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Comparing quasi-finitely axiomatizable and prime groups

Andre Nies
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Abstract. An infinite f.g. group G is quasi-finitely axiomatizable (QFA) if there is a first-order
sentence ¢ such that G = ¢, and if H is a f.g. group such that H = ¢, then G =~ H. The first
result is that all Baumslag—Solitar groups of the form <{a,d |d~'ad = a™) are QFA.

A f.g. group G is a prime model if and only if there is a tuple ¢y, ..., g, generating G whose
orbit (under the automorphisms of G) is definable by a first-order formula. The second result is
that there are continuum many non-isomorphic f.g. groups that are prime models. In particular,
not all are QFA.

1 Introduction

To what extent is a finitely generated group determined by its properties that are
formalizable in first-order logic? We shall study two classes of groups related to this
question, quasi-finitely axiomatizable groups and finitely generated (f.g.) groups that
are prime models. The former can be distinguished among the f.g. groups by a single
first-order axiom. The latter are determined by being the least model of their theory
under elementary embeddings. We give new examples of QFA groups, and show that
not every prime group is QFA, answering a question of Oger [10].

The first-order language of groups consists of formulas built up in the expected way
from equations ¢t = s, using brackets, the connectives =1, A, v, —, and the quantifiers
dx, Vx. A sentence is a formula where every variables is in the range of some quanti-
fier. For a group G, Th(G) is the set of sentences which hold in G. For more termi-
nology from mathematical logic, see Subsection 1.2.

An infinite finitely generated group G is quasi-finitely axiomatizable (QFA) if there
is a single first-order property that, along with the information that the group is f.g.,
determines G; see [8]. That is, there is a first-order sentence ¢ such that

* GE ¢, and

- if H is a f.g. group such that H | ¢, then G =~ H.
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2 Andre Nies

No abelian group is QFA; see [8]. Examples of QFA groups include the Heisenberg
group UT3(Z) (that is, the free class 2 nilpotent group of rank 2) [8], and the sub-
group Py of Sym(Z) generated by the transposition (0, 1) and successor [5]. The first-
order properties characterizing them are complex, and the proofs in [5] and [8] are of
a logical nature. Oger and Sabbagh [11] gave an algebraic characterization of being
QFA for f.g. nilpotent groups: G is QFA if and only if each central element has a
power in the commutator subgroup (or equivalently, no finite index subgroup has
Z as a direct factor). This also gives an alternative, algebraic proof that UT3(Z) is
QFA.

We shall introduce examples of QFA groups of another type: for each m > 2, the

group
H, =Z[1/m| X Z = {a,d|d 'ad = a™)

is QFA. These groups are Baumslag—Solitar groups, introduced in [1]. The proof that
they are QFA is purely algebraic.

A more inclusive notion than being QFA is the following: an infinite f.g. group G is
quasi-axiomatizable if all first-order properties together suffice to single out G among
the f.g. groups. That is, if H is f.g. and Th(H) = Th(G) then H = G. It is not suffi-
cient to require that A be countable, by general model theory [2, Theorem 7.3.1.]: if
n is the rank of G, then the theory of G has infinitely many (n + 1)-types and thus
cannot be countably categorical, that is, it has non-isomorphic countable models.

Each infinite f.g. abelian group is quasi-axiomatizable. On the other hand, there is a
f.g. group which is nilpotent of class 3 and not quasi-axiomatizable (see [6, Section 5]).

The following notion comes from model theory. A group G is said to be a prime
model (or to be prime, for short) if G is an elementary submodel of each group H
such that Th(G) = Th(H). If a theory has a prime model then the model is unique
up to isomorphism. For instance, (Q, +) and the Priifer group Z(p®) for each prime
number p are prime models. However, various theories of groups fail to have a prime
model, for instance Th(Z, +) and Th(F,). For the free group, see [7]. Possibly the
easiest example of a f.g. prime group is the Heisenberg group UT;(Z).

By model theory, G is prime if and only if each realized type is principal [2]. This
leads to the following, more algebraic characterization of being prime for f.g. groups.
For a proof, see [11].

Fact 1.1. Let G be a f.g. group. Then G is prime if and only if there is a generating
tuple g1, ...,g, whose orbit (under the automorphisms of G) is definable by a first-

order formula without parameters.

Note that this closely resembles the definition of a QFA group. In fact, the fol-
lowing is an open question of Oger and Sabbagh.

Question 1.2 ([10]). Is each QFA group prime?

All the examples of QFA groups discussed above are prime:
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Comparing quasi-finitely axiomatizable and prime groups 3

Oger and Sabbagh [11] showed that if G is a nilpotent f.g. group, then G is QFA
if and only if G is prime. In particular, UT;(Z) is prime (this also follows from the
proof in [8] that UT3(Z) is QFA). This equivalence was extended to nilpotent-by-
finite groups by Oger [10].

Khelif (personal communication) has shown that the groups H,, are prime. In this
case, unlike UT;’ (Z), the generating tuple with definable orbit cannot be inferred di-
rectly from the QFA proof. Indeed, the author hoped when considering H,, that it
would provide a counter-example, thereby answering Oger’s question in the negative.

We will see in Corollary 3.8 that the QFA group Py introduced above is prime.

Oger [10] also asked if, conversely, each prime group is QFA. As a corollary to the
second result of the paper we answer this question in the negative. There is a class of
size 2™ of non-isomorphic f.g. groups that are prime. But, of course, there are only
countably many QFA groups, up to isomorphism. (However, the whole class consists
of the f.g. groups satisfying a sentence o.)

While most of the groups above fail to be QFA, all of them are quasi-
axiomatizable. We do not know at present if this is necessarily so for each f.g. prime

group.

1.1 Basics. Group-theoretic notation. We write Conj(g, w) for the conjugate w=!gw.
The commutator [x, y] is the term x~'y~!xy. If G is a group and X = G, then (X )y, is
the subgroup generated by X, and Ncl(X) is the normal closure of X.

Turing and many-one reducibility. For sets X, Y < N, X is Turing reducible to Y
(written X <r Y) if there is an oracle Turing machine computing X when the oracle
is Y (see [9] for more details). Here is a special case if many-one reducibility: X is
many-one reducible to Y if there is a computable function f such that X = f~!(Y).

For m,n € N, we write {m,n)y = m + (n+ m)(n+ m + 1)/2; this defines the Cantor
pairing function, a bijection N x N +— IN.

The word problem W(G) for a f.g. group G is the problem of deciding whether
t(x1,...,x,) € N, where G = F(xy,...,x,)/N is a fixed presentation of G. It is easy
to see that, up to many-one degree, this is independent of the particular presentation.

1.2 First-order logic. Here are some examples what first-order logic can express in
groups.

The sentence VxVy[x, y] = 1 expresses that the group is abelian.

The sentence Vu,v3r,s,t[u,v] = r’s>t> holds for all groups. (Let r=u"'v"!,

s=uvuw !, t=uv.)

A first-order language and the notions of theory etc. can be defined for any set of
symbols denoting constant, functions, or relations. Such a set of symbols is called
a signature. For instance, the signature of groups is {1,0, '}, and the signature of
ordered rings is {<,0,+, x)}.

The formulas at the bottom are called atomic relations. They do not involve quan-
tifiers or connectives. For instance, # o v = v o u is an atomic relation in the first-order
language of groups (in the examples above, we have omitted o in the usual way), and
y < x X X 1s an atomic relation in the first-order language of ordered rings.
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4 Andre Nies

If G is a group, ¥(xi,...,x,) is a first-order formula with the free variables dis-
played and ¢,...,9, € G, then G Ey(g1,...,9,) denotes that in G,  holds for
dis---,gn- A relation R = G" is first-order definable if there is a formula y(xi, ..., x,)
such that

R={(91,---:90) : GEY(g1,-...9n)}

For instance, the formula (x) = Vulx,u] = 1 defines the center in a group in a
first-order way. The commutator subgroup is not in general first-order definable, as
arbitrarily long finite products are not part of our language. Sometimes we allow fixed
elements from G in : in that case R is called first-order definable with parameters. An
example is the centralizer of an element d of the group, that is, C = {x: [x,d] = 1}.

Interpretations via first-order formulas are introduced in [2, Chapter 5]. Roughly
speaking, B is interpretable in A if the elements in B can be represented by tuples in
a definable relation D on A, in such a way that equality of B becomes a definable
equivalence relation E on A, and the other atomic relations on B are also definable.
A simple example is the difference group construction: (Z,+) can be interpreted in
(N, +), where the relation D is N x N, addition is component-wise and E is the re-
lation given by (n,m)E(n’,m') if and only if n + m’ = n’ + m. Further examples in-
clude the quotient field construction and GL,(R) for fixed n > 1, which can be first-
order interpreted in the ring R. A matrix B is represented a tuple of length n%, D is
given by the first-order condition that det(B) is a unit of R, and E is simply equality
of tuples. Multiplication of matrices can be expressed in a first-order way using the
ring operations.

For more background, see the survey article [6].

2 New examples of QFA groups

We write Z(m) for the cyclic group Z/mZ. For groups G, A, C, recall that
G = A X C (G is a semidirect product of A by C) if

AC=G, A4<4G, and ANC={1}.

A group G is metabelian if its commutator group G’ = {{[x, ] : X, y € G} ), is
abelian; that is, if G has solvability length 2. All known examples of solvable non-
nilpotent QFA groups are semidirect products H = 4 > C, where A abelian and C is
infinite cyclic. For any such group H, we have

Lemma 2.1. The set of commutators of H forms a subgroup. In fact,
H' ={[u,d] :ue A}. In particular H' < A.

For a proof, see [8, Lemma 2.5 (i)].

We shall give two types of examples of metabelian QFA groups. Both are semi-
direct products 4 > C as above. The ones of the second type are one-relator groups,
first studied by Baumslag and Solitar. The ones of the first type from [§] are not even
finitely presented.
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Comparing quasi-finitely axiomatizable and prime groups 5

Theorem 2.2. (i) For each prime p, the restricted wreath product Z(p) 1 Z is QFA.

(i) For each m = 2, the group
H, = <Cl,d | d_lad = am>
is QFA.

By definition, Z(p)Z is a semidirect product 4 < C, where 4 =P, _, Z( p)m,
Z( p)(") is a copy of Z(p), and C = {d},, with d of infinite order. The element  acts
on A by shifting, i.e., the copy Z(p)"” is mapped to the copy Z(p)" .

The group H,, is a semidirect product of 4 = Z[1/m] = {zm™:zeZ,i e N} by
{dY, where the action of d is given by d~'ud = um.

Oger [10] has found further examples of this type, using some algebraic number
theory. In his examples, A4 is free abelian of finite rank, while in the ones above, A4 is
not f.g. A typical case is 4 = Z[u] where u = 2 + /3, and the action of d is given by
a— auforace A.

Proof. The proofs of (i) and (ii) (and to some extent also Oger’s example) follow the
same scheme. For the sake of comparison, we also sketch the proof of (i) from [8], in
slightly simplified form.

The group A is given by a first-order definition in G. One writes a list
W(d) = (P1) A--- A (Pk) of first-order properties of an element d in a group G so that
the group in question is QFA via the sentence 3dy(d).

Let C = C(d) be the centralizer of d, that is, C = {x:[x,d] =1}. In the fol-
lowing,

u, v denote elements of 4 and x, y elements of C.

(P1) The commutators form a subgroup.
(P2) A and C are abelian, and G = 4 < C.

(P3) C—{1} acts on A — {1} without fixed points. That is, [u,x] # 1 for all
ued—{1}, xe C—{1}.

(P4) |C: C?| = 2.

Clearly these conditions can be formulated in the first-order language of groups.
By (P1), G’ is definable.

(i) To specify Z, ! Z, one uses the definition 4 = {g : g” = 1}, and requires in addi-
tion that |4 : G'| = p and no element in C — {1} has order less than p. The re-
maining details are as in [8].

(i) To specify H,, one fixes a prime ¢ not dividing m. One uses the definition

A={g:9g" " eGY.
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6 Andre Nies

The remaining conditions are as follows.
P5) VYud'ud = u™.
P6) The map u — u?is 1-1.

P8) |4: 49| =q.

(P5)

(P6)

(P7) x 'ux £ u ! foru #1.

(P8)

(P9) Vg g' #d, foreach i, 1 < i< m.

We first verify that (H,,, d) satisfies the properties. (P1) holds by Lemma 2.1, and
(P2)—(P9) are obviously satisfied, once we show that the first-order definition of 4 is
correct, that is,

Z(1/m) = {g: g"" € HJ}.

To do this, note that H,, < Z[1/m] since H,,/Z[1/m] is abelian. First suppose that
g € Z[1/m]. Then [g,d] = g™ !, so that g¢"~! € H),. For the other inclusion, it suffices
to notice that Z[1/m)] is closed under taking roots, because H,,/Z[1/m] is torsion-free.
Thus, if g ¢ Z[1/m] then g"~! ¢ Z[1/m] and in particular, g"~! ¢ H,.

Now suppose that G is a f.g. group, and d € G satisfies the properties (P1)—(P9).
We first show that d has infinite order. If " =1 for r > 0, then for each u e 4 we
have u = Conj(u,d") = u™". So one may choose kK minimal such that A¥ = {1}. If the
prime ¢ divides k, then the g-primary component {g € 4 : 3i g'¢) = 1} is non-trivial,
so that the map u — u? is not 1-1, contrary to (P6). If ¢ does not divide k, then this
map is an automorphism of 4, contrary to (P8).

Let # = Z[1/m], viewed as a ring. Then 4 is turned into an #-module by defining
u(zm=") = Conj(u*,d") for ze Z, i € N.

Claim 2.3. 4 is f.g. and torsion-free as an R-module.

To prove this, note that C is f.g. and abelian, and C has only one infinite cyclic
factor by (P4). Since d has infinite order, one can choose ¢ € C such that ¢* =d
for some s > 1, and {c)y, x F = C where F = T(C) is the torsion subgroup. Since
G = AC, G has a finite generating set of the form BU {¢} U F where B = A. We may
assume that B is closed under inverses, and under conjugation by elements of the fi-
nite set FU{c":1<i<s}. Ifue 4 then u=1in G/A, so that u can be written as
a product of terms Conj(b, xc*), where x € F, ze€ Z, b € B, and therefore of terms
Conj(b,d"), where w € Z, by the closure properties of B. This shows that A4 is f.g. as
an Z-module.

To show that 4 is torsion-free as an Z-module, suppose that

u(zm™) = Conj(u®,d") =1 foru#1,i>0,z#0.
Then u” = 1. Conjugation by d is an automorphism of the finite subgroup <u),,, by

(P5), and so some power of d has a fixed point, contrary to (P3). This proves the
claim.
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Comparing quasi-finitely axiomatizable and prime groups 7

Since Z is a principal entire ring, we may conclude that A4 is free (see Lang [3,
Theorem XV.2.2]), so that 4 is isomorphic to the additive group of #* for some k.
Then |4 : A9 = g¥ and hence k = 1 by (P8). Next, F = T(C) is trivial by (P7), be-
cause the only non-trivial automorphism of finite order of Z[1/m] is the inversion
map. Choose i > 1 such that ¢/ = d where {¢>gp = C. Then i < m because the auto-
morphism u — um is not an ith power in Aut(Z[1/m]) for any i > m. (However, it
may be a proper power, for instance if m =9, in which case Z[l1/m] = Z[1/3].) So
i =1 by (P9), and d generates C. This shows that G =~ H,,. []

3 2™ many non-isomorphic f.g. prime groups

Generalizing the concept of a QFA group, we shall say a class 4 of f.g. groups is
QFA if there is a first-order axiom ¢ such that for each f.g. group G,

Ge¥% ifandonlyif G [ g.

Thus, a group G is QFA if and only if the class {G} is. The following theorem es-
tablishes a QFA class of prime groups with continuum many non-isomorphic mem-
bers, via the axiom ¢ = 3w, h Y(w, h).

Theorem 3.1. There is a first-order formula yy(w, h) such that,

(i) for each f.g. group P, if w,he P and P |= y(w,h), then P is prime. In fact, w, h
generate P and \y defines the orbit of w, h within P.

(ii) there are 2% many non-elementary equivalent such groups P. More precisely, for
each non-empty Y < IN, there is a 2-generated group Py which is prime model
such that Y can be recovered from Th(Py). Moreover, Y is Turing below the word
problem of Py, which is Turing below Y'.

The following answers a question of Oger [10].
Corollary 3.2. There is a f.g. prime group which is not quasi-finitely axiomatizable.

Proof. Of course this follows from Theorem 3.1, because there are only countably
many QFA groups (up to isomorphism). For a somewhat more concrete counter-
example, we may use the fact [5, Theorem 2] that each QFA group has a hyper-
arithmetical word problem. Now choose Y not hyperarithmetical; then the word
problem for Py is again not hyperarithmetical by the last statement in (ii), and so Py
isnot QFA. [

In order to prove Theorem 3.1, we need to discuss the construction of QFA groups
in [5]. In [5], it is shown that for each arithmetical singleton S, there exists a 2-
generated QFA group Gs whose word problem W(G) satisfies S <r W(G) <7 S’.
This construction works for any set .S, though only the arithmetical singletons yield
a QFA group. A modification of this construction will lead to the prime groups Py.
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8 Andre Nies

(A set S = w is called an arithmetical singleton if there exists a formula ¢(X) in the
language of arithmetic extended by a new unary predicate symbol X such that for
each P < w, ¢(P) is true in the standard model of arithmetic if and only if P = S.)

Consider a group G in which a set Z can be interpreted (without parameters), in
the sense of Subsection 1.2. Thus Zg = D/E, where D = G” is a first-order definable
relation and E is a first-order definable equivalence relation on D. Then G acts on Zg
by conjugation, and one can require in a first-order way that this action be faithful.

In what we call the ‘concrete case’ in [5], the QFA groups G are subgroups of
Sym(Z) which contain the successor and (0, 1), and hence all permutations with finite
support. D is the set of pairs {u,v) of transpositions whose supports share exactly
one element (we say that they hold this element). In [4] it is shown that D is first-order
definable, by the formula

tr(x) = (x=1) & (x> =1) & ¥y ([x,]® = 1).

Next, two pairs {u,v)y € D, {u’,v’> € D are equivalent modulo E if they hold the
same element. Again, this relation is first-order definable in G; see [5]. The groups
considered in the ‘abstract case’ are those f.g. groups H satisfying an axiom o, which
says that the defined sets behave in the expected way, namely, that the formula for £
defines an equivalence relation on the non-empty set D, and the action is faithful.
Thus, whenever H is f.g. and H | o, then we have a non-empty domain

Z; =DJE,

where D and E are defined without parameters in H via the formulas mentioned
above.

To pin G down further in the concrete case, we also interpret a structure with do-
main Zg. We use parameters w, s, ¢ to define a copy of (Z,<,0,+, xX) on Zg. The
action of the parameter w determines a permutation with only one cycle on Zg, which
becomes the successor relation. The E-equivalence class of the pair (s, #) represents 0.

In the concrete case, w = £ is successor on Z, s = (—1,0) and ¢ = (0, 1). Using that
G contains all permutations with finite support, one can define <, as well as 4+, x on
Z. In the abstract case, let Z,, ; , be the structure interpreted in G via these formulas.
By a further first-order condition, one can require that the basic axioms of arithmetic
hold. However, in general Z,, ;; may be a non-standard version of Z, that is, there
may be elements greater than each natural number. The main idea in [5] is to trans-
form the property of being finitely generated into a first-order condition for stan-
dardness: we develop a formula Standard(w, s, ) which for each f.g. group G ensures
that Z,, ., is standard, and which holds for the parameters z, s = (—1,0), t = (0, 1),
in f.g. permutation groups G satisfying some fairly general properties.

This is summarized in the following lemma, stating that if G is f.g. and
G | Standard(w, s, t), then G can be viewed as a subgroup of Sym(Z¢), and we have
the full power of arithmetic to describe, within G, properties of the permutations.

Main Lemma 3.3 ([S]). There exists a formula Standard(w, s, t) in the first-order lan-
guage of groups such that the following conditions are satisfied.
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Comparing quasi-finitely axiomatizable and prime groups 9

(i) (Concrete case) For each group G < Sym(Z) which has an element f such that each
g € G is Turing-reducible to [ and which contains all finitary permutations and the
permutation zZ(x) = x + 1,

G E Standard(2, (0, 1), (0, —1)).

(ii) (Abstract case) Assume that G is a f.g. group and w, s, t are elements such that
G k= Standard(w, s, t). Then Zy st = (LG, <w,s.tsOw.5.t, Tw,5.1s Xw.5,1) IS Standard,
and w, when viewed as a permutation of Lg, becomes the successor function.

Proof of Theorem 3.1. We begin with some notation. Recall that Conj(g, w) denotes
the conjugate w~!gw. The image of an element y under a map f is denoted by yf, and
/g denotes the map x — (xf)g. Moreover,

« for reN, let k(r) =2+3r(r+1)/2. Then k(r+ 1) —k(r) =3(r+1). The set
{2,5,11,20,...} of such numbers is called the set of coding locations.

cIfceNandxeZ, let B.(x)={y: |y —x| < c}.
+ Given Y = N, let

Y = {k({x,m)) : xe Y,meN}.
For each Y, the desired group Py is a subgroup of Sym(Z), namely

Py = <27hY>gp7

where Z is successor and

hy = (0,1) [ (k,k+ 1,k +2). (1)
keY

The group Py is a variant of the group Gs from [5], where S = Y. The main dif-
ference is that here a set ¥ = IN is coded at locations k(r) which are further and
further apart. Clearly, iy =7 Y, and g <7 hy for each g € Py, so that the hypothesis
in (i) of the Main Lemma 3.3 is satisfied. The formula v (w, /) lists first-order prop-
erties of elements w, & in a group H, satisfied by z, 4y in Py, so that the conclusions
of Theorem 3.1 can be reached.

(B1) Standard(w,s, ) holds, where s = h*, t = w™lsw. We write Z,; for the copy
Z,,,0f (Z,<,0,4, x) defined on Zy. The elements of H can now be viewed as
permutations of Zy.

(B2) The elements w, h generate the whole group. This is first-order because we can
existentially quantify over free group terms within the model Z,, ;. See [5] for
details.
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10 Andre Nies

(B3) With respect to Ly, the only 2-cycle of h is (0,1), and if h moves an element
x # 0,1 then this x is contained in a 3-cycle of the kind (k,k + 1,k +2), where
k = k(r) for some r. Let

Yw. h

be the set of numbers k() for which there is such a 3-cycle.

(B4) Y. n # &, and Yy, has the following padding property:
(pad) for all x,m,m'eN, we have k({x,m))e Y, if and only if
K(Cx,m') € Yy,
In particular, Y, is infinite.

To verify Py = y(Z, hy), note that in (B1) each permutation of Py is Turing below
hy. The other properties are obvious.

Next we prove a crucial lemma. Fix a f.g. group H. Then the set Y,, , represented
by parameters w, & such that H |= y(w, ) is always the same (but it depends on H).
From this we will conclude that any two such pairs (w, ) and (w’, /') of parameters
are automorphic, in fact conjugate in Sym(Z). Since any such pair generates H, this
shows that H is prime, by Fact 1.1.

Lemma 3.4. Let H be f.g. and let w,hyw', ' € H. If H E y(w,h) and H | y(w', 1),
then Yw,h = }Iw’.h’-

Proof idea. We view Z,, ;, as our ‘reference copy’ of (Z,<,0,+, x) within H. Each
g € H is viewed as a permutation of this copy. By (B1) for w’, 4’ and the Main
Lemma 3.3, Z, j is a further copy, with the same domain Zy. Let

D Zw,h — Zw’,h’

be the unique isomorphism, which is a permutation of Zy. We want to show that
passing from w, i to w’, i’ does not change the set coded, and in fact A’ = p~'hp.
(a) The first goal is to show that p is close to the identity, namely

|xp — x| is bounded

(In the following, arithmetical operations like difference, absolute value etc. are al-
ways taken in the reference copy Z, ,.) We use that by (B2), w' = h/v for some
v e Ncl(w). Then w' is sufficiently similar to w to show that p is close to being the
identity. For a while, we have to carry along the case that instead, w’ is similar to w™.

(b) The second goal is to show that 4’ is sufficiently similar to / that applying (a)
we can conclude that Y, , = Y, . We use that i’ = w/g for some g € Ncl(h) and
j€Z. Thus g = t(h,w) where ¢ is a product of conjugates of powers of /1 by powers
of w. Then, for sufficiently large x, xg # x implies that xg = xt(Cy(, /), where
k(r) € Y\, ; is a coding location close to x. Here C, denotes the cycle (x,x + 1, x + 2).
Thus, the value xg is determined by a unique cycle Cy,, not by the interaction of
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Comparing quasi-finitely axiomatizable and prime groups 11

various cycles, because the coding locations k(r) are sufficiently far apart for large
enough r. Then j = 0.

Details. To reach goal (a), we first show that w' is merely a small perturbation of the
successor w in our reference copy, or of its inverse. In the first case, for an appropri-
ate ¢, xw’ # xw is only possible if both x and xw’ are within ¢ of some coding loca-
tion.

Claim 3.5. There is an ‘orientation’ b = b, € {1,—1} and ¢ € N such that
Vx xw’ # xw? = 3r x, xw’ € B.(k(r)). (2)

Proof. We use that w’ consists of only one cycle. Note that w' ¢ {/),,, so that we can
write

n
w' =h' H Conj(w?, h'),
=1

=

where n> 1, b;e {l,-1}, 0<t; <6 and 0 < j < 6. Let b=>,b;. If xw’ # xw?,
then there is a least m such that the application of % affects the mth factor
of the product (here A’/ is considered the Oth factor). In more detail, let
P,=hl H,”;}l Conj(w? h'); then either xh # x, or there is an m > 1 such that

XP,_1 = wZianl = 7

but zh # z or zh~mwbrh # zh~'mwb»_ By (B3), this implies that x € B, ,»(k(r)) for
some r.

Clearly |x —xw’| <5n+ 2. So letting ¢ = 6n+4, we have xw’ € B.(k(r)). This
shows that (2) holds.

It remains to verify that b € {1, —1}. Assume otherwise. Pick x such that

k(r)+c¢<x<k(r+1)—c forsomer=c.

If 5 =0 there is a trivial cycle, and this is a contradiction. Otherwise, say
b > 1. Then applying the permutation w’ to y yields y+ b, for each y in the
interval (k(r) + ¢,k(r + 1) — ¢). The cycle of w’ can only connect x, x + 1 if there is
y > k(r+ 1) — ¢ such that yw’ < k(r) + ¢, which is impossible by (2). [
Claim 3.6. Let p be the isomorphism Ly, — Ly .
(i) If by =1 then Ju e NVx |xp — x| < u.
(ii) If by = —1 then Ju' e NVx > 0 |xp + x| < u'.

Proof. Let ¢ be as in Claim 3.5.
(i) If x < xo = k(0) — ¢, then xw’ = x + 1. So xp — x = xop — X for each x < xy.
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12 Andre Nies

Let y, = k(r) + ¢+ 1. By (2), for each r > ¢ and each x € Zy,
x <y yr if and only if  x <, 5 y,.

Hence y,p — y, = yp — ye foreach r > ¢. If x € [y,, k(r + 1) — ¢) then xw’ = xw” by
(2) again. So xp —x = y,p — y,. While the cycle of w' is within B.(k(r)), r = ¢,
|xp — x| can increase by at most 2¢. The desired bound u is therefore the maximum
of |yep — ye| +2¢ and max({|xp — x| : xo < x < k(c¢) + ¢}, where xp = k(0) — ¢ as
above.

(ii) is simpler, since xk = x and hence xw’ = xw™' =x—1 for any x < 0. Let
Xo € Zy be least such that xop < 0, then (xg + r)p = xop — r for any r > 0. This shows
that |xp + x| is bounded for any x > 0. [

1

For x € Z,, , recall that C, denotes the cycle (x,x + 1, x + 2). Notice that
Conj(Cy,w*) = Cyyy foreach seZ.

We have almost reached goal (a), but we do not yet know that B, = 1. For this
and also to reach (b), we analyze elements in the normal closure Ncl(%) of 4, i.e. ele-
ments of the form

g= H hi,  where h; = Conj(h"",w*), 0 <t; <6, s, €Z.

0<i<m

Let
d=2 + maxi|s,»\,

and let ¢ = k(d) — d. We will show in Claim 3.7 below that {x:x < ¢} is closed
under application of the maps ¢g and g~—'. On the other hand, for x > ¢, the value xg
is determined by a unique cycle Gy, of 4.

To prepare this, suppose that xh; # x. Then either {x,xh;} = {s;,8:41} or
xh; = xC,?(r) ., for some unique r. Note that

x<ger<deh(x)<g. (3)
(To prove the first equivalence, say, if r > d, then x > k(r) +s, —2 > k(d) —d = q.
If r <d, then x < k(d — 1) + s, +2 < g, because k(d) — k(d — 1) = 3d. The second

equivalence is similar.)
We write

t(v,w) = H Conj(v", w").

0<i<m

Claim 3.7. Let g = t(h,w) = [o<icp, his where h; = Conj(h'i,w%), and let d, q as
above. Then
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(i) x < qifand only if xg < q.

(i) If x = q and xg # x, then there is r = d such that x, xg € B;(k(r)), and xg is ob-
tained by applying t(Ci (), w) to X.

Proof. (i) is immediate from (3).
(ii) Suppose that x > ¢ and xg # x. For n <m, let g, = [[y<;., hi (Where g is
the identity). By (3), xg, = ¢ for each n. Since B;(k(r)) N B;(k(r')) = & for distinct

r, 1’ = d, there is a fixed r > ¢ such that, if xg; # xg;.1, then the permutation C,?(r) s
was applied. Thus xg = xt(Ci(y,w). [

To reach goal (b) (showing that 4’ is similar to /) note that by (B2), there are
j €Z and g € Ncl(h) such that i’ = w/g. Applying Claim 3.7 to g, we obtain d and
q = k(d) — d. We show that j = 0. Otherwise say j > 0, and choose y > k(d) such
that [y, y + 6j] N By(k(r)) = & for each r. As xg = x for each x € [y, y + 3j] and w is
the successor function in our reference copy Z,, 5, the permutation 2’ = w/g has cycles
which are neither 2-cycles nor 3-cycles. This contradicts (B3) for w’, &', since the cycle
structure remains unchanged under applying the isomorphism p. Thus j = 0 and

h=g= H Conj(h', w*).

0<i<m

Claim 3.6 completes goal (a) above once we show that b,, = 1. Otherwise
b, = —1, and by (ii) of Claim 3.6, |xp + x| is bounded for x > 0. Since Y,/ ; is in-
finite, with respect to Z,, 4, i’ has a cycle (x,x + 1,x + 2) for arbitrarily large x, and
hence with respect to the reference copy Z,, 5, i’ has a 3-cycle below arbitrarily small
(negative) x. On the other hand, if d is as above then xA’ = x for any x < —d, since
the cycles of & are only on the positive side of Z,, ;. This is a contradiction.

For each t,k e N, let B/(k) be the set B,(k) evaluated in Z, ;. Recall from
(i) of Claim 3.6 that there is a constant u such that |xp — x| < u for all x. Thus
By(k) = B, (k) for all k,/ e N.

By Claim 3.7, a non-trivial cycle of 4’ = g other than its 2-cycle is either completely
below ¢, or is a cycle of #(Cy (), w), where k(r) € Y,, 5. Also, if r > d, then the support
of each factor C,j"(r) 45, OF 1(Cy(py, w) is contained in By (k(r)) = By, (k(r)), and hence
so is the support of #(Cy (), w).

In the following, we always suppose that r = d + u. By (B3), for w’, h’,

with respect to Z, 1, t(Cy(y), w) either equals a 3-cycle C(, of h’ or is the identity.
Clearly, for each i, t(Ci, w) is a shift of #(C;, w) by s, that is,
Z(Cl'+é'7 )/V) = COHj([(C,j’ Mj)? M)S)'

Then, if #(Cy (), w) were the identity for some k(r), this would hold for all k(r), and so
Y, s is finite, contrary to (B4). Thus #(Cy (), w) is always Cy(,) with respect to Z, .
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We can now argue that Y, , — Y, is finite: if k(r) € ¥, , for r = d + u, then
Ci(r 18 a cycle of h, so that #(Cy ), w) is a cycle of h’, and hence k(r) € Y, ;.

On the other hand, Y, »» — Y,,  is finite as well: if k(r) ¢ Y., , where r > d + u,
then /' has no 3-cycle at the coding location k(r), so that k(r) ¢ Y, . Then, by (B4),
Yw’.h’ = Yw,/r O

For (i) in Theorem 3.1, it remains to show that there is an automorphism of H
taking {w, h) to {w’, h’). Conjugation by the isomorphism p : Z,, , — Z, ; induces
an automorphism of Sym(Zy) taking w to w’ and 4 to i’ (as always we identify ele-
ments of H with the permutation of Zy induced by their action). As H is generated
by w, i and by w’, i/, the restriction of this automorphism to H is as desired.

For (ii), clearly Py satisfies y(Z, hy). Moreover,

ne Y if and only if Py |= Jw, hly(w, h) A Ly p = h(k(n)) = k(n) + 1].

So Y can be recovered (via a fixed many-one reduction) from Th(Py). The assertion
that the word problem of Py is Turing between Y and Y’ is verified as in [5]. [

Recall that Py is the subgroup of Sym(Z) generated by (0,1) and successor.
Clearly Py = Symg,(Z) > {d),, where d is the successor function and its action on
Symg,(Z) is given by shifting. Thus Py is a permutation groups analog of the exam-
ples in Theorem 2.2. As a corollary to the proof of Theorem 3.1, we obtain that the
QFA group Py is prime.

Corollary 3.8. The group Py = Symg,(Z) X Z is QFA.

Proof. For technical reasons we required in (B4) that Y,, , # &, which precisely ex-
cludes Py. If we require instead of (B3) and (B4) that / is the transposition (0, 1), then
the proof becomes simpler and shows that Py is prime. []

The proof of Theorem 3.1 is mostly algebraic. A somewhat different proof, involv-
ing more model theory and in particular the concept of bi-interpretabiity, is sketched
in the last subsection of [6].

All examples that we have seen are far from being simple groups.

Question 3.9. Is there a QFA group that is simple? Is there an infinite f.g. prime group
that is simple?
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