and * be a Turing functional such that *A(n) = h−1(n) for all n. Let t(n) be the computation time of 
*A(n), where we can assume that t is an increasing function. Let B ∈ 2ω be the sequence obtained by inserting zeroes 
into A in positions h−1(n) + t(n). To show that B is not Church stochastic, we construct a (total) computable selection rule 
that filters the inserted zeroes from B . Let S be the selection rule that works as follows on a given sequence X ∈ 2ω . We 
proceed by induction; we call kn the number of bits selected by S from X!n and xn the prefix X!n of X from which these 
kn bits are deleted (x0 is thus the empty string, and k0 = 0).

At stage n + 1, having already read X!n, S computes *xn
n (kn). If the computation halts after s steps, S checks whether 

*
xn
n (kn) + s returns n (the subscript of * refers to the number of computation steps allowed). If so, S selects the n-th bit 

of X(n) of X and then sets xn+1 = xn and kn+1 = kn + 1. Otherwise, S just reads the bit X(n), extends xn by this bit, i.e., 
xn+1 = xn X(n), and lets kn+1 = kn .

It is clear that S is a total computable selection rule. Now suppose that we run it on B . We argue that S selects exactly 
the zeroes that have been inserted into A to get B . We prove this by induction. If S has already selected from B the first i
inserted zeroes, then the next selected bit is the bit in position n = *xn (kn) + s where *xn (kn) is computed in s steps. 
But since the selected bits are exactly the zeroes that were inserted in A, we have kn = i and xn = A!n − i, and thus s is 
the computation time of *xn (kn) = *A!n−i(i), which we called t(i). And by definition of *, *A!n−i(i) = h−1(i). Therefore, 
n = h−1(i) + t(i), i.e., the selected bit was an inserted zero. This proves that S only selects bits that belong to the zeroes 
that were inserted into A. Conversely, we need to prove that all such bits are indeed selected by S . Let i ∈ N. The i + 1-th 
inserted zero is in position n = h−1(i) + t(i). At stage n, we have by the induction hypothesis xn = A!n − i and kn = i. 
Thus, *xn

n (kn) = *
A!t(i)+h−1(i)−i
h−1(i)+t(i)

(i), which has to halt because both quantities t(i) + h−1(i) − i and h−1(i) + t(i) are greater 
than t(i), which is the computation time of *A(i). Thus the bit in position n is indeed selected. Therefore, S satisfies the 
desired properties, and witnesses the fact that B is not Church stochastic.

Finally, for all n, calling i the number of inserted zeroes in B!n, we easily see that B!n and A!n − i can each be computed 
from the other one, by successive insertion or deletion of zeroes. Thus: K(B!n) = K(A!n − i) + O(1) ≥ n − i − O(1) since A
is Martin-Löf random. And by definition of the positions where the zeroes are inserted, we have n ≥ h−1(i − 1) + t(i − 1), 
hence i ≤ h(n) + O(1). Therefore:

K(B!n) ≥ n − i − O(1) ≥ n − h(n) −O(1)

for all n, which completes the proof of the first assertion. We omit the almost identical argument for the second assertion 
on C-complexity. !

Although we do not discuss them in this paper, the above construction can also be applied to two other variants of 
Kolmogorov complexity, namely monotone complexity Km and a-priori complexity KM (see [13] for a definition of these 
complexities). A sequence A is Martin-Löf random if and only if KM(A!n) = Km(A!n) +O(1) = n +O(1), but there is no way 
to get a weaker sufficient condition.

Proposition 3.2. There exists no function h: N →N that tends to infinity and such that

KM(A!n) ≥ n − h(n) −O(1)

is a sufficient condition for A to be Martin-Löf random. Since Km ≥ KM, this remains true with Km in place of KM.

The proof of Proposition 3.2 is virtually identical to the proof of Theorem 3.1. Note that the proposition is in fact stronger 
than the theorem, as K ≥ KM.

Another consequence of the construction performed in this proof is the dual version of Theorem 3.1 stated in Propo-
sition 3.3. The first part of the proposition has been obtained earlier on and in different ways by Miller and Yu [30, 
Corollary 3.2], and in fact with the weaker hypothesis that h is unbounded.

Proposition 3.3. There exists no function h: N →N that tends to infinity and such that

K(A!n) ≥ n + h(n) − O(1)

is a necessary condition for A to be Martin-Löf random.
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Similarly, there is no function h: N →N that tends to infinity and such that

C(A!n) ≥ n − K(n) + h(n) − O(1)

is a necessary condition for A to be Martin-Löf random.

Proof. Suppose for the sake of contradiction that there exists a function h′ which tends to infinity and such that K(A!n) ≥
n +h′(n) −O(1) is a necessary condition for A to be Martin-Löf random. Once again, we can assume that h′ is nondecreasing. 
Then, we perform the exact same construction as in the proof of Theorem 3.1 for a given function h. At the end of proof, 
when evaluating the complexity of B , we have K(B!n) = K(A!n − i) + O(1), with i ≤ h(n) + O(1), and since A is Martin-Löf
random, K(A!n − i) ≥ (n − i) + h′(n − i) −O(1). It follows that

K(B!n) ≥ n − h(n) + h′(n − h(n)) − O(1).

By assumption on h′ , we have h′(n) ≤ n/3 for almost all n, hence if we let h(n) = h′(n/2), we have K(B!n) ≥ n − O(1). This 
is a contradiction since by the Levin–Schnorr theorem, this would imply that the sequence B is Martin-Löf random, which 
it is not by construction. The proof of the second part of the proposition is almost identical. !

3.2. The Gács–Miller–Yu theorem

We now turn to the link between Solovay functions and the Gács–Miller–Yu theorem. This theorem gives a characteriza-
tion of Martin-Löf random sequences in terms of the C-complexity of their initial segments, even though the condition still 
involves K.

Theorem 3.4 (Gács–Miller–Yu). A ∈ 2ω is Martin-Löf random if and only if

C(A!n) ≥ n − K(n) − O(1).

Moreover there exists a computable upper bound f of K such that A is Martin-Löf random if and only if C(A!n) ≥ n − f (n) − O(1).

Gács [15] actually gives a variant of the first part, with conditional complexity C(A!n|n) instead of C(A!n). Miller and 
Yu [28] proved the first part as stated above, as well as the second part about the existence of a computable f with the 
given properties.

The second part of the theorem indicates the existence of “tight enough” computable upper bounds for K. These turn 
out to be exactly the Solovay functions.

Using the “no-gap” theorems of the previous section, we first show that any such function must be a weak Solovay 
function, even if we only assume the function to be merely right-c.e.

Theorem 3.5. Let f be a right-c.e. function such that

C(A!n) ≥ n − f (n) −O(1) ⇔ A is Martin-Löf random.

Then f is a weak Solovay function. In particular, f is a Solovay function in case f is computable.

Proof. For a start suppose that f is an upper bound for K up to an additive constant. Then f must be a Solovay function 
because otherwise h = f − K tends to infinity and by assumption on f , one has for all sequences A that

C(A!n) ≥ n − K(n) − h(n) − O(1)

implies that A is Martin-Löf random, which contradicts the no-gap result stated in Theorem 3.1. In particular, in this case 
the function f is a Solovay function in case it is computable. (We note in passing that a similar argument shows for any, 
not necessarily right-c.e. function f that satisfies the forward implication of the equivalence in the theorem that in case the 
function f is an upper bound for K , then this upper bound must be infinitely often tight.)

By the preceding discussion, it suffices to show that f is an upper bound for K up to an additive constant. For a 
right-c.e. function, this is equivalent to

∑
n 2

− f (n) < ∞. For the sake of contradiction, suppose that 
∑

n 2
− f (n) = ∞. We 

already know by the Gács–Miller–Yu theorem that every Martin-Löf random real A satisfies C(A!n) ≥ n − K(n) − O(1) ≥
n −2 log(n) −O(1). Thus, after replacing f (n) by min(2 logn, f (n)) (a transformation which preserves the right-c.e.-ness and 
the property 

∑
n 2

− f (n) = ∞), we can assume that f (n) ≤ 2 logn.
Let us now build an auxiliary right-c.e. function g as follows. Since 

∑
n 2

− f (n) = ∞ and f is right-c.e., one can effectively 
find a partition of N into consecutive intervals I0, I1, I2, . . . together with stages t0 < t1 < t2 . . . such that 

∑
n∈Ik

2− ftk (n) ≥ 22k

for all k. One can further assume that min Ik ≥ 2k −1 (indeed one can always add more elements to Ik−1 in order to increase 
min Ik if necessary). Now for all k, the function g is defined on Ik by g(n) = ftk (n) + k. This implies that g is computable, 
that g − f → ∞ and
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∑

n

2−g(n) =
∑

k

∑

n∈Ik

2− ftk (n)−k ≥
∑

k

2k = ∞.

Finally, observe that on every interval Ik , we have g(n) = ftk (n) + k, and by our assumption that min Ik ≥ 2k − 1, this means 
that g(n) = ftk (n) +O(logn) = O(logn) (for the last inequality we use the fact that f = O(logn), and assume without loss of 
generality that the enumeration of f from above is O(logn) at all stages). This last property ensures that C(n|n − g(n)) = O(1)
because the function n )→ n − g(n) is computable and O(1)-to-one. We can then use a well-known result due to Martin-Löf
(see [13, Theorem 3.11.2]), which states that when g is a computable function such that C(n|n − g(n)) = O(1), then for any 
A ∈ 2ω , there are infinitely many n such that C(A!n) ≤ n − g(n) − O(1). But when A is Martin-Löf random, this contradicts 
the hypothesis that C(A!n) ≥ n − f (n) −O(1) (because g − f → ∞). This gives us the desired contradiction, and thus proves 
that f is an upper bound for K up to an additive constant. !

We now show the converse of Theorem 3.5.

Theorem 3.6. Let g be a weak Solovay function. Then A ∈ 2ω is Martin-Löf random if and only if

C(A!n) ≥ n − g(n) − O(1).

We begin our proof with a combinatorial lemma.

Lemma 3.7. Let σ be a string. Let I = [s, t] be a finite interval of integers with s ≥ |σ |. Let (ai)i∈I be a finite set of integers such that
∑

i∈I

ai2−i ≥ 2−|σ |+1.

Then, there exists a subset J of I and a finite set of strings S such that

(i) [S] = [σ ],
(ii) for all τ ∈ S, |τ | ∈ J ,
(iii) for all j ∈ J , |S ∩ {0, 1}≤ j | ≤ a j .

Moreover, J and S can be constructed effectively given σ , I and (ai)i∈I .

Proof. We construct J and S via the following procedure. We initialize J and S to ∅. Now the procedure is as follows:

For all i from s to t do
If |S| ≥ ai do nothing. Otherwise:

(1) Put i into J .
(2) Split [σ ] \ [S] into cylinders of measure 2−i . Let T be the set of strings of length i generating those cylinders.
(3) Let T ′ be the set containing the ci = ai − |S| first strings of T in the lexicographic order (if ci > |T | then let T ′ = T ).
(4) Enumerate all strings of T ′ into S .

We now verify that this procedure works, i.e., that the algorithm is well-defined and that the set S we obtain after 
the t-loop is as wanted. First, notice that at the beginning of the i-loop, S contains only strings of length smaller than i, 
therefore [S] can be split into cylinders of measure 2−i . Since |σ | ≤ s ≤ i, this is also the case for [σ ], hence for [σ ] \ [S], 
so step (2) is well-defined. We also immediately see that the conditions (ii) and (iii) of the lemma are satisfied: indeed, 
we only enumerate strings of a given length i after enumerating i into J , and if we do so, we ensure that at the end 
of the i-loop, the cardinality of S ∩ {0, 1}≤i is at most ai . It remains to verify condition (i). First it is clear that S ⊆ [σ ]
as we only enumerate cylinders that are contained in [σ ]. Suppose that this inclusion is strict. Then, when running the 
above procedure, at step 3, we are never in the case where ci > |T |, hence for all i, at the end of the i-loop, we have 
|S ∩ {0, 1}≤i | ≥ ai , whether i is in J or not. Therefore, at the end of the procedure, we have

t∑

i=s

ai2−i ≤
t∑

i=s

|S ∩ {0,1}≤i|2−i ≤
t∑

i=s

i∑

k=s

|S ∩ {0,1}k|2−i

≤
t∑

k=s

|S ∩ {0,1}k|
t∑

i=k

2−i <

t∑

k=s

|S ∩ {0,1}k|2−k+1

< 2λ([S]) < 2λ([σ ]) < 2−|σ |+1,

and this contradicts the hypothesis of the lemma. !
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Proof of Theorem 3.6. Let g be a weak Solovay function. In the equivalence to be proved, the implication from left to right 
follows directly from the Gács–Miller–Yu theorem. In order to prove the reverse implication, let A be a sequence that is not 
Martin-Löf random. We shall prove that C(A!n) ≤ n − g(n) − k holds for infinitely many n and arbitrarily large k.

By Corollary 4.6 below, for every weak Solovay function h there is a Solovay function h̃ ≤ h. The proof of the corollary 
does not depend on Theorem 3.6 or any result demonstrated by using this theorem, hence we can apply the lemma already 
now and can assume that g is computable. We further assume, for technical reasons which will become clear at the end of 
the proof, that for all i, either g(i) ≤ 2 log(i) or g(i) = +∞. If it is not the case, replace g by the bigger function g̃ defined 
by g̃(i) = g(i) if g(i) ≤ 2 log(i), and g̃(i) = +∞ otherwise. Then we have

∑

i

2−g̃(i) =
∑

i

2−g(i) −
∑

i
g(i)≥2 log i

2−g(i),

where the third sum is a computable real number as the i-th term is bounded by 1/i2. Thus 
∑

i 2
−g̃(i) is equal to a 

Martin-Löf random real minus a computable real, hence is a Martin-Löf random real and thus g̃ is still a Solovay function.
Now, let (Uk)k∈N be a Martin-Löf test covering A and such that λ(Uk) ≤ 2−2k−1 for all k. We design a procedure (Pk)

which for all k tries to enumerate a set of strings Sk such that [Sk] = Uk , with additional properties on the length of the 
strings it contains. We ensure that this procedure succeeds for almost all k by building an auxiliary test Vk which tests the 
randomness of 

∑
i 2

−g(i) . The procedure (Pk) works as follows.

(1) Wait for a new cylinder [σ ] to be enumerated into Uk .
(2) Choose a large integer s, say larger than 2N with N larger than any integer mentioned so far in the construction 

(including k).
(3) Enumerate into Vk the dyadic real interval

[
∑

i<s

2−g(i),2−|σ |+1+k +
∑

i<s

2−g(i)

]

.

(4) Wait for a stage t such that 
∑

i≤t 2
−g(i) > 2−|σ |+1+k + ∑

i<s 2
−g(i) .

(5) When this happens, we have 
∑t

i=s 2
−g(i) > 2−|σ |+1+k . We then apply Lemma 3.7 with ai = 2i−g(i)−k to get a finite 

set of strings Sσ
k and a finite set of integers Jσk such that [Sσ

k ] = [σ ], for all τ ∈ Sσ
k , |τ | ∈ Jσk and for all j ∈ Jσk , 

|Sσ ∩ {0, 1}≤ j | ≤ a j . We then put all strings of Sσ
k into Sk and go back to step 1.

It is possible that for some k, (Pk) will at some point reach step 4 and wait there forever. We claim that this can only 
happen for finitely many k. Indeed, for a given k, we have λ(Vk) ≤ 2−k , because whenever a cylinder [σ ] enters Uk at step 1, 
an interval of length 2−|σ |+1+k enters Vk , hence λ(Vk) ≤ 2k+1λ(Uk) ≤ 2−k . Thus, (Vk)k∈N is a Martin-Löf test. Furthermore, if 
the procedure for Sk waits forever at some step 4, this precisely means that 

∑
i 2

−g(i) belongs to the dyadic interval which 
was put into Vk at step 3, and thus in that case 

∑
i 2

−g(i) ∈ Vk . Since
∑

i 2
−g(i) is random, it can only belong to finitely 

many Vk , hence for almost all k the procedure (Pk) never waits forever at step 4. In that case, the c.e. set Sk it builds does 
satisfy [Sk] = Uk by construction.

To finish the proof, let k be such that (Pk) succeeds. Since A is not Martin-Löf random, A belongs to Uk , hence to 
[Sk]. This means that for some n, A!n belongs to Sk . To describe A!n, it suffices to describe k (this can be done with 
2 logk + O(1) bits), and its position inside Sk . For its position inside Sk , we simply describe the position of A!n inside 
the Sσ

k it belongs to, when the latter is sorted in the length-lexicographic order. By construction of Sσ
k , n must be in Jσk

(otherwise Sσ
k would be empty), and there are at most an = 2n−g(n)−k strings of length less than or equal to n in Sσ

k , and 
therefore we can specify the position of A!n inside Sσ

k with n − g(n) − k bits. Thus, our description of A!n has total length 
n − g(n) − k + 2 logk + O(1). Since k can be taken as large as wanted, this will be enough to prove the theorem, but one 
last thing we need to check is that this description is enough to retrieve A!n. Indeed, while we give the index of A!n inside 
the Sσ

k it belongs to, we do not describe σ explicitly. However, σ can be found as follows. The description of A!n we give 
has length n − g(n) − k + 2 logk + O(1). By assumption, g(n) ≤ 2 logn and by construction of Sσ

k , k ≤ log s ≤ logn. Hence 
our description has length between n − 3 logn + O(1) and n + O(1). Hence the length of our description gives us n with 
logarithmic precision. This is enough to find the string σ such that A!n belongs Sσ

k because by construction of Sk , if l is the 
length of some string in Sσ ′

k with σ ′ 3= σ , then either 2l < n or 2n < l, and hence either l < n − 3 logn or n < l − 3 log l. !

4. Connections to K-triviality

4.1. K-trivial sequences

From their incompressibility characterization, it can be seen that the Martin-Löf random sequences are those which have 
initial segments of roughly maximal Kolmogorov complexity. It is natural to ask which sequences A have initial segments of 
minimal prefix free Kolmogorov complexity K(A ! n) ≤ K(n) +O(1). Chaitin [8] proved that any such sequence is computable 
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from the halting problem, and Solovay [34] was able to construct such a sequence that is noncomputable and computably 
enumerable. The class of such sequences was further studied by Downey, Hirschfeldt, Nies and Stephan [14,31], who called 
them K-trivial.

The K-trivial sequences turned out to have remarkable properties. Perhaps the most striking fact is that they can be 
characterized as the sequences that are low for Martin-Löf randomness, or, alternatively, as the sequences that are low for 
prefix-free Kolmogorov complexity. In other words, a sequence A is K-trivial if and only if Martin-Löf randomness relativized 
to A coincides with Martin-Löf randomness, if and only if the prefix-free Kolmogorov complexity relativized to A is within 
an additive constant of the unrelativized one.

In this section we will show that in the definition of the notion of K-trivial, the upper bound K(n) +O(1) can be equiva-
lently replaced by any weak Solovay function, and that in fact the ability to do so characterizes the Solovay functions and the 
weak Solovay functions. Using this characterization, we give an easy, golden-run-free proof for the fact that every K-trivial 
is Turing below a c.e. K-trivial. Some of the results of this section were announced in an earlier conference paper [6].

4.2. Solovay functions characterize K-triviality

In what follows, we show that weak Solovay functions can be used in place of prefix-free Kolmogorov complexity to 
characterize K-triviality. This means that K-triviality is equivalent to g-triviality in the sense of the following definition, for 
any weak Solovay function g .

Definition 4.1. Given a function g: N → N and an integer c, a sequence A is g-trivial with constant c if K(A!n) ≤ g(n) + c
holds for all n. A sequence is g-trivial if it is g-trivial for some c.

The notion of K-triviality in the sense of Definition 4.1 coincides with the usual notion of K-triviality. However, in the 
usual concept of K-triviality the reference to K is with respect to the upper bound K(n) but surely also to the fact that we 
bound the K-complexity of the initial segments of the sequence under consideration. This problem could be resolved by 
taking g-trivial as an abbreviation for K-g-trivial, where a sequence A is f -g-trivial if f (A!n) ≤ g(n) + c holds for some 
constant c and all n.

We start by proving the equivalence of K-triviality and gS-triviality, where gS is Solovay’s original Solovay function as 
constructed in the proof of Theorem 2.1. We will in Theorem 4.4 below see how to extend this equivalence to any weak 
Solovay function.

Theorem 4.2. Let gS be the Solovay function constructed by Solovay. Then a sequence is K-trivial if and only if it is gS-trivial.

Proof. One direction is easy: if A is K-trivial, then K(A!n) ≤ K(n) + O(1), and by definition a Solovay function is an upper 
bound of K up to an additive constant, hence A is gS-trivial.

For the other direction, let A be gS-trivial for some constant c. Fix n. Let p be a shortest prefix description for n and 
let t be the running time of p on U, i.e., |p| = K(n) and U(p) = n in exactly t steps. Let m = 〈n, p, t〉. By definition of gS, we 
have gS(m) = |p|, hence it holds that

K(A!m) ≤ gS(m) + c = |p| + c = K(n) + c.

The result then follows by observing that n can be retrieved from m, and thus K(A!n) ≤ K(A!m) +O(1) ≤ K(n) +c+O(1). !

The proof of Theorem 4.2 actually shows a bit more than asserted in the theorem.

Remark 4.3. The equivalence of K-triviality and gS-triviality stated in Theorem 4.2 holds in the strong form that triviality 
constants are preserved up to an additive constant. More precisely, there is a constant cS such that if a sequence is K-trivial 
with constant c, then it is gS-trivial with constant c + cS, and a similar remark holds for the reverse implication.

Theorem 4.4. Let g be a weak Solovay function. Then any sequence is K-trivial if and only if it is g-trivial.

Again, the implication from K-trivial to g-trivial is immediate. The difficulty resides in the converse. The core of the 
corresponding proof is the following technical lemma, which guarantees that building a bounded request set to ensure that 
a sequence is g-trivial does not “cost more” (in a specific sense to be explained below) than building a bounded request set 
to ensure that it is h-trivial for a weak Solovay function h. A first consequence of the lemma will be Corollary 4.6 below, 
which asserts that for every weak Solovay function h there is a Solovay function h̃ ≥ h. The lemma and the corollary will 
then be applied in order to demonstrate Theorem 4.4.
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Lemma 4.5. Let g be a Solovay function, and h a weak Solovay function. There exists a positive constant c and a computable partition 
of N into subsequent nonempty intervals (In)n∈N such that for all n we have n < min In and

2−g(n) ≤ 2c
∑

i∈In

2−h(i).

Proof. We will actually use the weaker hypothesis that g is computable and 
∑

n 2
−g(n) is finite. We design a procedure 

which uniformly in p tries to construct a partition (I pn )n∈N such that 2−g(n) ≤ 2p ∑
i∈In 2

−h(i) . The procedure works as 
follows:

For n from 0 to ∞ do

(1) Let s(p, n) ∈ N be the least integer > n which does not belong to one of the previously constructed intervals I pj for 
j < n.

(2) Search for some t > s(p, n) large enough to have

t∑

i=s(p,n)

2−ht (i) ≥ 2−p2−g(n).

(3) When t is found, define I pn to be [s(p, n), t].

It is possible that the procedure of parameter p, for some n, never finds t at Step 2. When this happens, we have by 
construction:

∑

i≥s(p,n)

2−h(i) ≤ 2−p2−g(n).

Hence by the Kraft–Chaitin theorem, for all i ≥ s(p, n):

K(i) ≤ h(i) − p + K(p,n, s(p,n)) − g(n) + O(1). (2)

Using the construction, s(p, n) can be described via the pair (p, n) alone, hence

K(p,n, s(p,n)) ≤ K(p,n) + O(1) ≤ K(n) + 2 log p +O(1). (3)

Since 
∑

n 2
−g(n) is finite we have K(n) ≤ g(n) + O(1). Then (2) and (3) yield for all i ≥ s(p, n):

K(i) ≤ h(i) − p + 2 log p + O(1).

Now, recall that h is a weak Solovay function so K(i) ≥ h(i) + O(1) for infinitely many i. Therefore the above situation can 
only happen for a finite number of p. In other words, for all p large enough, the procedure never waits forever at step 2 
and hence produces effectively a partition (I pn )n∈N of N into intervals such that for all n, and each I pn = [s, t] we obtain as 
wanted

2−p2−g(n) ≤
t∑

i=s

2−ht (i) ≤
t∑

i=s

2−h(i). !

Our first application of Lemma 4.5 is the following.

Corollary 4.6. Let h be a weak Solovay function. There exists a Solovay function h̃ such that h ≤ h̃.

Proof. Let g be any Solovay function (for example, the one constructed in the proof of Theorem 2.1). By Lemma 4.5, there 
exists a constant c and a computable partition (In)n∈N of N into intervals such that for all n

2−g(n) ≤ 2c
∑

i∈In

2−h(i).

Let ̃h: N →N be the function defined as follows. For a given i, let In be the interval to which i belongs, and set

h̃(i) = ht(i) where t is the least integer s.t. 2−g(n) ≤ 2c
∑

i∈In

2−ht (i).
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It is clear that ̃h is computable and h ≤ h̃. Next,
∑

i

2−h̃(i) =
∑

n

∑

i∈In

2−h̃(i)

is random. Indeed, by construction for all n, 2−g(n) = O(
∑

i∈In 2
−h̃(i)). Hence 

∑
n 2

−g(n) is Solovay reducible to 
∑

i 2
−h̃(i) (see 

[13, p. 405] for the definition of Solovay reducibility). Since the former is random, the latter must be random as well by the 
Kučera–Slaman theorem [21]. Therefore h̃ is a Solovay function. !

Proof of Theorem 4.4. Recall that U is the universal prefix-free machine defining K; a U “description” of τ is a string p
such that U(p) = τ .

Let h be a weak Solovay function, d a constant and A a sequence such that K(A!n) ≤ h(n) +d for all n. We want to prove 
that A is K-trivial. By Corollary 4.6, we may assume that h is computable. We apply Lemma 4.5 to obtain a constant c and 
a computable partition of N into intervals (In)n∈N such that n < min In and 2−gS(n) ≤ 2c

∑
i∈In 2

−h(i) for all n.
We show that A is K-trivial by building a bounded request set. For all n and all strings σ of length n, we wait until 

we find an extension τ of σ whose length is max In and such that for all i ∈ In , some description of τ !i of length at most 
h(i) + d is in the domain of U. Since h is computable we can recognize when this happens. In this case, we enumerate a 
pair (σ , gS(n) + c + d) into our request set. The cost of this for us is 2−gS(n)−c−d , which we can account against the cost for 
U to enumerate descriptions of τ !i as above. That cost is at least 

∑
i∈In 2

−h(i)−d , which in turn is at least 2−gS(n)−c−d by 
construction of the intervals In . Hence, we never spend more than U does, which ensures that our request set is bounded. 
Now, by assumption on A, for every n, for every i ∈ In , the universal machine must issue a description of A!i of length 
at most h(i) + d, hence some pair (A!n, gS(n) + c + d) enters our bounded request set at some point. Therefore, for all n, 
K(A!n) ≤ gS(n) + c + d + O(1). By Theorem 4.2, we can conclude that A is K-trivial. !

Remark 4.7. As in the corresponding Theorem 4.2, the equivalence of K-triviality and g-triviality stated in Theorem 4.4 holds 
in the strong form that triviality constants are preserved up to an additive constant.

More precisely, every weak Solovay function g is an upper bound for K up to some additive constant cg , hence any 
sequence that is K-trivial with constant c is g-trivial with constant c+cg . Conversely, in the proof of Theorem 4.4 it is shown 
that for every weak Solovay function h there is a constant c such that K(A!n) ≤ h(n) +d implies K(A!n) ≤ gS(n) +c+d +O(1), 
and applying Remark 4.3, we get that A is K-trivial via constant d + ch for ch = c + cS + O(1).

Another interesting corollary can be derived from the proof of Theorem 4.4.

Remark 4.8. It is known that given a computable strictly increasing function l: N → N, if a sequence X satisfies K(A!l(n)) ≤
K(n) + O (1), then X is K-trivial (see [13, Proposition 11.1.4] or [32, Exercise 5.2.9 and Solution]). This fact can be extended 
to weak Solovay functions: For such a function l, if K(A!l(n)) ≤ g(n) + O (1) for some weak Solovay function g , then A is 
K-trivial. The proof works in the exact same way: first prove it for the particular case of the function g defined on the range 
of l by g(l(〈n, p, t〉)) = |p| if U(p) outputs l(n) in exactly t steps of computation, and outputs 2|〈n, p, t〉| otherwise (the 
values outside of the range of l do not matter). The rest of the argument for the function g is the same as in Theorem 4.2. 
Then, extend it to all weak Solovay functions, with the same proof as Theorem 4.4, only restricted to the n’s that are in the 
range of l. Details are left to the reader.

4.3. K-triviality characterizes Solovay functions

Next we prove that any right-c.e. function g that makes the equivalence

A is K-trivial if and only if K(A!n) ≤ g(n) +O(1) (4)

true is a weak Solovay function, and hence a Solovay function in case g is computable. In the proof of our result, we need 
only to consider the case where g is an upper bound for K up to an additive constant because otherwise the class of 
sequences A that satisfy the right-hand side of equivalence (4) is empty. We then prove the stronger fact that in the case g
is such a right-c.e. upper bound for K but is not a weak Solovay function, there are uncountably many sequences A such 
that K(A!n) ≤ g(n) +O(1). This is enough for our purposes, since there are only countably many K-trivial sequences (indeed, 
as we mentioned earlier, they are all computable in the halting problem).

Theorem 4.9. Suppose g is a right-c.e. function such that K(n) ≤ g(n) + O(1) but g is not a weak Solovay function. Then the set 
{A | K(A!n) ≤ g(n) + O(1)} is uncountable.

Proof. We will build an increasing sequence a1 < a2 < a3 < . . . of integers such that any subset A of {a1, a2, a3, . . .} satisfies 
K(A!n) ≤ g(n) + O(1).
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The sequence is defined by induction (but not effectively), where we set a1 = 0 and where we ensure by induction that 
for all k, for any subset B of the finite set {a1, . . . , ak} and for all n ≥ ak , for some constant d that depends neither on B nor 
on k we have that

K(B!n) ≤ g(n) + d. (5)

This suffices to prove the desired result: let A be any subset of {a1, a2, a3, . . .}, and let n be some natural number. Let k be 
such that ak ≤ n < ak+1 and let B = A ∩ {a1, . . . , ak}. Then B!n = A!n, hence K(A!n) ≤ g(n) + d by (5).

We now explain the inductive definition of the sequence ak . Suppose we have already defined a1, . . . , ak with the 
property (5). Let us choose c to be a very large integer, say c > 2ak + k + 1. Consider the sum 'g = ∑

n 2
−g(n) . By The-

orem 2.2, this is not a random real as g is not a weak Solovay function. Hence, there exists a prefix σ of 'g such that 
K(σ ) ≤ |σ | − c. Let p be a shortest description for σ . Knowing p, one can effectively perform the following operations: first, 
retrieve σ = U(p); then, enumerate 'g from below and wait until it becomes larger than the real value 0.σ (treated as a 
real number written in binary) using the approximation of the values g(n) from above; when this happens, let ak+1 be the 
least number m such that for all i ≥ m, so far there has been no contribution to 'g by the value g(i) (more precisely, via 
the approximation of these values from above). Since σ is a prefix of 'g , this means in particular that 

∑
n≥ak+1

2−g(n) does 
not exceed 2−|σ | , so by the Kraft–Chaitin theorem, any integer n ≥ ak+1 can be described by p and some prefix-free code of 
length g(n) − |σ |. Therefore, if n ≥ ak+1 and B is a subset of {a1, . . . , ak+1}, then B!n can be described in a prefix-free way 
by

– B!ak ,
– p (from which ak+1 can be retrieved),
– the single bit B(ak+1),
– some additional g(n) − |σ | bits.

Thus K(B!n) ≤ 2ak +|p| +1 + g(n) − |σ | +O(1) ≤ g(n) +O(1), using the fact that c > 2ak +1 and |p| ≤ |σ | −c. This concludes 
the inductive step. !

A corollary of Theorem 4.9 is that there is no "0
2 “gap” for K-triviality. In the proof of this corollary we use a folklore 

fact about approximable orders that is stated in the following lemma.

Lemma 4.10. For every "0
2 order h there is a right-c.e. order g where g ≤ h.

Proof. Given an order h and a natural number k, let the k-block of h be the finite and possible empty set of all n such 
that h(n) = k. Observe that we have h0 ≤ h1 for two given orders h0 and h1 in case for all natural numbers k the k-block 
of h0 is at least as large as the k-block of h1. Similarly, by increasing the size of any block of any order, the order is 
transformed into a strictly smaller order.

Given a "0
2 order h, write h as the pointwise limit of a uniformly computable sequence of functions (h0s ) and let

hs(n) = max
i∈{0,...,n}

h0n+s(i).

The sequence (hs) is uniformly computable and converges pointwise to h because for each n and for almost all s, each of the 
values h0n+s(i) where i ≤ n agrees with h(i), and since h is an order, their maximum hs(n) agrees with h(n). Furthermore, 
since the h0s converge to the order h, for every natural number k there are n0 and s0 such that k < h0s (n0) for all s ≥ s0, 
hence k < hs(n) holds for all n ≥ max{n0, s0} and all s.

Let z〈s,n〉 = hs(n) where 〈., .〉 is the usual effective and effectively invertible pairing function. Then the sequence z0, z1, . . .
is computable and each natural number k occurs in the sequence only finitely often but at least the size of the k-block of h
many times. Let g0: n )→ n and for each i ≥ 0 let gi+1 be the order obtained from the order gi by extending the size of the 
zi-block of gi by 1. Then the gi form a uniformly computable sequence. By the preceding discussion, for all i the order gi+1
is strictly smaller than the order gi and, in particular, gi+1(n) ≤ gi(n) for all n. Moreover, the gi converge to a right-c.e. 
order g . Furthermore, we have g ≤ h because by construction for all k the k-block of g is at least as large as the k-block 
of h. !

Corollary 4.11. There is no "0
2 order h such that for all sequences A, the sequence A is K-trivial if and only if K(A!n) ≤ K(n) + h(n) +

O(1).

Proof. If h were right-c.e. this would follow directly from Theorem 4.9 because in this case K + h would be a right-c.e. 
function that is an upper bound for K but is not a weak Solovay function since the order h tends to infinity. In case h is 
merely "0

2, fix a right-c.e. order g ≤ h according to Lemma 4.10. By the previous discussion there is a sequence A which is 
not K-trivial and satisfies K(A!n) ≤ K(n) + g(n) + O(1) and a fortiori K(A!n) ≤ K(n) + h(n) + O(1). !
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Corollary 4.11 was independently proven by Barmpalias and Vlek [3]. Furthermore, Baartse and Barmpalias [1] showed 
that there does exist a "0

3 gap.

4.4. Covering K-trivials by c.e. K-trivials

An important property of the class of K-trivial sequences is that its c.e. members form a Turing cover of the whole class. 
That is, for every K-trivial sequence A, there is a c.e. K-trivial sequence B such that A ≤T B . The original proof [31] is difficult 
and uses advanced techniques such as “cost functions”, but yields the stronger result A ≤tt B (also see [32, Corollary 5.5.3]). 
Using Solovay functions, we obtain an elementary proof for the case of Turing reducibility, where the core of the argument 
relies on the following proposition.

Proposition 4.12. Let A be a K-trivial sequence. Then A is a path of some K-trivial c.e. tree T which only has finitely many paths.

Proof. By Corollary 2.4, let g be a computable order which is also a Solovay function. For each k, let nk = g−1(k). Note 
that the sequence (nk) is computable and nondecreasing (but not necessarily increasing). Let c be a constant such that 
K(A!n) ≤ g(n) + c for all n, and g(n) ≤ K(n) + c for infinitely many n. Consider the set of strings

S = {τ | (∃k) |τ | = nk ∧ (∀σ 6 τ )K(σ ) ≤ g(|σ |) + c}.
The set S is c.e. and contains all the initial segments of A of type A!nk for some k. Let T be the closure under prefixes of S; 
this makes T a c.e. tree such that S is the restriction of T to levels of type nk for some k.

We claim that T is as wanted. First of all, A is a path of T by construction. T has only finitely many paths because g
is a Solovay function: any path B of T satisfies K(B!n) ≤ g(n) + c for all n. Hence, by Remark 4.7, B is K-trivial via a 
constant c + O (1). There are at most 2c+O (1) such sequences [35].

It remains to show that T is K-trivial. By Remark 4.8, we only need to prove that K(Tk) ≤ g(nk) + O (1) for all k, where 
Tk is the restriction of T to strings of length at most nk . Fix a k. S being c.e. let τ be the last string of length at most nk
enumerated into S . By definition of S , we have K(τ ) ≤ g(|τ |) + c. Let p be a description for τ of length at most g(|τ |) + c
which in turn is at most g(nk) since g is nondecreasing. Up to padding p with meaningless bits, we can assume that p has 
length g(nk) + c + O (1). Now, given p, one can retrieve nk , τ , the enumeration stage s of τ in S , all strings of S of length 
at most nk (enumerating S during s steps) and finally, closing under prefixes, all strings T of length at most nk . Thus

K(Tk) ≤ |p| + O (1) ≤ g(nk) + O (1),

which is what we wanted to prove. !

Corollary 4.13. Every K-trivial sequence is computable in some c.e. K-trivial sequence.

Proof. Let A be a K-trivial. By the previous proposition, let A be a path of some K-trivial c.e. tree T with only finitely many 
paths. Since a tree with finitely many paths computes all its paths, A is computable from T . !

5. The c-hitting set of a Solovay function

Definition 5.1. Let f : N →N be a Solovay function and let c be an integer. The c-hitting set of f is the set

H( f , c) = {n | f (n) ≤ K(n) + c}.

Note that sets of the form H( f , c) might be empty or finite but for a fixed Solovay function f , the set H( f , c) is infinite 
for all sufficiently large c.

Proposition 5.2. Let f be a Solovay function and c be an integer such that H( f , c) is infinite. Then the set H( f , c) is hyperimmune 
and Turing-complete.

Proof. Suppose H( f , c) = {a0 < a1 < a2 < . . .} is not hyperimmune, i.e., there is a computable function F such that an <
F (n) for all n. Under this assumption, we shall get a contradiction by proving that all K-trivial sequences are computable 
(which is not the case!). The argument is the same as Chaitin’s [9] proof that a sequence A is computable if and only if 
C(A!n) ≤ logn +O(1).

Let G be the function defined inductively by G(0) = 0 and G(n + 1) = F (G(n)). Consider the computable partition of N
made of the intervals In = [G(n), G(n + 1) − 1]. An easy induction shows that aG(n) ∈ In for all n, hence H( f , c) ∩ In 3= ∅ for 
all n.

Let A be a noncomputable K-trivial set and, by Theorem 4.4, let d be a constant such that K(A!n) ≤ f (n) + d. Consider 
the c.e. tree
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T = {τ | (∀σ 6 τ )K(σ ) ≤ f (|σ |) + d}.
As in the proof of Proposition 4.12, T has finitely many paths, among which is A. For each n, let

mn = min
i∈In

∣∣∣T ∩ {0,1}i
∣∣∣ .

We first note that the sequence (mn) is left-c.e. (as T is c.e.). Furthermore, it is bounded: indeed, by construction of the In , 
there is for each n some i ∈ In ∩ H( f , c), meaning that f (i) ≤ K(i) + c. Thus any string τ ∈ T ∩ {0, 1}i is such that K(τ ) ≤
f (|τ |) + d ≤ K(|τ |) + c + d. By the coding theorem the number of strings of the latter type of any given length is bounded 
from above by some constant that depends only on c and d. Let then l = limsupn mn and N such that mn ≤ l for all n ≥ N . 
Since the sequence (mn) is left-c.e. one can computably find two sequences N < n0 < n1 < n2 < . . . and s0 < s1 < s2 < . . .
such that for all k

min
i∈Ink

∣∣∣Tsk ∩ {0,1}i
∣∣∣ = l

(where Ts is the c.e. approximation of T at stage s, where we assume that Ts is a tree for all s). Consider the tree

T ∗ = {τ | (∀i < |τ |)(∀k) i ∈ Ink ⇒ τ !i ∈ Tsk }.
The tree T ∗ is computable, and all its paths are paths of T . In fact T ∗ has exactly the same paths as T , because T ∗ coincides 
with T on infinitely many levels (namely on each ak ∈ Ink such that 

∣∣Tsk ∩ {0,1}i
∣∣ = l). Thus A is a path of T ∗ , a computable 

tree with finitely many paths, and therefore A is computable, a contradiction.
It remain to show that H( f , c) is Turing complete. Observe that for any Solovay function and constant c the set H( f , c)

is co-c.e. From H( f , c), one can compute a sequence (nk)k∈N of integers such that K(nk) ≥ k for all k. Indeed, given k, since 
any Solovay function tends to +∞, it suffices to find n ∈ H( f , c) such that f (n) ≥ k +c. Then one has k +c ≤ f (n) ≤ K(n) +c, 
thus K(n) ≥ k. By a result of Kjos-Hanssen, Merkle and Stephan [13,18, Theorem 2.7], the ability to compute such a sequence 
is equivalent to being of diagonally noncomputable degree. By Arslanov’s completeness criterion, a (co)-c.e. set of diagonally 
noncomputable degree is Turing complete. !
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