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Abstract. An infinite f.g. group G is quasi-finitely axiomatizable (QFA) if there is a first-order
sentence j such that G ! j, and if H is a f.g. group such that H ! j, then GGH. The first
result is that all Baumslag–Solitar groups of the form ha; d j d"1ad ¼ ami are QFA.
A f.g. group G is a prime model if and only if there is a tuple g1; . . . ; gn generating G whose

orbit (under the automorphisms of G) is definable by a first-order formula. The second result is
that there are continuum many non-isomorphic f.g. groups that are prime models. In particular,
not all are QFA.

1 Introduction

To what extent is a finitely generated group determined by its properties that are
formalizable in first-order logic? We shall study two classes of groups related to this
question, quasi-finitely axiomatizable groups and finitely generated (f.g.) groups that
are prime models. The former can be distinguished among the f.g. groups by a single
first-order axiom. The latter are determined by being the least model of their theory
under elementary embeddings. We give new examples of QFA groups, and show that
not every prime group is QFA, answering a question of Oger [10].

The first-order language of groups consists of formulas built up in the expected way
from equations t ¼ s, using brackets, the connectives s,5,4, !, and the quantifiers
bx, Ex. A sentence is a formula where every variables is in the range of some quanti-
fier. For a group G, ThðGÞ is the set of sentences which hold in G. For more termi-
nology from mathematical logic, see Subsection 1.2.

An infinite finitely generated group G is quasi-finitely axiomatizable ðQFAÞ if there
is a single first-order property that, along with the information that the group is f.g.,
determines G; see [8]. That is, there is a first-order sentence j such that

& G ! j, and

& if H is a f.g. group such that H ! j, then GGH.
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No abelian group is QFA; see [8]. Examples of QFA groups include the Heisenberg
group UT3

3ðZÞ (that is, the free class 2 nilpotent group of rank 2) [8], and the sub-
group Pq of SymðZÞ generated by the transposition ð0; 1Þ and successor [5]. The first-
order properties characterizing them are complex, and the proofs in [5] and [8] are of
a logical nature. Oger and Sabbagh [11] gave an algebraic characterization of being
QFA for f.g. nilpotent groups: G is QFA if and only if each central element has a
power in the commutator subgroup (or equivalently, no finite index subgroup has
Z as a direct factor). This also gives an alternative, algebraic proof that UT3

3ðZÞ is
QFA.
We shall introduce examples of QFA groups of another type: for each md 2, the

group

Hm ¼ Z½1=m)zZ ¼ ha; d j d"1ad ¼ ami

is QFA. These groups are Baumslag–Solitar groups, introduced in [1]. The proof that
they are QFA is purely algebraic.
A more inclusive notion than being QFA is the following: an infinite f.g. group G is

quasi-axiomatizable if all first-order properties together su‰ce to single out G among
the f.g. groups. That is, if H is f.g. and ThðHÞ ¼ ThðGÞ then HGG. It is not su‰-
cient to require that H be countable, by general model theory [2, Theorem 7.3.1.]: if
n is the rank of G, then the theory of G has infinitely many ðnþ 1Þ-types and thus
cannot be countably categorical, that is, it has non-isomorphic countable models.
Each infinite f.g. abelian group is quasi-axiomatizable. On the other hand, there is a

f.g. group which is nilpotent of class 3 and not quasi-axiomatizable (see [6, Section 5]).
The following notion comes from model theory. A group G is said to be a prime

model (or to be prime, for short) if G is an elementary submodel of each group H
such that ThðGÞ ¼ ThðHÞ. If a theory has a prime model then the model is unique
up to isomorphism. For instance, ðQ;þÞ and the Prüfer group ZðpyÞ for each prime
number p are prime models. However, various theories of groups fail to have a prime
model, for instance ThðZ;þÞ and ThðF2Þ. For the free group, see [7]. Possibly the
easiest example of a f.g. prime group is the Heisenberg group UT3

3ðZÞ.
By model theory, G is prime if and only if each realized type is principal [2]. This

leads to the following, more algebraic characterization of being prime for f.g. groups.
For a proof, see [11].

Fact 1.1. Let G be a f.g. group. Then G is prime if and only if there is a generating
tuple g1; . . . ; gn whose orbit (under the automorphisms of G) is definable by a first-
order formula without parameters.

Note that this closely resembles the definition of a QFA group. In fact, the fol-
lowing is an open question of Oger and Sabbagh.

Question 1.2 ([10]). Is each QFA group prime?

All the examples of QFA groups discussed above are prime:
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Oger and Sabbagh [11] showed that if G is a nilpotent f.g. group, then G is QFA
if and only if G is prime. In particular, UT3

3ðZÞ is prime (this also follows from the
proof in [8] that UT3

3ðZÞ is QFA). This equivalence was extended to nilpotent-by-
finite groups by Oger [10].

Khelif (personal communication) has shown that the groups Hm are prime. In this
case, unlike UT3

3ðZÞ, the generating tuple with definable orbit cannot be inferred di-
rectly from the QFA proof. Indeed, the author hoped when considering Hm that it
would provide a counter-example, thereby answering Oger’s question in the negative.

We will see in Corollary 3.8 that the QFA group Pq introduced above is prime.
Oger [10] also asked if, conversely, each prime group is QFA. As a corollary to the

second result of the paper we answer this question in the negative. There is a class of
size 2@0 of non-isomorphic f.g. groups that are prime. But, of course, there are only
countably many QFA groups, up to isomorphism. (However, the whole class consists
of the f.g. groups satisfying a sentence a.)

While most of the groups above fail to be QFA, all of them are quasi-
axiomatizable. We do not know at present if this is necessarily so for each f.g. prime
group.

1.1 Basics. Group-theoretic notation. We write Conjðg;wÞ for the conjugate w"1gw.
The commutator ½x; y) is the term x"1y"1xy. If G is a group and X HG, then hXigp is
the subgroup generated by X , and NclðX Þ is the normal closure of X .

Turing and many-one reducibility. For sets X ;Y HN, X is Turing reducible to Y
(written X cT Y ) if there is an oracle Turing machine computing X when the oracle
is Y (see [9] for more details). Here is a special case if many-one reducibility: X is
many-one reducible to Y if there is a computable function f such that X ¼ f "1ðY Þ.

For m; n A N, we write hm; ni ¼ mþ ðnþmÞðnþmþ 1Þ=2; this defines the Cantor
pairing function, a bijection N'N 7! N.

The word problem WðGÞ for a f.g. group G is the problem of deciding whether
tðx1; . . . ; xnÞ A N, where GGFðx1; . . . ; xnÞ=N is a fixed presentation of G. It is easy
to see that, up to many-one degree, this is independent of the particular presentation.

1.2 First-order logic. Here are some examples what first-order logic can express in
groups.

The sentence ExEy½x; y) ¼ 1 expresses that the group is abelian.

The sentence Eu; vbr; s; t½u; v) ¼ r2s2t2 holds for all groups. (Let r ¼ u"1v"1,
s ¼ vuv"1, t ¼ v.)

A first-order language and the notions of theory etc. can be defined for any set of
symbols denoting constant, functions, or relations. Such a set of symbols is called
a signature. For instance, the signature of groups is f1; +; "1g, and the signature of
ordered rings is f<; 0;þ;'Þg.

The formulas at the bottom are called atomic relations. They do not involve quan-
tifiers or connectives. For instance, u + v ¼ v + u is an atomic relation in the first-order
language of groups (in the examples above, we have omitted + in the usual way), and
y < x' x is an atomic relation in the first-order language of ordered rings.
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If G is a group, cðx1; . . . ; xnÞ is a first-order formula with the free variables dis-
played and g1; . . . ; gn A G, then G ! cðg1; . . . ; gnÞ denotes that in G, c holds for
g1; . . . ; gn. A relation RJGn is first-order definable if there is a formula cðx1; . . . ; xnÞ
such that

R ¼ fðg1; . . . ; gnÞ : G ! cðg1; . . . ; gnÞg:

For instance, the formula cðxÞ1Eu½x; u) ¼ 1 defines the center in a group in a
first-order way. The commutator subgroup is not in general first-order definable, as
arbitrarily long finite products are not part of our language. Sometimes we allow fixed
elements from G in c: in that case R is called first-order definable with parameters. An
example is the centralizer of an element d of the group, that is, C ¼ fx : ½x; d ) ¼ 1g.
Interpretations via first-order formulas are introduced in [2, Chapter 5]. Roughly

speaking, B is interpretable in A if the elements in B can be represented by tuples in
a definable relation D on A, in such a way that equality of B becomes a definable
equivalence relation E on A, and the other atomic relations on B are also definable.
A simple example is the di¤erence group construction: ðZ;þÞ can be interpreted in
ðN;þÞ, where the relation D is N'N, addition is component-wise and E is the re-
lation given by ðn;mÞEðn 0;m 0Þ if and only if nþm 0 ¼ n 0 þm. Further examples in-
clude the quotient field construction and GLnðRÞ for fixed nd 1, which can be first-
order interpreted in the ring R. A matrix B is represented a tuple of length n2, D is
given by the first-order condition that detðBÞ is a unit of R, and E is simply equality
of tuples. Multiplication of matrices can be expressed in a first-order way using the
ring operations.
For more background, see the survey article [6].

2 New examples of QFA groups

We write ZðmÞ for the cyclic group Z=mZ. For groups G, A, C, recall that
G ¼ AzC (G is a semidirect product of A by C) if

AC ¼ G; A / G; and AVC ¼ f1g:

A group G is metabelian if its commutator group G 0 ¼ hf½x; y) : x; y A Ggigp is
abelian; that is, if G has solvability length 2. All known examples of solvable non-
nilpotent QFA groups are semidirect products H ¼ AzC, where A abelian and C is
infinite cyclic. For any such group H, we have

Lemma 2.1. The set of commutators of H forms a subgroup. In fact,
H 0 ¼ f½u; d ) : u A Ag. In particular H 0 cA.

For a proof, see [8, Lemma 2.5 (i)].
We shall give two types of examples of metabelian QFA groups. Both are semi-

direct products AzC as above. The ones of the second type are one-relator groups,
first studied by Baumslag and Solitar. The ones of the first type from [8] are not even
finitely presented.
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Theorem 2.2. (i) For each prime p, the restricted wreath product ZðpÞ o Z is QFA.

(ii) For each md 2, the group

Hm ¼ ha; d j d"1ad ¼ ami

is QFA.

By definition, ZðpÞ o Z is a semidirect product AzC, where A ¼ 0r AZ ZðpÞðrÞ,
ZðpÞðrÞ is a copy of ZðpÞ, and C ¼ hdigp with d of infinite order. The element d acts
on A by shifting, i.e., the copy ZðpÞðrÞ is mapped to the copy ZðpÞðrþ1Þ.

The group Hm is a semidirect product of A ¼ Z½1=m) ¼ fzm"i : z A Z; i A Ng by
hdi, where the action of d is given by d"1ud ¼ um.

Oger [10] has found further examples of this type, using some algebraic number
theory. In his examples, A is free abelian of finite rank, while in the ones above, A is
not f.g. A typical case is A ¼ Z½u) where u ¼ 2þ

ffiffiffi
3

p
, and the action of d is given by

a 7! au for a A A.

Proof. The proofs of (i) and (ii) (and to some extent also Oger’s example) follow the
same scheme. For the sake of comparison, we also sketch the proof of (i) from [8], in
slightly simplified form.

The group A is given by a first-order definition in G. One writes a list
cðdÞ ¼ ðP1Þ5, , ,5ðPkÞ of first-order properties of an element d in a group G so that
the group in question is QFA via the sentence bdcðdÞ.

Let C ¼ CðdÞ be the centralizer of d, that is, C ¼ fx : ½x; d ) ¼ 1g. In the fol-
lowing,

u; v denote elements of A and x; y elements of C:

(P1) The commutators form a subgroup.

(P2) A and C are abelian, and G ¼ AzC.

(P3) C " f1g acts on A" f1g without fixed points. That is, ½u; x)0 1 for all
u A A" f1g, x A C " f1g.

(P4) jC : C2j ¼ 2.

Clearly these conditions can be formulated in the first-order language of groups.
By (P1), G 0 is definable.

(i) To specify Zp o Z, one uses the definition A ¼ fg : gp ¼ 1g, and requires in addi-
tion that jA : G 0j ¼ p and no element in C " f1g has order less than p. The re-
maining details are as in [8].

(ii) To specify Hm one fixes a prime q not dividing m. One uses the definition

A ¼ fg : gm"1 A G 0g:
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The remaining conditions are as follows.

(P5) Eu d"1ud ¼ um.

(P6) The map u 7! uq is 1–1.

(P7) x"1ux0 u"1 for u0 1.

(P8) jA : Aqj ¼ q.

(P9) Eg gi 0 d, for each i, 1 < icm.

We first verify that ðHm; dÞ satisfies the properties. (P1) holds by Lemma 2.1, and
(P2)–(P9) are obviously satisfied, once we show that the first-order definition of A is
correct, that is,

Z½1=m) ¼ fg : gm"1 A H 0
mg:

To do this, note that H 0
m cZ½1=m) since Hm=Z½1=m) is abelian. First suppose that

g A Z½1=m). Then ½g; d ) ¼ gm"1, so that gm"1 A H 0
m. For the other inclusion, it su‰ces

to notice that Z½1=m) is closed under taking roots, because Hm=Z½1=m) is torsion-free.
Thus, if g B Z½1=m) then gm"1 B Z½1=m) and in particular, gm"1 B H 0

m.
Now suppose that G is a f.g. group, and d A G satisfies the properties (P1)–(P9).

We first show that d has infinite order. If d r ¼ 1 for r > 0, then for each u A A we
have u ¼ Conjðu; d rÞ ¼ umr. So one may choose k minimal such that Ak ¼ f1g. If the
prime q divides k, then the q-primary component fg A A : bi gðq

iÞ ¼ 1g is non-trivial,
so that the map u 7! uq is not 1–1, contrary to (P6). If q does not divide k, then this
map is an automorphism of A, contrary to (P8).
Let R ¼ Z½1=m), viewed as a ring. Then A is turned into an R-module by defining

uðzm"iÞ ¼ Conjðuz; d"iÞ for z A Z, i A N.

Claim 2.3. A is f.g. and torsion-free as an R-module.

To prove this, note that C is f.g. and abelian, and C has only one infinite cyclic
factor by (P4). Since d has infinite order, one can choose c A C such that cs ¼ d
for some sd 1, and hcigp ' F ¼ C where F ¼ TðCÞ is the torsion subgroup. Since
G ¼ AC, G has a finite generating set of the form BU fcgUF where BJA. We may
assume that B is closed under inverses, and under conjugation by elements of the fi-
nite set F U fci : 1c i < sg. If u A A then u ¼ 1 in G=A, so that u can be written as
a product of terms Conjðb; xczÞ, where x A F , z A Z, b A B, and therefore of terms
Conjðb; d wÞ, where w A Z, by the closure properties of B. This shows that A is f.g. as
an R-module.
To show that A is torsion-free as an R-module, suppose that

uðzm"iÞ ¼ Conjðuz; d"iÞ ¼ 1 for u0 1; id 0; z0 0:

Then uz ¼ 1. Conjugation by d is an automorphism of the finite subgroup huigp, by
(P5), and so some power of d has a fixed point, contrary to (P3). This proves the
claim.
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Since R is a principal entire ring, we may conclude that A is free (see Lang [3,
Theorem XV.2.2]), so that A is isomorphic to the additive group of Rk for some k.
Then jA : Aqj ¼ qk and hence k ¼ 1 by (P8). Next, F ¼ TðCÞ is trivial by (P7), be-
cause the only non-trivial automorphism of finite order of Z½1=m) is the inversion
map. Choose id 1 such that ci ¼ d where hcigp ¼ C. Then icm because the auto-
morphism u 7! um is not an ith power in AutðZ½1=m)Þ for any i > m. (However, it
may be a proper power, for instance if m ¼ 9, in which case Z½1=m) ¼ Z½1=3).) So
i ¼ 1 by (P9), and d generates C. This shows that GGHm. r

3 2e0 many non-isomorphic f.g. prime groups

Generalizing the concept of a QFA group, we shall say a class C of f.g. groups is
QFA if there is a first-order axiom j such that for each f.g. group G,

G A C if and only if G ! j:

Thus, a group G is QFA if and only if the class fGg is. The following theorem es-
tablishes a QFA class of prime groups with continuum many non-isomorphic mem-
bers, via the axiom j1 bw; h cðw; hÞ.

Theorem 3.1. There is a first-order formula cðw; hÞ such that,

(i) for each f.g. group P, if w; h A P and P ! cðw; hÞ, then P is prime. In fact, w, h
generate P and c defines the orbit of w, h within P.

(ii) there are 2o many non-elementary equivalent such groups P. More precisely, for
each non-empty Y JN, there is a 2-generated group PY which is prime model
such that Y can be recovered from ThðPY Þ. Moreover, Y is Turing below the word
problem of PY , which is Turing below Y 0.

The following answers a question of Oger [10].

Corollary 3.2. There is a f.g. prime group which is not quasi-finitely axiomatizable.

Proof. Of course this follows from Theorem 3.1, because there are only countably
many QFA groups (up to isomorphism). For a somewhat more concrete counter-
example, we may use the fact [5, Theorem 2] that each QFA group has a hyper-
arithmetical word problem. Now choose Y not hyperarithmetical; then the word
problem for PY is again not hyperarithmetical by the last statement in (ii), and so PY

is not QFA. r

In order to prove Theorem 3.1, we need to discuss the construction of QFA groups
in [5]. In [5], it is shown that for each arithmetical singleton S, there exists a 2-
generated QFA group GS whose word problem WðGÞ satisfies ScT WðGÞcT S 0.
This construction works for any set S, though only the arithmetical singletons yield
a QFA group. A modification of this construction will lead to the prime groups PY .
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(A set SJo is called an arithmetical singleton if there exists a formula jðXÞ in the
language of arithmetic extended by a new unary predicate symbol X such that for
each PJo, jðPÞ is true in the standard model of arithmetic if and only if P ¼ S.)
Consider a group G in which a set ZG can be interpreted (without parameters), in

the sense of Subsection 1.2. Thus ZG ¼ D=E, where DJGn is a first-order definable
relation and E is a first-order definable equivalence relation on D. Then G acts on ZG

by conjugation, and one can require in a first-order way that this action be faithful.
In what we call the ‘concrete case’ in [5], the QFA groups G are subgroups of

SymðZÞ which contain the successor and ð0; 1Þ, and hence all permutations with finite
support. D is the set of pairs hu; vi of transpositions whose supports share exactly
one element (we say that they hold this element). In [4] it is shown that D is first-order
definable, by the formula

trðxÞ ¼ sðx ¼ 1Þ & ðx2 ¼ 1Þ & Ey ð½x; y)6 ¼ 1Þ:

Next, two pairs hu; vi A D, hu 0; v 0i A D are equivalent modulo E if they hold the
same element. Again, this relation is first-order definable in G; see [5]. The groups
considered in the ‘abstract case’ are those f.g. groups H satisfying an axiom a0, which
says that the defined sets behave in the expected way, namely, that the formula for E
defines an equivalence relation on the non-empty set D, and the action is faithful.
Thus, whenever H is f.g. and H ! a0, then we have a non-empty domain

ZH ¼ D=E;

where D and E are defined without parameters in H via the formulas mentioned
above.
To pin G down further in the concrete case, we also interpret a structure with do-

main ZG. We use parameters w, s, t to define a copy of ðZ; <; 0;þ;'Þ on ZG. The
action of the parameter w determines a permutation with only one cycle on ZG, which
becomes the successor relation. The E-equivalence class of the pair hs; ti represents 0.
In the concrete case, w ¼ ẑz is successor on Z, s ¼ ð"1; 0Þ and t ¼ ð0; 1Þ. Using that

G contains all permutations with finite support, one can define <, as well as þ, ' on
ZG. In the abstract case, let Zw; s; t be the structure interpreted in G via these formulas.
By a further first-order condition, one can require that the basic axioms of arithmetic
hold. However, in general Zw; s; t may be a non-standard version of Z, that is, there
may be elements greater than each natural number. The main idea in [5] is to trans-
form the property of being finitely generated into a first-order condition for stan-
dardness: we develop a formula Standardðw; s; tÞ which for each f.g. group G ensures
that Zw; s; t is standard, and which holds for the parameters ẑz, s ¼ ð"1; 0Þ, t ¼ ð0; 1Þ,
in f.g. permutation groups G satisfying some fairly general properties.
This is summarized in the following lemma, stating that if G is f.g. and

G ! Standardðw; s; tÞ, then G can be viewed as a subgroup of SymðZGÞ, and we have
the full power of arithmetic to describe, within G, properties of the permutations.

Main Lemma 3.3 ([5]). There exists a formula Standardðw; s; tÞ in the first-order lan-
guage of groups such that the following conditions are satisfied.
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(i) (Concrete case) For each group Gc SymðZÞ which has an element f such that each
g A G is Turing-reducible to f and which contains all finitary permutations and the
permutation ẑzðxÞ ¼ xþ 1,

G ! Standardðẑz; ð0; 1Þ; ð0;"1ÞÞ:

(ii) (Abstract case) Assume that G is a f.g. group and w, s, t are elements such that
G ! Standardðw; s; tÞ. Then Zw; s; t ¼ ðZG; <w; s; t; 0w; s; t;þw; s; t;'w; s; tÞ is standard,
and w, when viewed as a permutation of ZG, becomes the successor function.

Proof of Theorem 3.1. We begin with some notation. Recall that Conjðg;wÞ denotes
the conjugate w"1gw. The image of an element y under a map f is denoted by yf , and
fg denotes the map x 7! ðxf Þg. Moreover,

& for r A N, let kðrÞ ¼ 2þ 3rðrþ 1Þ=2. Then kðrþ 1Þ " kðrÞ ¼ 3ðrþ 1Þ. The set
f2; 5; 11; 20; . . .g of such numbers is called the set of coding locations.

& If c A N and x A Z, let BcðxÞ ¼ fy : jy" xjc cg.

& Given Y JN, let

ŶY ¼ fkðhx;miÞ : x A Y ;m A Ng:

For each Y , the desired group PY is a subgroup of SymðZÞ, namely

PY ¼ hẑz; hYigp;

where ẑz is successor and

hY ¼ ð0; 1Þ ,
Y

k A ŶY

ðk; k þ 1; k þ 2Þ: ð1Þ

The group PY is a variant of the group GS from [5], where S ¼ ŶY . The main dif-
ference is that here a set Y JN is coded at locations kðrÞ which are further and
further apart. Clearly, hY 1T ŶY , and gcT hY for each g A PY , so that the hypothesis
in (i) of the Main Lemma 3.3 is satisfied. The formula cðw; hÞ lists first-order prop-
erties of elements w, h in a group H, satisfied by ẑz, hY in PY , so that the conclusions
of Theorem 3.1 can be reached.

(B1) Standardðw; s; tÞ holds, where s ¼ h3, t ¼ w"1sw. We write Zw;h for the copy
Zw; s; t of ðZ; <; 0;þ;'Þ defined on ZH . The elements of H can now be viewed as
permutations of ZH .

(B2) The elements w, h generate the whole group. This is first-order because we can
existentially quantify over free group terms within the model Zw;h. See [5] for
details.
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(B3) With respect to Zw;h, the only 2-cycle of h is ð0; 1Þ, and if h moves an element
x0 0; 1 then this x is contained in a 3-cycle of the kind ðk; k þ 1; k þ 2Þ, where
k ¼ kðrÞ for some r. Let

Yw;h

be the set of numbers kðrÞ for which there is such a 3-cycle.

(B4) Yw;h 0q, and Yw;h has the following padding property:
(pad) for all x;m;m 0 A N, we have kðhx;miÞ A Yw;h if and only if

kðhx;m 0iÞ A Yw;h.
In particular, Yw;h is infinite.

To verify PY ! cðẑz; hY Þ, note that in (B1) each permutation of PY is Turing below
hY . The other properties are obvious.
Next we prove a crucial lemma. Fix a f.g. group H. Then the set Yw;h represented

by parameters w, h such that H ! cðw; hÞ is always the same (but it depends on H).
From this we will conclude that any two such pairs ðw; hÞ and ðw 0; h 0Þ of parameters
are automorphic, in fact conjugate in SymðZÞ. Since any such pair generates H, this
shows that H is prime, by Fact 1.1.

Lemma 3.4. Let H be f.g. and let w; h;w 0, h 0 A H. If H ! cðw; hÞ and H ! cðw 0; h 0Þ,
then Yw;h ¼ Yw 0;h 0 .

Proof idea. We view Zw;h as our ‘reference copy’ of ðZ; <; 0;þ;'Þ within H. Each
g A H is viewed as a permutation of this copy. By (B1) for w 0, h 0 and the Main
Lemma 3.3, Zw 0;h 0 is a further copy, with the same domain ZH . Let

p : Zw;h 7! Zw 0;h 0

be the unique isomorphism, which is a permutation of ZH . We want to show that
passing from w, h to w 0, h 0 does not change the set coded, and in fact h 0 ¼ p"1hp.
(a) The first goal is to show that p is close to the identity, namely

jxp" xj is bounded

(In the following, arithmetical operations like di¤erence, absolute value etc. are al-
ways taken in the reference copy Zw;h.) We use that by (B2), w 0 ¼ h jv for some
v A NclðwÞ. Then w 0 is su‰ciently similar to w to show that p is close to being the
identity. For a while, we have to carry along the case that instead, w 0 is similar to w"1.
(b) The second goal is to show that h 0 is su‰ciently similar to h that applying (a)

we can conclude that Yw;h ¼ Yw 0;h 0 . We use that h 0 ¼ w jg for some g A NclðhÞ and
j A Z. Thus g ¼ tðh;wÞ where t is a product of conjugates of powers of h by powers
of w. Then, for su‰ciently large x, xg0 x implies that xg ¼ xtðCkðrÞ; hÞ, where
kðrÞ A Yw;h is a coding location close to x. Here Cx denotes the cycle ðx; xþ 1; xþ 2Þ.
Thus, the value xg is determined by a unique cycle CkðrÞ, not by the interaction of
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various cycles, because the coding locations kðrÞ are su‰ciently far apart for large
enough r. Then j ¼ 0.

Details. To reach goal (a), we first show that w 0 is merely a small perturbation of the
successor w in our reference copy, or of its inverse. In the first case, for an appropri-
ate c, xw 0 0 xw is only possible if both x and xw 0 are within c of some coding loca-
tion.

Claim 3.5. There is an ‘orientation’ b ¼ bw 0 A f1;"1g and c A N such that

Ex xw 0 0 xwb ) br x; xw 0 A BcðkðrÞÞ: ð2Þ

Proof. We use that w 0 consists of only one cycle. Note that w 0 B hhigp, so that we can
write

w 0 ¼ h j
Yn

i¼1

Conjðwbi ; htiÞ;

where nd 1, bi A f1;"1g, 0c ti < 6 and 0c j < 6. Let b ¼
P

i bi. If xw 0 0 xwb,
then there is a least m such that the application of h a¤ects the mth factor
of the product (here h j is considered the 0th factor). In more detail, let
Pm ¼ h j

Qm"1
i¼1 Conjðwbi ; htiÞ; then either xh0 x, or there is an md 1 such that

xPm"1 ¼ xwTi<mbi ¼: z

but zh0 z or zh"tmwbmh0 zh"tmwbm . By (B3), this implies that x A Bnþ2ðkðrÞÞ for
some r.

Clearly jx" xw 0jc 5nþ 2. So letting c ¼ 6nþ 4, we have xw 0 A BcðkðrÞÞ. This
shows that (2) holds.

It remains to verify that b A f1;"1g. Assume otherwise. Pick x such that

kðrÞ þ c < x < kðrþ 1Þ " c for some rd c:

If b ¼ 0 there is a trivial cycle, and this is a contradiction. Otherwise, say
b > 1. Then applying the permutation w 0 to y yields yþ b, for each y in the
interval ðkðrÞ þ c; kðrþ 1Þ " cÞ. The cycle of w 0 can only connect x, xþ 1 if there is
y > kðrþ 1Þ " c such that yw 0 < kðrÞ þ c, which is impossible by (2). r

Claim 3.6. Let p be the isomorphism Zw;h 7! Zw 0;h 0 .

(i) If bw 0 ¼ 1 then bu A NEx jxp" xj < u.

(ii) If bw 0 ¼ "1 then bu 0 A NEx > 0 jxpþ xjc u 0.

Proof. Let c be as in Claim 3.5.
(i) If x < x0 ¼ kð0Þ " c, then xw 0 ¼ xþ 1. So xp" x ¼ x0p" x0 for each x < x0.
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Let yr ¼ kðrÞ þ cþ 1. By (2), for each rd c and each x A ZH ,

x <w 0;h 0 yr if and only if x <w;h yr:

Hence yrp" yr ¼ ycp" yc for each rd c. If x A ½yr; kðrþ 1Þ " cÞ then xw 0 ¼ xwb by
(2) again. So xp" x ¼ yrp" yr. While the cycle of w 0 is within BcðkðrÞÞ, rd c,
jxp" xj can increase by at most 2c. The desired bound u is therefore the maximum
of jycp" ycjþ 2c and maxðfjxp" xj : x0 c xc kðcÞ þ cg, where x0 ¼ kð0Þ " c as
above.
(ii) is simpler, since xh ¼ x and hence xw 0 ¼ xw"1 ¼ x" 1 for any x < 0. Let

x0 A ZH be least such that x0p < 0, then ðx0 þ rÞp ¼ x0p" r for any r > 0. This shows
that jxpþ xj is bounded for any x > 0. r

For x A Zw;h, recall that Cx denotes the cycle ðx; xþ 1; xþ 2Þ. Notice that

ConjðCx;w
sÞ ¼ Cxþs for each s A Z:

We have almost reached goal (a), but we do not yet know that Bw 0 ¼ 1. For this
and also to reach (b), we analyze elements in the normal closure NclðhÞ of h, i.e. ele-
ments of the form

g ¼
Y

0ci<m

hi; where hi ¼ Conjðhti ;wsiÞ; 0c ti < 6; si A Z:

Let

d ¼ 2þmaxijsij;

and let q ¼ kðdÞ " d. We will show in Claim 3.7 below that fx : x < qg is closed
under application of the maps g and g"1. On the other hand, for xd q, the value xg
is determined by a unique cycle CkðrÞ of h.
To prepare this, suppose that xhi 0 x. Then either fx; xhig ¼ fsi; siþ1g or

xhi ¼ xC ti
kðrÞþsi

for some unique r. Note that

x < q , r < d , hiðxÞ < q: ð3Þ

(To prove the first equivalence, say, if rd d, then xd kðrÞ þ si " 2d kðdÞ " d ¼ q.
If r < d, then x < kðd " 1Þ þ si þ 2 < q, because kðdÞ " kðd " 1Þ ¼ 3d. The second
equivalence is similar.)
We write

tðv;wÞ ¼
Y

0ci<m

Conjðvti ;wsiÞ:

Claim 3.7. Let g ¼ tðh;wÞ ¼
Q

0ci<m hi, where hi ¼ Conjðhti ;wsiÞ, and let d, q as
above. Then
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(i) x < q if and only if xg < q.

(ii) If xd q and xg0 x, then there is rd d such that x, xg A BdðkðrÞÞ, and xg is ob-
tained by applying tðCkðrÞ;wÞ to x.

Proof. (i) is immediate from (3).
(ii) Suppose that xd q and xg0 x. For ncm, let gn ¼

Q
0ci<n hi (where g0 is

the identity). By (3), xgn d q for each n. Since BdðkðrÞÞVBdðkðr 0ÞÞ ¼ q for distinct
r; r 0 d d, there is a fixed rd q such that, if xgi 0 xgiþ1, then the permutation Cti

kðrÞþsi
was applied. Thus xg ¼ xtðCkðrÞ;wÞ. r

To reach goal (b) (showing that h 0 is similar to h) note that by (B2), there are
j A Z and g A NclðhÞ such that h 0 ¼ w jg. Applying Claim 3.7 to g, we obtain d and
q ¼ kðdÞ " d. We show that j ¼ 0. Otherwise say j > 0, and choose yd kðdÞ such
that ½y; yþ 6j)VBdðkðrÞÞ ¼ q for each r. As xg ¼ x for each x A ½y; yþ 3j) and w is
the successor function in our reference copy Zw;h, the permutation h 0 ¼ w jg has cycles
which are neither 2-cycles nor 3-cycles. This contradicts (B3) for w 0, h 0, since the cycle
structure remains unchanged under applying the isomorphism p. Thus j ¼ 0 and

h 0 ¼ g ¼
Y

0ci<m

Conjðhti ;wsiÞ:

Claim 3.6 completes goal (a) above once we show that bw 0 ¼ 1. Otherwise
bw 0 ¼ "1, and by (ii) of Claim 3.6, jxpþ xj is bounded for x > 0. Since Yw 0;h 0 is in-
finite, with respect to Zw 0;h 0 , h 0 has a cycle ðx; xþ 1; xþ 2Þ for arbitrarily large x, and
hence with respect to the reference copy Zw;h, h 0 has a 3-cycle below arbitrarily small
(negative) x. On the other hand, if d is as above then xh 0 ¼ x for any xc"d, since
the cycles of h are only on the positive side of Zw;h. This is a contradiction.

For each t; k A N, let B 0
tðkÞ be the set BtðkÞ evaluated in Zw 0;h 0 . Recall from

(i) of Claim 3.6 that there is a constant u such that jxp" xj < u for all x. Thus
BlðkÞJB 0

lþuðkÞ for all k; l A N.
By Claim 3.7, a non-trivial cycle of h 0 ¼ g other than its 2-cycle is either completely

below q, or is a cycle of tðCkðrÞ;wÞ, where kðrÞ A Yw;h. Also, if rd d, then the support
of each factor Cti

kðrÞþsi
of tðCkðrÞ;wÞ is contained in BdðkðrÞÞJB 0

dþuðkðrÞÞ, and hence
so is the support of tðCkðrÞ;wÞ.

In the following, we always suppose that rd d þ u. By (B3), for w 0, h 0,

with respect to Zw 0;h 0 ; tðCkðrÞ;wÞ either equals a 3-cycle CkðrÞ of h
0 or is the identity:

Clearly, for each i, tðCiþs;wÞ is a shift of tðCi;wÞ by s, that is,

tðCiþs;wÞ ¼ ConjðtðCi;wÞ;wsÞ:

Then, if tðCkðrÞ;wÞ were the identity for some kðrÞ, this would hold for all kðrÞ, and so
Yw 0;h 0 is finite, contrary to (B4). Thus tðCkðrÞ;wÞ is always CkðrÞ with respect to Zw 0;h 0 .
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We can now argue that Yw;h " Yw 0;h 0 is finite: if kðrÞ A Yw;h for rd d þ u, then
CkðrÞ is a cycle of h, so that tðCkðrÞ;wÞ is a cycle of h 0, and hence kðrÞ A Yw 0;h 0 .
On the other hand, Yw 0;h 0 " Yw;h is finite as well: if kðrÞ B Yw;h where rd d þ u,

then h 0 has no 3-cycle at the coding location kðrÞ, so that kðrÞ B Yw 0;h 0 . Then, by (B4),
Yw 0;h 0 ¼ Yw;h. r

For (i) in Theorem 3.1, it remains to show that there is an automorphism of H
taking hw; hi to hw 0; h 0i. Conjugation by the isomorphism p : Zw;h 7! Zw 0;h 0 induces
an automorphism of SymðZHÞ taking w to w 0 and h to h 0 (as always we identify ele-
ments of H with the permutation of ZH induced by their action). As H is generated
by w, h and by w 0, h 0, the restriction of this automorphism to H is as desired.
For (ii), clearly PY satisfies cðẑz; hY Þ. Moreover,

n A Y if and only if PY ! bw; h½cðw; hÞ5‘Zw;h ! hðkðnÞÞ ¼ kðnÞ þ 1’):

So Y can be recovered (via a fixed many-one reduction) from ThðPY Þ. The assertion
that the word problem of PY is Turing between Y and Y 0 is verified as in [5]. r

Recall that Pq is the subgroup of SymðZÞ generated by ð0; 1Þ and successor.
Clearly Pq ¼ SymfinðZÞz hdigp where d is the successor function and its action on
SymfinðZÞ is given by shifting. Thus Pq is a permutation groups analog of the exam-
ples in Theorem 2.2. As a corollary to the proof of Theorem 3.1, we obtain that the
QFA group Pq is prime.

Corollary 3.8. The group Pq ¼ SymfinðZÞzZ is QFA.

Proof. For technical reasons we required in (B4) that Yw;h 0q, which precisely ex-
cludes Pq. If we require instead of (B3) and (B4) that h is the transposition ð0; 1Þ, then
the proof becomes simpler and shows that Pq is prime. r

The proof of Theorem 3.1 is mostly algebraic. A somewhat di¤erent proof, involv-
ing more model theory and in particular the concept of bi-interpretabiity, is sketched
in the last subsection of [6].
All examples that we have seen are far from being simple groups.

Question 3.9. Is there a QFA group that is simple? Is there an infinite f.g. prime group
that is simple?
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