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§1. Introduction. We report on some recent work centered on at-
tempts to understand when one set is more random than another. We
look at various methods of calibration by initial segment complexity, such
as those introduced by Solovay [129], Downey, Hirschfeldt, and Nies [38],
Downey, Hirschfeldt, and LaForte [35], and Downey [30]; as well as other
methods such as lowness notions of Kučera and Terwijn [71], Terwijn
and Zambella [137], Nies [104, 105], and Downey, Griffiths, and Reid
[33]; higher level randomness notions going back to the work of Kurtz
[73], Kautz [61], and Solovay [129]; and other calibrations of randomness
based on definitions along the lines of Schnorr [121].

These notions have complex interrelationships, and connections to clas-
sical notions from computability theory such as relative computability and
enumerability. Computability figures in obvious ways in definitions of ef-
fective randomness, but there are also applications of notions related to
randomness in computability theory. For instance, an exciting by-product
of the program we describe is a more-or-less natural requirement-free so-
lution to Post’s Problem, much along the lines of the Dekker deficiency
set.

This paper is self-contained (though we assume basic notions from com-
putability theory, at the level of the first few chapters of Soare [125]), with
some representative proofs being sketched. We begin with a quick reca-
pitulation of the classical approaches to algorithmic randomness, through
measure theory, unpredictability, and incompressibility. After that we
turn to Solovay’s approach to calibrating the complexity of left com-
putably enumerable (left-c.e.) reals, and the Kučera-Slaman Theorem
which implies that there is essentially only one random left-c.e. real,
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Chaitin’s Ω. After looking at deficiencies of the notion of Solovay reducibil-
ity we turn to other initial segment measures of relative randomness.

We next introduce the notion of K-triviality. A set is K-trivial if its
initial segment prefix-free Kolmogorov complexity is the same as that of
the sequence of all ones (up to an additive constant). Noncomputable K-
trivial sets exist but are all ∆0

2. The c.e. sets among them are solutions
to Post’s Problem. We explore Nies’ results on the Turing degrees of
such sets, which form a natural Σ0

3 ideal in the c.e. Turing degrees, and
the connections between K-triviality, lowness notions, and other forms
of computational weakness related to randomness. We then discuss the
complexity of c.e. sets and a theorem of Kummer which characterizes c.e.
degrees containing complex c.e. sets.

After this we turn to other notions of randomness such as Schnorr ran-
domness and computable randomness, where the notion of what consti-
tutes a random set actually changes. Again, there have been many recent
results in this area, such as a machine characterization of Schnorr random-
ness, and beautiful lowness characterizations related to the hyperimmune-
free degrees. We also discuss lowness notions for various flavors of ran-
domness.

Next we look at arithmetical versions of randomness (n-randomness).
We include a bit of background material here, as it seems not widely
known, and the lovely recent result that a set is 2-random (a relativized
prefix-free complexity notion) iff its initial segment complexity is maximal
infinitely often when measured by plain Kolmogorov complexity. Many
“typical” random phenomena only really occur for 2- or even 3-random
sets. For instance, if we concentrate on the left-c.e. reals, then we get the
impression that 1-random sets look like Ω and are computationally rich.
However, 2-random sets are computationally very weak, and look much
more like low sets. The next section includes several results of Miller and
Yu, which explore another measure of relative randomness and further
expand on this story, showing for instance that there is a relationship be-
tween levels of randomness and initial segment complexity. We follow this
with a look at relativizing randomness by considering Ω as an operator,
which is complicated by the fact that it is a c.e. operator but is not c.e.
in and above.

In the last section we take a brief look at effective Hausdorff dimension
and related notions of partial randomness. This is a huge area of research,
particularly in computer science, and we will only mention a few recent
results.

The topic of this paper is a mix of computability theory, algorithmic
information theory, and measure theory. Our computability-theoretic no-
tation generally follows Odifreddi [110, 111] and Soare [125]. We deal with
several degree structures, but when we mention degrees without further
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specification, we mean Turing degrees. We will denote the e-th partial
computable function by Φe, the e-th partial computable function with
oracle X by ΦX

e , and the e-th computably enumerable set by We. When
we write log n, we mean the base 2 logarithm of n, rounded up to the
nearest integer. We will use C to denote plain Kolmogorov complexity,
and K to denote prefix-free Kolmogorov complexity.

This paper is not a general introduction to recent work on algorithmic
randomness, but rather an attempt to give the reader insight into what
we feel are some of the high points in the program to understand relative
randomness, the Kolmogorov complexity of sets, and the relationships
of these topics to classical computability theory. This is a fast-growing
area of research, and we have necessarily omitted many important results
and even entire fruitful lines of investigation. There is a wealth of open
questions in this area; we mention a few below, but refer the reader to
Miller and Nies [96] for a more comprehensive list.

Although we do not focus on the history of the field, we have tried to give
motivating historical definitions and intuitions, as well as related results
by, for instance, Kurtz [73] and Kautz [61]. Among several historically
important papers not explicitly mentioned below, we may cite Shannon
[123], Solomonoff [127], Chaitin [23], and van Lambalgen [75]. Details of
the results here and a version of the legendary unpublished notes of Solo-
vay [129] will appear in a forthcoming book by Downey and Hirschfeldt
[34], Solovay’s material appearing with his permission. A forthcoming
book by Nies [107] contains details on some of the results here, in partic-
ular where the application of randomness notions in computability theory
is concerned (for instance lowness properties and priority-free solutions
to Post’s problem). It also contains a chapter on formalizing the intuitive
notion of randomness via effective descriptive set theory, studied in [50].

§2. Sets, measure, and martingales.
2.1. Sets and measure. The Cantor space of all infinite binary se-

quences is denoted by 2ω. This space is endowed with the tree topology,
which has as basic clopen sets

[σ] := {X ∈ 2ω : σ ≺ X},

where σ ∈ 2<ω. The uniform or Lebesgue measure on 2ω is induced by
giving each basic open set [σ] measure µ([σ]) := 2−|σ|.

We identify an element X of 2ω with the set {n : X(n) = 1}. The space
2ω is measure-theoretically identical with the real interval [0, 1], although
the two are not homeomorphic as topological spaces, so we can also think
of elements of 2ω as elements of [0, 1]. Thus we refer to elements of 2ω as
sets or reals. We will use the former term except when we wish to empha-
size the identification of 2ω with [0, 1], in particular when dealing with left
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computably enumerable reals. A real is left computably enumerable (left-
c.e.) if it is the limit of a computable increasing sequence of rationals, or
equivalently, if its left cut is c.e. Such reals are often simply called c.e.
reals, but we wish to avoid any confusion between c.e. reals and c.e. sets.
A real is strongly c.e. if it is of the form 0.A for a c.e. set A. It is not hard
to see that not every left-c.e. real is strongly c.e.

The collection of strings (finite initial segments of sets) is denoted by
2<ω. For strings σ and τ , let σ 4 τ denote that σ is an initial segment
of τ . Similarly, for a set X and a string σ, let σ ≺ X denote that σ is an
initial segment of X. We denote the length of a string σ by |σ|. For a set
X, we denote the string consisting of the first n bits of X by X � n.

One particularly important class of measurable subsets of 2ω consists
of the unions of prefix-free collections of basic clopen sets. A set P ⊂ 2<ω

is called prefix-free if for all σ, τ , if σ ≺ τ and σ ∈ P , then τ /∈ P . Note
that for such a set P , if P =

⋃
σ∈P [σ], then

µ(P) =
∑
σ∈P

2−|σ|.

2.2. Martingales. A different treatment of measure, important for
our story, is the one of Ville using martingales. A martingale is a function
d : 2<ω → R+∪{0} that satisfies for every σ ∈ 2<ω the averaging condition

2d(σ) = d(σ0) + d(σ1).

Similarly, d is a supermartingale if it satisfies

2d(σ) > d(σ0) + d(σ1).

A (super)martingale d succeeds on a set A if lim supn→∞ d(A � n) = ∞.
We say that d succeeds on, or covers, a class A ⊆ 2ω if d succeeds on
every A ∈ A. The success set S[d] of d is the class of all sets on which d
succeeds. The reader should think of a martingale as a betting strategy.
The function d assigns a portion of our capital to be bet on the string σ.
The success set of d is thus the collection of sets on which this betting
strategy allows us to increase our capital arbitrarily much.

The following classical result shows how the concept of a martingale
relates to measurability.

Theorem 2.1 (Ville [138]). For any class A ⊆ 2ω the following state-
ments are equivalent:
(i) A has Lebesgue measure zero,
(ii) There exists a martingale that succeeds on A.

Martingales will prove important when we look at refinements of classi-
cal Martin-Löf randomness. Martingales are the key to looking at measure
and Hausdorff dimension in small classes such as polynomial time, a fact
first realized by Lutz [83]. (See also Lutz [86].)
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§3. Three approaches to randomness. Historically1, there have
been three main approaches to the definition of an algorithmically random
sequence. They are via what we call

(i) the measure-theoretic paradigm,
(ii) the unpredictability paradigm, and
(iii) the incompressibility paradigm.

3.1. The measure-theoretic paradigm. Among the oldest defini-
tions of randomness are those saying that a random set should have cer-
tain stochastic properties. For instance, a random set should have about
as many 0’s as 1’s. Von Mises, in his remarkable paper [100], defined
a notion of randomness based on such stochastic properties, and noted
that for any countable collection of such properties a nonempty notion
of randomness results. But he did not have a canonical choice of such a
countable collection at hand. Later Church made the connection with the
theory of computability by suggesting that one should take all computable
stochastic properties. Martin-Löf then noted that these are a special kind
of measure zero subsets of 2ω, and that a more general and smooth defi-
nition could be obtained by considering all effectively measure zero sets.
We discuss this approach of Martin-Löf below. For more discussion and
references on the original stochasticity approach see Ambos-Spies and
Kučera [1].

The measure-theoretic paradigm is that the random sets should be those
with no effectively rare properties. If a property constitutes an effective
null set, then a random set should not have this property.

A collection of sets that is effectively enumerated is a Σ0
1-class. We can

represent a Σ0
1-class U as

⋃
σ∈W [σ] for some prefix-free c.e. set of strings

W . We say that W is a presentation of U . Whenever we mention a Σ0
1-

class U , we assume we have a fixed presentation W of U , and identify U
with W . So, for instance, for σ ∈ 2<ω, we write σ ∈ U to mean σ ∈ W .
We will not explicitly mention presentations unless necessary for clarity.

Now a test is a sequence {Ui}i∈ω of such Σ0
1-classes that are shrinking

in size. A set passes a test {Ui}i∈ω if it is not in the intersection
⋂

i Ui.
The main idea is that a random set should pass all effective tests. This
leads to the following definition.

Definition 3.1 (Martin-Löf [88]). A collection of sets A ⊆ 2ω is Mar-
tin-Löf null (or Σ0

1-null) if there is a uniformly c.e. sequence {Ui}i∈ω of Σ0
1-

classes (called a Martin-Löf test) such that µ(Ui) 6 2−i and A ⊆
⋂

i Ui.

1In these notes, we will try to avoid discussion of the history of the evolution of the
notion of algorithmic randomness. There are thorough discussions in the monograph of
Li and Vitányi [81], the paper of Zvonkin and Levin [146], and van Lambalgen’s thesis
[74].
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A set A ∈ 2ω is Martin-Löf random, or Σ0
1-random, or 1-random, if {A}

is not Σ0
1-null.

Solovay gave the following definition of randomness equivalent to that
of Martin-Löf. It is not hard to prove that the two notions are the same.

Definition 3.2 (Solovay [129]). A Solovay test is a uniformly c.e. se-
quence {Ui}i∈ω of Σ0

1-classes with
∑

i µ(Ui) < ∞. A set A is Solovay
random if for all Solovay tests {Ui}i∈ω, we have A ∈ Ui for only finitely
many i. Note that the definition does not change if we replace the Σ0

1-
classes Ui by basic clopen sets [σi].

One very interesting fact, due to Martin-Löf, is that there is a univer-
sal Martin-Löf test {Un}n∈ω, meaning that a set A is Martin-Löf ran-
dom iff A /∈

⋂
n Un. To define such a test, fix a computable enumeration

{V m
i }i,m∈ω of all Martin-Löf tests (with the m-th test being {V m

i }i∈ω),
and let Un =

⋃
k V

k
n+k+1. Similarly, there is a universal Solovay test.

3.2. The unpredictability paradigm. If you ask someone why they
think a certain event is random they will most often give the answer that
the event is “unpredictable”. In particular, a set A = a0a1 . . . should be
random if we cannot predict any of its bits given other bits. One way to
implement this idea is to use martingales.

Definition 3.3 (Schnorr [120]). We say that a (super)martingale d is
effective (also called Σ0

1 or computably enumerable) if the reals d(σ) for
σ ∈ 2<ω are uniformly left-c.e.

The reader might have expected that an effective martingale would be
one where d is a computable function, rather than one with computable
approximations. We will return to this very important point in Section 10.

Martingales of varying complexities are a convenient way of introducing
various effective measures. This approach was first taken by Schnorr [120,
121], and later applied with much success in complexity theory by Lutz
[83].

Schnorr proved the following effective version of Ville’s Theorem 2.1.
Its proof is a direct effectivization of that of Theorem 2.1.

Theorem 3.4 (Schnorr [121], Satz 5.3). A class A ⊆ 2ω is Martin-Löf
null iff there is a c.e. supermartingale d such that A ⊆ S[d].

This theorem remains true if we replace “c.e. supermartingale” by “c.e.
martingale”.

Since c.e. supermartingales are Σ0
1 objects, it comes as no surprise that

we can effectively list all of them in an enumeration d0, d1, . . . . The sum
d =

∑
i 2

−idi is then again a c.e. supermartingale, and its success set S[d]
is the maximal Martin-Löf null set, so d is a universal c.e. supermartin-
gale. Additionally, d is an optimal c.e. supermartingale, in the sense that
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for any other nontrivial c.e. supermartingale d′, there is a c such that
cd(σ) > d′(σ) for all σ. The existence of an optimal c.e. supermartingale
is also implicit in Levin’s construction of a universal c.e. semimeasure (see
Zvonkin and Levin [146]). The fact that there is no optimal c.e. martin-
gale is one of the reasons to consider supermartingales. (This fact was
implicit in [146]; see [34] for a proof.)

3.3. The incompressibility paradigm. A third approach to defin-
ing the notion of a random set is the one essentially due to Kolmogorov
[65]. Here we regard a string as random iff it has no short description,
that is, there is no short program to generate the string, meaning that
the only way to generate it is essentially to hardwire it into the machine.
(As opposed to, e.g., 101010 repeated 1000 times, which can be generated
by a short program.) We then use this idea to define randomness of sets
by considering the lengths of shortest descriptions of its initial segments.
We mention only a few basic results about Kolmogorov complexity; for
more on the subject, see Li and Vitányi [81] or Calude [14].

3.3.1. Plain Kolmogorov complexity. Fix a universal Turing machine
U . Given a string σ ∈ 2<ω, define the plain Kolmogorov complexity of σ
by

C(σ) := min{|τ | : U(τ) = σ}.
Two basic facts concerning C are that (i) the choice of U does not matter
up to an additive constant and (ii) C(σ) 6 |σ|+O(1) for all σ.

For n ∈ N, let C(n) = C(0n). The specific encoding of natural numbers
into strings used in this definition does not matter, since if f : 2<ω → 2<ω

is computable, then C(f(σ)) 6 C(σ) +O(1).
We can define σ to be k-random if C(σ) > |σ| − k. (This definition

will only be used in this section, and should not be confused with the
notion of n-randomness we will introduce in Section 12.) An easy count-
ing argument shows that random strings exist: For each n, there are∑n−k−1

i=0 2−i = 2n−k − 1 programs of length < n − k, so there are at
least 2n − 2n−k + 1 many k-random strings of length n. For every k,
the set of k-random strings is an immune Π0

1 set, i.e., it does not con-
tain any infinite c.e. subsets. As a function, C is not computable. If
m(x) = min{C(y) : y > x}, then m is unbounded (because we even-
tually run out of short programs), but grows slower than any unbounded
nondecreasing partial computable function.

We would like to extend the definition of randomness for finite strings
to a definition for infinite strings. Naively, we could define a set A to be
random iff there is a k such that every σ ≺ A is k-random. However,
Martin-Löf showed that such sets do not exist! This can be seen using the
following argument of Katseff [60]. Let σ0, σ1, . . . be an effective listing of
all strings, with |σn| = log n. If A � m = σn, then from the length of A � n
we can recover A � m. Thus, to generate A � n, we need only generate
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the string τ such that A � n = σnτ and compute n from |τ | = n − log n,
which gives us σn. This shows that for every A,

∃∞n [C(A � n) 6 n− log n+O(1)].

The basic intuition for what goes wrong in trying to use plain Kolmo-
gorov complexity to define randomness for sets is that the Kolmogorov
complexity of τ should be the length of the shortest string σ such that τ
can be obtained from the bits of σ. The length of σ seems to give an ad-
ditional log n many bits of information. This idea is explicitly used above
to demonstrate that, using plain Kolmogorov complexity, we will always
get complexity oscillations in the initial segments of a set. Levin [78, 79],
Schnorr [122], and Chaitin [20, 22] introduced methods to get around this
problem, as we now discuss.

It should be noted that there is now a plain complexity characterization
of 1-randomness, given recently by Miller and Yu [97].

Theorem 3.5 (Miller and Yu [97]). A set A is 1-random iff for every
computable function g such that

∑
n 2−g(n) <∞,

C(A � n) > n− g(n)−O(1).

3.3.2. Prefix-free Kolmogorov complexity. Call a Turing machine M a
prefix-free (or self-delimiting) machine if dom(M) ⊆ 2<ω is prefix-free. A
prefix-free machine U is universal if for each prefix-free machine M there
is a string ρM such that

∀σ [U(ρMσ) = M(σ)].

We call |ρM | the coding constant of M in U . Note that if c is the coding
constant of M in U then

∀σ ∃τ [|τ | 6 |σ|+ c ∧ U(τ) = M(σ)].2

It is easy to construct a universal prefix-free machine U , by letting

U(1m0σ) = Tm(σ)

for an effective enumeration T0, T1, . . . of all prefix-free machines.
We can now define the prefix-free complexity3 of a string σ by

K(σ) := min{|τ | : U(τ) = σ}.
Again, the choice of U matters only up to an additive constant. For n ∈ N,
let K(n) = K(0n).

2A universal prefix-free machine is sometimes defined to be one for which such a
constant c exists for each prefix-free machine M . The distinction between this weaker
notion and the one we adopt here is most often irrelevant. It becomes more important
when we relativize the notion of universal prefix-free machine, as we do in Section 14.

3There are alternative approaches to modifying the definition of Kolmogorov com-
plexity, such as monotone complexity and process complexity, which are motivated by
similar considerations as prefix-free complexity. See Li and Vitányi [81] for details.
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Unlike plain complexity, prefix-free complexity is subadditive: K(στ) 6
K(σ) +K(τ) +O(1).

The prefix-free encoding σ̂ = 1|σ|0σ gives K(σ) 6 2|σ| + O(1), and
the prefix-free encoding |̂σ|σ gives K(σ) 6 |σ|+2 log |σ|+O(1). (Here we
identify |σ| with its binary representation.) This process can be continued
to obtain tighter upper bounds on K(σ), but for any c there is a σ such
that K(σ) > |σ|+ log |σ|+ c.

The following is a fundamental result about K.

Theorem 3.6 (Counting Theorem, Chaitin [20]).
(i) max

{
K(σ) : |σ| = n

}
= n+K(n)±O(1).

(ii)
∣∣{σ : |σ| = n ∧ K(σ) 6 n + K(n) − r}

∣∣ 6 2n−r+O(1), where the
constant O(1) does not depend on n and r.

We are now in a position to define randomness for sets in terms of initial
segment complexity.

Definition 3.7 (Levin [78], Chaitin [20]). A set A is Levin-Chaitin
random (or Kolmogorov-Levin-Chaitin random) if there is a constant c
such that K(A � n) > n− c for every n.

Again we arrive at the same concept of randomness as above.

Theorem 3.8 (Schnorr, see Chaitin [20]). A set A ∈ 2ω is Martin-Löf
random iff it is Levin-Chaitin random.

The proof of Theorem 3.8 given below uses the effective version of
Kraft’s Inequality [66], which is a fundamental tool in this area. This
version is usually known as the Kraft-Chaitin Theorem, as it appears in
Chaitin [20] (where it is attributed to Pippinger), but according to Gács,
it appeared earlier in Levin’s dissertation [77] and is implicit in Schnorr’s
paper [122]. We retain the terminology “Kraft-Chaitin” for this theorem
and certain associated concepts defined below for the sake of terminolog-
ical consistency with many of the papers we discuss. If U is a prefix-free
machine then the open set presented by the domain of U is measurable.
The Kraft-Chaitin Theorem is a kind of converse to this fact, and implies
that each left-c.e. real is the measure of the domain of some prefix-free
machine.

Theorem 3.9 (Levin [77], Schnorr [122], Chaitin [20]). Let 〈di, τi〉i∈ω

be a computable sequence of pairs (which we call requests), with di ∈ N
and τi ∈ 2<ω, such that

∑
i 2

−di 6 1. Then there is a prefix-free ma-
chine M and strings σi of length di such that M(σi) = τi. Thus K(τi) 6
KM (τi) +O(1) 6 di +O(1).

Proof. It is enough to define effectively a prefix-free sequence of strings
σ0, σ1, . . . with |σn| = dn. The following organizational device is due to
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Joe Miller. For each n, let xn = xn
1 . . . x

n
m be a binary string such that

0.xn
1 . . . x

n
m = 1−

∑
j6n 2−dj . We will define the σn so that the following

holds for each n: for each m with xn
m = 1 there is a string µn

m of length
m so that Sn = {σi : i 6 n} ∪ {µn

m : xn
m = 1} is prefix-free.

We begin by letting σ0 be 0d0 . Notice that x0
m = 1 iff 0 < m 6 d0, so if

we define µ0
m = 0m−11, then {σ0} ∪ {µ0

m : x0
m = 1} is prefix-free.

Now assume we have defined σ0, . . . , σn and µn
m for xn

m = 1 so that
Sn = {σi : i 6 n} ∪ {µn

m : xn
m = 1} is prefix-free.

If xn
dn+1

= 1 then xn+1 is the same as xn except that xn+1
dn+1

= 0. So
we can let σn+1 = µn

dn+1
and µn+1

m = µn
m for all m 6= dn+1, and then

Sn+1 = {σi : i 6 n+ 1} ∪ {µn+1
m : xn+1

m = 1} is equal to Sn, and hence is
prefix-free.

Otherwise, find the largest j < dn+1 such that xn
j = 1. Such a j must

exist since otherwise 1 −
∑

j6n 2−dj < 2−dn+1 , which would mean that∑
j6n+1 2−dj > 1. In this case xn+1 is the same as xn except for positions

j, . . . , dn+1, where we have xn+1
j = 0 and xn+1

m = 1 for j < m 6 dn+1.
Let σn+1 = µn

j 0dn+1−j . For m < j or m > dn+1, let µn+1
m = µn

m, and
for j < m 6 dn+1, let µn+1

m = µn
j 0m−j−11. Then Sn+1 = {σi : i 6

n + 1} ∪ {µn+1
m : xn+1

m = 1} is the same as Sn except that µn
j is replaced

by a pairwise incomparable set of superstrings of µn
j . This clearly ensures

that Sn+1 is prefix-free.
This completes the definition of the σi. Each finite subset of {σ0, σ1, . . . }

is contained in some Sn, and is hence prefix-free. Thus the whole set is
prefix-free. Since the σi are chosen effectively, we can define a prefix-free
machine M by letting M(σi) = τi for each i. a

We call an effectively enumerated set of requests 〈di, τi〉i∈ω such that∑
i 2

−di 6 1 a Kraft-Chaitin set. The weight of this set is
∑

i 2
−di . As an

illustration of the use of the Kraft-Chaitin Theorem, we give a proof of
Schnorr’s Theorem 3.8.

Proof of Theorem 3.8. (Only if) Let U be the universal prefix-free
machine relative to which K is defined. Let Rk =

⋃
{[σ] : K(σ) 6 |σ|−k}.

Notice that {Rk}k∈ω is a uniformly c.e. sequence of Σ0
1-classes. We now

show that it is a Martin-Löf test.
Let Pk be the set of σ such that K(σ) 6 |σ| − k but K(τ) > |τ | − k

for all τ ≺ σ. Then Pk is prefix-free and Rk =
⋃

σ∈Pk
[σ]. Furthermore, for

each σ ∈ Pk, there is a string σ∗ such that U(σ∗) = σ and |σ∗| 6 |σ| − k.
Since U is prefix-free,

∑
σ∈Pk

2−|σ
∗| 6

∑
U(τ)↓ 2−|τ | 6 1. So

µ(Rk) =
∑
σ∈Pk

2−|σ| 6
∑
σ∈Pk

2−(|σ∗|+k) = 2−k
∑
σ∈Pk

2−|σ
∗| 6 2−k.
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Thus {Rk}k∈ω is a Martin-Löf test. Now if A is Martin-Löf random,
then A /∈

⋂
k Rk, so there is a k such that K(A � n) > n− k for all n, and

thus A is Levin-Chaitin random.
(If) Let {Uk}k∈ω be the universal Martin-Löf test. As discussed above,

we identify each Uk with a particular fixed presentation of Uk. Let

L = {〈|σ| − k, σ〉 : ∃k > 1 [σ ∈ U2k]}.
Then L is a Kraft-Chaitin set, since it is clearly c.e. and∑

k>1

∑
σ∈U2k

2−|σ|+k =
∑
k>1

2kµ(U2k) 6
∑
k>1

2k2−2k =
∑
k>1

2−k = 1.

So by the Kraft-Chaitin Theorem there is a c such that K(σ) 6 |σ|−k+c
for all k > 1 and σ ∈ U2k. Now if A is Levin-Chaitin random then there is
a k such that K(A � n) > n− k+ c for all n, which implies that A /∈ U2k,
and hence that A is Martin-Löf random. a

Remark. We will often use the Kraft-Chaitin Theorem in conjunc-
tion with Kleene’s Recursion Theorem (see [125, Theorem II.3.1]). If we
uniformly enumerate Kraft-Chaitin sets Kn for n ∈ N and use the Kraft-
Chaitin theorem to obtain corresponding prefix-free machines Mn, then,
since the proof of the Kraft-Chaitin Theorem is effective, the Recursion
Theorem implies that there is an n such that Mn has coding constant
n. Thus, when we build a prefix-free machine M via the Kraft-Chaitin
Theorem, we can assume we know the coding constant c of M in advance
and use it in enumerating our requests (as long as the enumeration yields
a Kraft-Chaitin set for any value of c).

Recently, Miller and Yu [97] have proved significant generalizations of
Schnorr’s Theorem 3.8, which can be interpreted as saying that not only
is a set 1-random iff its initial segment complexity is always above n, but
the initial segment complexity of 1-random sets is “well above” n most of
the time.

Theorem 3.10 (Miller and Yu [97]). Let A be 1-random.

(i)
∑

n 2n−K(A�n) <∞.
(ii) For any function f such that

∑
n 2−f(n) = ∞,

∃∞n [K(A � n) > n+ f(n)].

Proof. Part (ii) follows easily from part (i). We give a proof of part
(i) due to Nies. Let

d(σ) =
∑
τ4σ

2|τ |−K(τ) +
∑
σ≺τ

2|σ|−K(τ).

It is easy to check that d is a c.e. martingale, and that
∑

n 2n−K(A�n) 6
lim supn d(A � n). But this limsup is finite, since A is 1-random. a
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Part (i) of Theorem 3.10 is known as the Ample Excess Theorem, and
improves a result of Chaitin [22], who showed that if A is 1-random then
limnK(A � n)−n = ∞. Part (ii) had been proved for computable functions
f by Solovay [129]. It is easy to check that if A is not 1-random, then (i)
and (ii) fail, so these conditions are actually equivalent to 1-randomness.

In this section we have seen that for certain natural notions of random-
ness, various approaches to the definition of randomness lead to the same
class, the 1-random sets. Later we will look at certain criticisms of this
notion and variations generated by such criticisms. We now turn to our
first approach to calibrating randomness.

§4. Solovay reducibility, and a characterization of 1-random
left-c.e. reals. Notice that a consequence of the Kraft-Chaitin Theorem
is that a real is left-c.e. iff it is the measure of the domain of a prefix-free
machine. Thus, in this setting, left-c.e. reals occupy the same place as c.e.
sets do in classical computability theory.

We have not yet seen an example of a 1-random set. Since the universal
Martin-Löf test defines an effectively null set, the collection of Martin-
Löf random reals has measure 1. One might well ask to what extent they
resemble one another, and how such resemblance might be measured.
Since for each k the set Pk = {A : ∀n [K(A � n) > n − k]} is a Π0

1-class
containing only 1-random sets, there are 1-random sets of low Turing
degree (by the Low Basis Theorem [58]), and 1-random left-c.e. reals
(since the leftmost path of a Π0

1-class is a left-c.e. real). On the other
hand, we have the following result.

Theorem 4.1 (Kučera [67]). If a 1-random set A has c.e. degree, then
A ≡T ∅′.

The most famous explicitly defined 1-random set is Chaitin’s Ω [20]:

Ω :=
∑

U(σ)↓

2−|σ| = µ(dom(U)),

where U is a universal prefix-free machine. This is the halting probability
of U . Notice that Ω is a left-c.e. real.

Here is a short proof that Ω is 1-random. It follows from Theorem 4.1,
and is not hard to check directly, that Ω ≡T ∅′, so in particular Ω is
not rational. Thus for each n there is an s with Ωs � n = Ω � n, where
Ωs :=

∑
Us(σ)↓ 2−|σ|. We build a prefix-free machine M . By the Recursion

Theorem, we can assume we know its coding constant c in U . Whenever at
a stage s we have Us(τ) = Ωs � n for some τ such that |τ | < n− c (which
means that KU (Ωs � n) < n− c), we choose a string µ not in the range of
Us and declare M(τ) = µ. Since M is coded in U with coding constant
c, there must be a ν such that |ν| 6 |τ | + c < n and U(ν) = M(τ) = µ.
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Since µ /∈ rng(Us), it follows that ν /∈ dom(Us), so Ω−Ωs > 2−|ν| > 2−n,
and hence Ω � n 6= Ωs � n. This procedure ensures that if |τ | < n− c then
U(τ) 6= Ω � n, whence KU (Ω � n) > n− c for all n.

Of course, the definition of Ω depends on the choice of universal prefix-
free machine, so we should really say that Ω is a halting probability,
rather than the halting probability, as it is commonly referred to. However,
the analog of Ω in classical computability is the halting problem ∅′ :=
{i : Φi(i) ↓}, and we usually talk about the halting problem, although
that situation is analogous, in that the definition of ∅′ depends on the
choice of enumeration of the partial computable functions. What allows us
to disregard this enumeration-dependence is Myhill’s Theorem (see [125,
Theorem II.4.6]), which says that all halting problems are essentially the
same, since they are all equivalent modulo a very strong reducibility.

Solovay [129] recognized this situation, and sought to introduce appro-
priate reducibilities to establish an analog to Myhill’s Theorem. As we now
discuss, Solovay’s program has been recently realized by the joint work of
several authors. Our starting point is the notion of Solovay reducibility,
or domination, introduced by Solovay in his manuscript [129].

Definition 4.2 (Solovay [129]). We say that a real α is Solovay re-
ducible to β (or that β dominates α), and write α 6S β, if there are a
constant c and a partial computable function f so that for all q ∈ Q with
q < β,

α− f(q) < c(β − q).

One way to look at this definition is that a sequence of rationals con-
verging to β can be used to generate one converging to α at the same
rate or faster. Indeed, if we have increasing computable sequences of ra-
tionals {rn}n∈ω and {qn}n∈ω converging to α and β, respectively, then
f(qn) ↓ for all n, and for each n we can effectively find a k such that
f(qn) < rk < α. This observation yields the following characterization of
Solovay reducibility.

Lemma 4.3 (Calude, Coles, Hertling, and Khoussainov [16]). For left-
c.e. reals α and β, let {rn}n∈ω and {qn}n∈ω be increasing computable se-
quences of rationals converging to α and β, respectively. Then α 6S β iff
there exist a total computable function g and a constant c such that for
all n,

α− rg(n) < c(β − qn).

Solovay [129] observed that this “analytic” version of m-reducibility
could be used to extend many results about Ω to a class of left-c.e. re-
als with a machine-independent definition, namely the Ω-like, or Solovay
complete, left-c.e. reals, which are those left-c.e. reals α such that β 6S α
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for all left-c.e. reals β. (It is not hard to show that Ω is Ω-like.) In par-
ticular, if a left-c.e. real is Ω-like, then it is 1-random. This result follows
from the following property of Solovay reducibility.

Lemma 4.4 (Solovay [129]). If α 6S β then K(α � n) 6 K(β � n) +
O(1).

Proof Sketch. The proof relies on the following fact observed by
Solovay: For each d there is a k such that, for all n > 1 and all σ, τ of
length n with |0.σ − 0.τ | < d2−n, we have |K(τ) −K(σ)| 6 k. Solovay’s
observation (which is also true for C) follows easily from the fact that
there are only O(d) many such τ for a fixed σ.

Now let f and c be as in Definition 4.2. Let βn = 0.(β � n). Since βn is
rational and β − βn < 2−(n+1), we have α − f(βn) < c2−(n+1). Thus, by
the observation, K(α � n) 6 K(f(βn) � n)+O(1). Since f is computable,
this implies that K(α � n) 6 K(β � n) +O(1). a

Using the Kraft-Chaitin Theorem, Calude, Hertling, Khoussainov, and
Wang [17] proved that if α is Ω-like, then α is the halting probability of
a universal prefix-free machine. We give a short proof based on a charac-
terization of Solovay reducibility by Downey, Hirschfeldt, and Nies [38].

Theorem 4.5 (Calude, Hertling, Khoussainov, and Wang [17]). Let α
be a left-c.e. real such that Ω 6S α. Then α is a halting probability. That
is, there is a universal prefix-free machine Û such that µ(dom(Û)) = α.

Proof. Let U be a universal prefix-free machine with Ω = µ(dom(U)).
In [38], it is shown that Ω 6S α implies that there are sequences of
rationals 0 = Ω0 < Ω1 < · · · and 0 = α0 < α1 < · · · converging to Ω and
α, respectively, and a constant c such that Ωs+1 − Ωs < 2c(αs+1 − αs)
for all s. Assume we have chosen c large enough so that α+ 2−c < 1 and
2−c < α.

Now β = α + 2−c(1 − Ω) is a left-c.e. real, so by the Kraft-Chaitin
Theorem there is a prefix-free machine M such that µ(dom(M)) = β,
and we can assume that there is a string ρ such that |ρ| = c and M(ρ)↓.
Define a prefix-free machine Û by letting Û(σ) = M(σ) if σ 6< ρ and
Û(ρτ) = U(τ). Then Û is universal, since it codes U , and µ(dom(Û)) =
µ(dom(M))− 2−c(1− Ω) = α. a

Kučera and Slaman finished the story by proving the following.

Theorem 4.6 (Kučera and Slaman [70]). Every 1-random left-c.e. real
is Ω-like.

Proof Sketch. Suppose that α is a 1-random left-c.e. real and β is a
left-c.e. real. We need to show that β 6S α. We enumerate a Martin-Löf
test {Rn}n∈ω in stages. Let {αs}s∈ω and {βs}s∈ω be increasing sequences
of rationals converging to α and β, respectively. At stage s, if αs ∈ Rn,s,
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do nothing, and otherwise put (αs, αs + 2−n(βs+1 − βts)) into Rn, where
ts is the last stage at which something was put into Rn. Now µ(Rn) <
2−nβ < 2−n, and thus {Rn}n∈ω is a Martin-Löf test. As α is 1-random,
there is an n such that α /∈ Rn, which implies that β 6S α with constant
2n. a

Theorem 4.6 gives great insight into the structure of the 1-random left-
c.e. reals. All that is needed for α to be 1-random is that K(α � n) >
n−O(1). But of course K(α � n) can be near n+K(n). In fact, we know
that the complexity of the initial segments of Ω must oscillate near this
bound, and, indeed, by the work of Solovay mentioned after the proof of
Theorem 3.10, all 1-random sets exhibit such oscillations. The Kučera-
Slaman Theorem says that all 1-random left-c.e. reals exhibit the same
pattern of complexity oscillation, and that in a strong sense, there is
essentially only one 1-random left-c.e. real.

Results such as the above motivate us to understand the structure of
left-c.e. reals under 6S. Naturally, this reducibility gives rise to equiv-
alence classes, called Solovay degrees. We denote the Solovay degree of
α by degS(α). It was observed by Solovay and others, such as Calude,
Hertling, Khoussainov, and Wang [17], that the Solovay degrees of left-
c.e. reals form an upper semilattice, with the join operation induced by
addition (or equivalently, multiplication); that is, degS(α) ∨ degS(β) =
degS(α + β) = degS(α · β). Downey, Hirschfeldt, and Nies [38] showed
that this upper semilattice is distributive, and established some of its
structural properties.

Theorem 4.7 (Downey, Hirschfeldt, and Nies [38]).
(i) The Solovay degrees of left-c.e. reals are dense. That is, if α <S β are

left-c.e. reals, then there is a left-c.e. real γ such that α <S γ <S β.
(ii) If β <S α <S Ω are left-c.e. reals, then there exist left-c.e. reals

γ1 |S γ2 such that β <S γ1, γ2 and α = γ1 + γ2. In other words, ev-
ery incomplete Solovay degree of left-c.e. reals splits over each lesser
degree.

(iii) If α and β are left-c.e. reals such that Ω = α+β then either α ≡S Ω
or β ≡S Ω. In other words, the complete Solovay degree of left-c.e.
reals does not split in the Solovay degrees of left-c.e. reals.4

Items (ii) and (iii) above demonstrate that 1-random left-c.e. reals are
qualitatively different from all other left-c.e. reals in the sense that they
cannot be split into two left-c.e. reals of lesser Solovay degree. It is im-
portant to realize that this is only true of left-c.e. reals. To see this, note
that if Ω = .a0a1 . . . and we let α = .a00a20a40 . . . and β = .0a10a30 . . . ,
then clearly neither α nor β can be 1-random, yet α+ β = Ω. But α and

4According to Kučera (personal communication), item (iii) in Theorem 4.7 had been
proved earlier by Demuth.
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β are not left-c.e. The fact that addition induces the join operation on
left-c.e. reals leads to another characterization of Solovay reducibility on
left-c.e. reals.

Theorem 4.8 (Downey, Hirschfeldt, and Nies [38]). Let α and β be left-
c.e. reals. Then α 6S β iff there exist a constant c and a left-c.e. real γ
such that

cβ = α+ γ.

Before we leave the Solovay degrees of left-c.e. reals, we note that their
structure is quite complicated.

Theorem 4.9 (Downey, Hirschfeldt, and LaForte [36]). The first-order
theory of the Solovay degrees of left-c.e. reals is undecidable.

The proof of Theorem 4.9 uses Nies’ method of interpreting effectively
dense Boolean algebras (see [103]), together with a technical construction
of a certain class of (strongly) c.e. reals.

Calude and Nies [18] proved that the 1-random left-c.e. reals are all
wtt-complete. This also follows from the result in Downey, Hirschfeldt,
and LaForte [35] that if β is a left-c.e. real and α is a strongly c.e. real,
then α 6S β implies α 6wtt β (and even α 6sw β, which will be defined
in Section 5.1). If we combine this result with the following theorem of
Demuth, and the fact that if a 1-random set has c.e. Turing degree then
it is Turing complete, we see that while a 1-random left-c.e. real is wtt-
complete, it is tt-incomparable with all noncomputable, incomplete c.e.
sets. In particular, no 1-random left-c.e. real can be tt-complete.

Theorem 4.10 (Demuth [29]). If A is 1-random and B 6tt A is non-
computable, then there is a 1-random set C ≡T B.

Proofs of Demuth’s Theorem can be found in Kautz [61, Theorem IV.3.16]
and Downey and Hirschfeldt [34].

§5. Other reducibilities that calibrate randomness. In [35], a
transitive preordering 6 on sets was said to be a measure of relative
randomness if it satisfies the Solovay property :

If A 6 B, then K(A � n) 6 K(B � n) +O(1).

This view of what constitutes a measure of relative randomness is too
restrictive, as it is tailored to reducibilities motivated by the incompress-
ibility approach to randomness, so we will instead use the termK-measure
of relative randomness. (In Section 5.3 we will see a reducibility motivated
by the unpredictability approach to randomness.)

Solovay reducibility is a K-measure of relative randomness, but it is
certainly not the only one. Moreover, it behaves reasonably only on the
left-c.e. reals; it is quite easy to construct a real α and a computable real
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β with β 
S α. Even on the left-c.e. reals, S-reducibility is too fine and
uniform (as we will see), and badly fails to capture relative complexity
exactly.

5.1. 6sw and 6rK. In [35], Downey, Hirschfeldt, and LaForte intro-
duced another K-measure of relative randomness called sw-reducibility
(strong weak truth table reducibility).

Definition 5.1. We say that A is sw-reducible to B, and write A 6sw

B, if there is a functional Γ such that ΓB = A and the use of ΓB(n) is
bounded by n+O(1).

Again it is not difficult to prove that 6sw is a K-measure of relative ran-
domness. This reducibility is quite close to one considered by Csima [26]
and Soare [126] in connection with work of Nabutovsky and Weinberger
[102] in differential geometry, the difference being that the use is bounded
by n in their case. Lewis and Barmpalias [80] have recently given an inter-
esting characterization of sw-reducibility in terms of Lipschitz continuity.

Downey, Hirschfeldt, and LaForte [35] showed that 6sw agrees with 6S

on the strongly c.e. reals, but the two notions are incomparable on the
left-c.e. reals, in the sense that there exist left-c.e. reals α, β, γ, δ with
α 6S β but α 
sw β, and γ 6sw δ but γ 
S δ. Furthermore, if α is a
noncomputable left-c.e. real, then there is a noncomputable strongly c.e.
real β 6sw α, but this is not true in general for 6S, as shown by the
following theorem, which is proved by a gap/co-gap argument.

Theorem 5.2 (Downey, Hirschfeldt, and LaForte [35]). There exists a
noncomputable left-c.e. real α such that all strongly c.e. reals S-below α
are computable.

By and large, however, sw-reducibility is very badly behaved, as wit-
nessed by the next two theorems.

Theorem 5.3 (Downey, Hirschfeldt, and LaForte [35]). The sw-degrees
of left-c.e. reals do not form an upper semilattice.

Theorem 5.4 (Yu and Ding [142]). There is no sw-complete left-c.e.
real. Thus the analog of the Kučera-Slaman Theorem 4.6 cannot hold for
sw-reducibility.

Theorem 5.4 says that while the initial segment complexity of all 1-
random left-c.e. reals is the same, there is no natural uniform way to get
the bits of one version of Ω from those of another.

On the other hand, there is something we can say about sw-hardness
with respect to c.e. sets.

Theorem 5.5 (Downey and Hirschfeldt [34]). Let α be a 1-random left-
c.e. real. Then B 6sw α for any c.e. set B. Thus, not only is Ω wtt-
complete, but it is sw-hard for c.e. sets.
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Proof. Since α is 1-random, there is a d such that K(α � n) > n−d for
all n. We build a prefix-free machine M using the Kraft-Chaitin Theorem.
By the Recursion Theorem, we can assume we know the coding constant
c of M in the universal prefix-free machine U . Whenever we see n > c+d
enter B at stage s, we enumerate a request 〈n−c−d, αs � n〉. The total cost
of these requests is bounded by

∑
n>c+d 2−(n−c−d) = 1, so the hypotheses

of the Kraft-Chaitin Theorem are satisfied. Thus for all n > c + d, if n
entersB at stage s, thenK(αs � n) 6 KM (αs � n)+c 6 n−c−d+c = n−d,
which implies that α � n 6= αs � n. So to compute B(n) for n > c + d,
it is enough to run the approximation of α until a stage s such that
α � n = αs � n, and then n ∈ B iff n ∈ Bs. Since the use of this
computation is n, it is an sw-reduction. a

The above proof can easily be modified to show that if α is a left-c.e.
real such that ∀n [K(α � n) > εn] for some ε > 0, then α is wtt-complete.

There have been several recent results on sw-reducibility. For instance,
Barmpalias [5] showed that there are no sw-maximal c.e. sets, and Barm-
palias and Lewis [6] showed that there are left-c.e. reals that are not
sw-below any 1-random left-c.e. real (cf. the comment following Theorem
12.1). It is not known whether there is a maximal sw-degree, although
Lewis and Barmpalias [80] showed that no 1-random set can have max-
imal sw-degree. On the other hand, they also showed that there are sw-
degrees degsw(A) that are quasi-maximal, in the sense that if A 6sw B
then B ≡T A. Indeed, they showed that every 1-random set has quasi-
maximal sw-degree.

Both S-reducibility and sw-reducibility are uniform in a way that rel-
ative initial-segment complexity is not. Motivated by this idea, Downey,
Hirschfeldt, and LaForte [35] introduced the following notion.

Definition 5.6. Let A and B be sets. We say that B is relative K-
reducible (rK-reducible) to A, and write B 6rK A, if there exist a partial
computable binary function f and a constant k such that for each n there
is a j 6 k for which f(A � n, j)↓= B � n.

Theorem 5.7 (Downey, Hirschfeldt, and LaForte [35]).

(i) 6rK is a K-measure of relative randomness.
(ii) If A 6sw B, then A 6rK B.
(ii) If α and β are left-c.e. reals and α 6S β, then α 6rK β.
(iii) A left-c.e. real α is rK-complete iff it is 1-random.
(iv) If A 6rK B then A 6T B.

The most interesting characterization of rK-reducibility (and the reason
for its name) is given by the following result, which shows that there is a
very natural sense in which rK-reducibility is an exact measure of relative
randomness. The prefix-free complexity K(τ | σ) of τ relative to σ is the
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length of the shortest string µ such that Uσ(µ) = τ , where U is a prefix-
free machine that is universal with respect to any oracle. We can define
C(τ | σ) analogously.

Theorem 5.8 (Downey, Hirschfeldt, and LaForte [35]). Let A and B
be sets. Then A 6rK B iff K(A � n | B � n) 6 O(1) (or, equivalently,
C(A � n | B � n) 6 O(1)).

The rK-degrees have many of the same nice structural properties as the
S-degrees.

Theorem 5.9 (Downey, Hirschfeldt, and LaForte [35]).
(i) The rK-degrees of left-c.e. reals form an upper semilattice with least

degree that of the computable sets and highest degree that of Ω.
(ii) For left-c.e. reals α and β, we have degrK(α)∨degrK(β) = degrK(α+

β).
(iii) The rK-degrees of left-c.e. reals are dense.
(iv) For any rK-degrees a < b < degrK(Ω) of left-c.e. reals, there are

rK-degrees c0 and c1 of left-c.e. reals such that a < c0, c1 < b and
c0 ∨ c1 = b.

Of course, Theorem 4.7 (iii) implies that degrK(Ω) cannot be split in the
rK-degrees of left-c.e. reals. We do not know whether the rK-degrees are
distributive. The theories of the sw- and rK-degrees have not yet been
proved to be undecidable, though this must surely be the case.

5.2. The basic measures 6K and 6C . Of course, we are particularly
interested in the measure of relative complexity defined by the Solovay
property: We say that A is K-reducible to B, and write A 6K B, if

K(A � n) 6 K(B � n) +O(1).

The preordering 6C is defined analogously. Note that 6K is not really a
reducibility , but simply a transitive preordering measuring relative com-
plexity. This is best seen by the following result.

Theorem 5.10 (Yu, Ding, and Downey [144]). |{A : A 6K Ω}| = 2ℵ0 .

In Theorem 5.10, we can replace Ω by any 1-random set. In Section 13
we will see that Joe Miller has proved that the K-degree of any 1-random
set is countable. (This is consistent, since there is no natural join operator
on the K-degrees, or indeed any join operator at all; see Corollary 13.4.)

In Section 6 we will see that 6K does not imply 6T, even on the c.e.
sets. Interestingly, 6C does imply 6T on the left-c.e. reals.

Theorem 5.11 (Stephan (personal communication); see [34]). If α and
β are left-c.e. reals such that α 6C β, then α 6T β.

Theorem 5.11 generalizes an old result of Chaitin [20] (which generalizes
an even older result of Loveland [82]).
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Theorem 5.12 (Chaitin [20]). Suppose that either C(A � n) 6 C(n) +
d for an infinite computable set of n or C(A � n) 6 log n + d for an
infinite computable set of n. Then A is computable. Furthermore, for a
given constant d, there are only O(2d) many such A.

Before we turn to the very interesting relationship of 6K to 6T, we look
at the structure of the left-c.e. reals under 6K . There are obvious simi-
larities between Theorems 4.7 and 5.9. Downey and Hirschfeldt [34] have
proved the following generalization, which applies to 6K in particular.

Theorem 5.13 (Downey and Hirschfeldt [34]). Let 6Q be any K-mea-
sure of relative randomness with a Σ0

3 definition on the left-c.e. reals, such
that the least Q-degree of left-c.e. reals contains the computable reals, the
top Q-degree of left-c.e. reals is that of Ω, and + induces a join on the
Q-degrees of left-c.e. reals. Then the following hold.
(i) The Q-degrees of left-c.e. reals are dense.
(ii) For any Q-degrees a < b < degQ(Ω) of left-c.e. reals, there are Q-

degrees c0 and c1 of left-c.e. reals such that a < c0, c1 < b and
c0 ∨ c1 = b.

At a talk by the first author in Heidelberg, in May 2003, Alexander
Shen pointed out that a natural measure of relative randomness could be
obtained by replacing the constant in the definition of K-reducibility by
O(log n). That is, he suggested considering the ordering defined by letting
A 6 B if K(A � n) 6 K(B � n)+O(log n). The reason for this suggestion
is that various approaches to defining relative randomness are equivalent
up to a log factor, and hence this definition would be independent of the
choice of approach. We will not discuss this line of research here, but point
to a paper by Chernov, Muchnik, Romashchenko, Shen, and Vereshchagin
[24]. Notice that this ordering is still Σ0

3.
The measures 6C and 6K seemed at first difficult to deal with directly,

and even now there is much about them that is not known. In view of
Theorem 5.10, it was not even clear whether there are uncountably many
K-degrees. This question was recently solved by showing that while the
cardinality of the collection of sets K-below a given set can be large, its
measure is always small.

Theorem 5.14 (Yu, Ding, and Downey [144]). For any set B, we have
µ({A : A 6K B}) = 0. Hence there are uncountably many K-degrees of
1-random sets.

Using Theorem 5.14, Yu and Ding [143] established the following result.

Theorem 5.15 (Yu and Ding [143]). There are 2ℵ0 many K-degrees of
1-random sets.

It was later noticed that this result follows directly from Theorem 5.14
by Silver’s Theorem [124] that any coanalytic equivalence relation on 2ω
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with uncountably many equivalence classes has continuum many equiva-
lence classes. Of course, it also follows from Miller’s result (Theorem 13.9)
that the K-degree of any 1-random set is countable.

The following are examples of basic questions about the K-degrees that
remain open. (A minimal pair is a pair of degrees a,b such that if c is
below both a and b, then c = 0.)

Question 5.16. Are there minimal pairs of K-degrees of left-c.e. reals?
Do the K-degrees of left-c.e. reals form a lattice?

For reducibilities such as 6S and 6rK, the existence of minimal pairs fol-
lows from the existence of minimal pairs in the Turing degrees. A minimal
pair of K-degrees (not containing left-c.e. reals) was recently constructed
by Csima and Montalbán [27], using Theorem 6.4 below.

In Downey and Hirschfeldt [34] it is shown that neither the S-degrees
nor the rK-degrees of left-c.e. reals form a lattice, by a straightforward
adaptation of Jockusch’s proof [55] of the corresponding fact for the wtt-
degrees of left-c.e. reals.

There are a number of exciting recent results on 6K and 6C due to
Liang Yu and Joe Miller. We will discuss some of these in Section 13.

5.3. Other ways to compare randomness. It is possible to define
measures of relative randomness based on other approaches to random-
ness. In unpublished work, Downey, Griffiths, and Hirschfeldt studied
supermartingale reducibility, where A 6su B if d(B � n) = O(d(A � n)),
where d is an optimal c.e. supermartingale, as defined in Section 3.2.
Clearly, there is a greatest su-degree, consisting of the 1-random sets
(which implies that 6su is not a K-measure of relative randomness).
Downey, Griffiths, and Hirschfeldt showed that the computable sets form
the least su-degree, and that addition induces a join on the su-degrees of
left-c.e. reals. Thus Theorem 5.13 applies to 6su. It is not known whether
there is an exact characterization of 6su in terms of initial segment com-
plexity.

It would be interesting to define a measure of relative randomness based
on the measure-theoretic approach.

§6. K-triviality, Post’s Problem, and generalizing the Kučera-
Slaman Theorem.

6.1. K-trivial sets. We return to the fascinating interrelationship be-
tween 6K and 6T. A natural question is whether 6K implies 6T. We have
seen that if A 6C ∅ then A must be computable. Using a relativization
of the method of the proof of this fact, Chaitin showed the following.

Theorem 6.1 (Chaitin [21]). If K(A � x) 6 K(x) + O(1), then A 6T

∅′.
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Surprisingly, we cannot replace ∅′ by ∅ in the above result. That is,
although A may look identical to the computable sets in terms of initial
segment prefix-free complexity, we cannot conclude that A is computable,
even for c.e. sets A.

We say that a set A is K-trivial if A 6K ∅. Solovay [129] was the first to
construct a noncomputable K-trivial set; this construction was adapted
to the case of c.e. sets by Zambella [145] (see also Calude and Coles [15]).
In [39], Downey, Hirschfeldt, Nies, and Stephan gave a new construction
of a noncomputable K-trivial c.e. set, which we present below. (A similar
construction had been produced independently by Kummer in unpub-
lished work.) As we will later see, this construction gives a priority-free,
and even a requirement-free, solution to Post’s Problem.

Theorem 6.2 (Zambella [145], after Solovay [129]). There is a non-
computable c.e. set A such that K(A � n) 6 K(n) +O(1).

Remark. While the proof below is easy, it is slightly hard to see why
it works. So, by way of motivation, suppose that we were to asked to
“prove” that ∅ has the same initial segment complexity complexity as ω. A
complicated way to do this would be to build our own prefix-free machine
M whose only job is to compute initial segments of ∅. The idea would
be that if the universal prefix-free machine U converges to 1n on input σ
then M(σ)↓= 0n. Notice that, in fact, using the Kraft-Chaitin Theorem
it would be enough to build M implicitly, enumerating the length request
〈|σ|, 0n〉. We are guaranteed that

∑
τ∈dom(M) 2−|τ | 6

∑
σ∈dom(U) 2−|σ| 6 1,

and hence the Kraft-Chaitin Theorem applies. Note also that we could, for
convenience and as we do in the main construction, use a string of length
|σ|+ 1, in which case we would ensure that

∑
τ∈dom(M) 2−|τ | < 1/2.

Proof of Theorem 6.2. We will build a noncomputable c.e. set A in
place of ∅ in the remark and, as above, we will slavishly follow the universal
prefix-free machine U on n in the sense that whenever U enumerates,
at stage s, a shorter σ with U(σ) = n, we will enumerate a request
〈|σ|+ 1, As � n〉 for our machine M . To make A noncomputable, we will
also sometimes make As � n 6= As+1 � n. Then for each j with n 6 j 6 s,
for the currently shortest string σj computing j, we will also need to
enumerate a request 〈|σj |, As+1 � j〉 for M . The construction works by
making this extra measure added to the domain of M small.

We are ready to define A:

A := {n : ∃e∃s [We,s ∩As = ∅ ∧ n > 2e ∧ n ∈We,s ∧∑
n6j6s

2−Ks(j) < 2−(e+2)]},

where We,s is the stage s approximation to the e-th c.e. set We and Ks(j)
is the stage s approximation to the K-complexity of j.
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Clearly A is c.e. Since
∑

j>m 2−K(j) goes to zero as m increases, if We

is infinite then A ∩We 6= ∅. Since A is also coinfinite, this implies that
A is noncomputable. Finally, the extra measure put into the domain of
M , beyond one half of that which enters the domain of U , is bounded by∑

e 2−(e+2) (corresponding to at most one initial segment change for each
e), whence∑

σ∈dom(M)

2−|σ| 6
∑

σ∈dom(U)

2−(|σ|+1) +
∑

e

2−(e+2) 6
1
2

+
1
2

= 1.

So the Kraft-Chaitin Theorem applies, and M is a well-defined prefix-free
machine. Thus K(A � n) 6 K(n) +O(1). a

The above proof can be modified to prove the result, due to Muchnik
(see [12]), that there exists a noncomputable c.e. set A that is low for K, in
the sense that K-complexity relativized to A is the same as K-complexity,
up to an additive constant, i.e., K(σ) 6 KA(σ)+O(1). Such an A is both
K-trivial and low for 1-randomness (which will be formally defined in
Section 7, but means that relativizing the definition of 1-randomness to
A does not change the class of 1-random sets). We will later see that these
concepts are all equivalent, as shown by the work of Nies (see Sections 7
and 8).

Clearly the above proof also admits many variations. For instance, we
can make A promptly simple, or below any nonzero c.e. degree. We cannot
control the jump or make A Turing complete, since the K-trivial sets are
nonhigh, as shown by Downey, Hirschfeldt, Nies, and Stephan [39] (and
in fact low, as shown by Nies [105]); see Sections 6.2, 7, and 8.

As we will see in Section 6.2, the construction above automatically yields
a Turing incomplete c.e. set. It is thus an injury-free solution to Post’s
Problem. It is not, however, priority-free, in that it depends on an ordering
of the simplicity requirements, with stronger requirements allowed to use
up more of the domain of the machine M . We can do methodologically
better by giving a priority-free solution to Post’s Problem, in the sense
that no explicit diagonalization (such as that of We above) occurs in the
construction of the incomplete c.e. set, and therefore the construction of
this set (as opposed to the verification that it is noncomputable) does not
depend on an ordering of requirements. We now sketch this method, which
is due to Downey, Hirschfeldt, Nies, and Stephan [39], and is rather more
like that of Solovay’s original proof of the existence of a noncomputable
K-trivial set.

Let us reconsider the key idea in the proof of Theorem 6.2. At certain
stages we wish to change an initial segment of A for the sake of diago-
nalization. Our method is to make sure that the total measure added to
the domain of our machine M (which proves the K-triviality of A) due
to such changes is bounded by 1. Suppose, on the other hand, that we
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were fortunate enough to have the universal machine itself “cover” the
measure needed for these changes. That is, suppose we were at a stage s
where we desired to put n into As+1 − As, and at that very stage Ks(j)
changed for all j ∈ {n, . . . , s}. That means that in any case we would
need to enumerate new requests describing As+1 � j for all j ∈ {n, . . . , s},
whether or not these initial segments change. Thus at that very stage, we
could also change As � j for all j ∈ {n, . . . , s} at no extra cost.

Notice that we would not need to copy the universal prefix-free machine
U at every stage. We could enumerate a collection of stages t0, t1, . . . and
only update M at stages ti. Thus, for the lucky situation outlined above
to occur, we would only need the approximation to K(j) to change for
all j ∈ {n, . . . , ts} at some stage u with ts 6 u 6 ts+1. This observation
would seem to allow a greater possibility for this lucky situation to occur,
since many stages can occur between ts and ts+1.

The key point in this discussion is the following. Let t0, t1, . . . be a
computable collection of stages. Suppose that we construct a set A =⋃

sAts so that for n 6 ts, if Ats+1
� n 6= Ats

� n then Kts(j) > Kts+1(j)
for all j with n 6 j 6 ts. Then A is K-trivial. We are now ready to define
A in a priority-free way.

A Priority-Free Solution to Post’s Problem. Let t0, t1, . . . be
a collection of stages such that ti as a function of i dominates all primitive
recursive functions. (Actually, we do not need i 7→ ti to be quite this fast
growing; see below for more details.) At each stage u, let {ai,u : i ∈ ω}
list Au. Define

Ats+1 = Ats ∪ {an,ts , . . . , ts},
where n is the least number 6 ts such that Kts+1(j) < Kts(j) for all
j ∈ {n, . . . , ts}. (Naturally, if no such n exists, Ats+1 = Ats .) Requir-
ing the complexity change for all j ∈ {n, . . . , ts}, rather than just j ∈
{an,ts , . . . , ts}, ensures that A is coinfinite, since for each n there are only
finitely many s such that Kts+1(n) < Kts(n).

Note that there is no priority used in the definition of A. It is like
the Dekker deficiency set or the so-called “dump set” (see Soare [125],
Theorem V.2.5).

It remains to prove that A is noncomputable. By the Recursion Theo-
rem, we can build a prefix-free Turing machine M and know the coding
constant c of M in the universal prefix-free machine U . That is, if we
declare M(σ) = j then we will have U(τ) = j for some τ such that
|τ | 6 |σ| + c. Note further that if we put σ into the domain of M at
stage ts, then τ will be in the domain of U by stage ts+1 − 1. (This is
why we required i 7→ ti to dominate the primitive recursive functions.
In fact, we only need this function to dominate the overhead of the Re-
cursion Theorem; that is, we only need the property that if σ enters the
domain of M at stage ts, then there is a τ such that |τ | 6 |σ| + c and
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Uts+1−1(τ)↓= M(σ). The use of a fast growing sequence of stages was the
key insight in Solovay’s original construction.)

Now the proof looks like that of Theorem 6.2. We devote 2−(e+1) of the
domain of our machine M to ensuring that A satisfies the e-th simplicity
requirement. When we see an,ts occur in We,ts , where

∑
n6j6ts

2−Kts (j) <

2−(e+c+2), we provide shorter Mts descriptions of all j with n 6 j 6 ts so
that Kts+1(j) < Kts(j) for all such j. The cost of this change is bounded
by 2−(e+1), and an,ts will enter Ats+1 , as required. a

While the above proof does make use of an ordering of the simplicity
requirements, it does so only in the verification of the fact that A is not
computable, and not in the construction of A, which remains priority-free.

One remarkable fact about the K-trivial sets is that there are few of
them for any given witnessing constant (cf. Theorem 5.12).

Theorem 6.3 (Zambella [145]). For each d there are O(2d) many sets
A such that K(A � n) 6 K(n) + d for all n.

Proofs of this theorem can be found in [39] and [34].
Recently, Csima and Montalbán [27] have shown that there is a gap

between the initial segment complexity of K-trivial sets and that of non-
K-trivial sets, mirroring the gap in initial segment complexity between 1-
random sets and non-1-random sets illustrated by results such as Theorem
3.10.

Theorem 6.4 (Csima and Montalbán [27]). There is a nondecreasing
unbounded function f such that if A is not K-trivial then K(A � n) >
K(n) + f(n)−O(1).

As mentioned above, Csima and Montalbán [27] used this result to show
that there is a minimal pair of K-degrees.

6.2. K-trivial sets solve Post’s Problem. While we will see im-
provements on the following results when we consider Nies’ work in Sec-
tions 7 and 8, we remark that K-trivial sets are necessarily Turing incom-
plete, and indeed not of high degree, and hence form a somewhat natural
solution to Post’s Problem.

Theorem 6.5 (Downey, Hirschfeldt, Nies, and Stephan [39]). If a set
A is K-trivial then A is Turing incomplete. Indeed, A is not even high.

We discuss the proof of this theorem in Section 8. The original proof can
be found in [39].

Downey, Hirschfeldt, Nies, and Stephan [39] proved that the class of
K-trivial sets is closed under wtt-reduction and ⊕. The former will be
improved to Turing reduction in Section 8. As Nies has remarked, this
means that the K-trivial c.e. sets are the only known natural nontrivial
Σ0

3 ideal in the (c.e.) Turing degrees.
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Note also that, since 6C implies 6T for c.e. sets, the existence of non-
computable K-trivial c.e. sets means that 6K does not imply 6C .

Question 6.6. Does 6C imply 6K (for the left-c.e. reals)? We conjec-
ture that the answer is no.

6.3. Generalizing Kučera-Slaman. Theorem 4.6 implies that there
is essentially only one 1-random left-c.e. real, and it is Ω. So the strongest
possible extension for the left-c.e. reals of the fact that there are noncom-
putable K-trivial sets would be that if α is a nonrandom left-c.e. real then
there is a left-c.e. real β ≡K α such that β 
T α. The following theorem
clarifies the situation.

Theorem 6.7 (Downey and Yang [44]). Suppose that a left-c.e. real α
has the property that for every left-c.e. real β 6K α, we have β 6T α.
Then α is Turing complete.

Notice that there are such nonrandom left-c.e. reals α. Indeed we can take
α = ∅′, since β 6wtt ∅′ for every left-c.e. real β.

§7. Lowness for 1-randomness. In this section, we discuss rela-
tivized randomness and lowness properties for the class of 1-random sets.

Relativized randomness was studied by several authors, including van
Lambalgen [74], Kurtz [73], and Kautz [61]. The definition of 1-random-
ness relative to A is obtained by substituting “c.e.” by “A-c.e.” in Defini-
tion 3.1. That is,X is 1-random relative to A if there is no uniformly A-c.e.
sequence {Ui}i∈ω of ΣA

1 -classes with µ(Ui) 6 2−i such that X ∈
⋂

i Ui.
We can similarly relativize notions such as c.e. martingale and prefix-free
Kolmogorov complexity, and obtain the relativized versions of Theorems
3.4 and 3.8.

In computability theory a set A is called low if A′ 6T ∅′, where A′ is the
halting problem relativized to A; that is, if the complexity of the halting
problem does not increase when relativized to A (and hence the class of
∆0

2 sets does not change when relativized to A). In complexity theory, if
a class C has a definition that relativizes, a set A is called low for C (or
C-low) if C = CA. So the low sets from computability theory are those
that are low for the class of ∆0

2 sets. Similarly, a set A such that every
1-random set is 1-random relative to A is called low for the 1-random sets,
or low for 1-randomness.

Clearly, every computable set is low for 1-randomness. M. van Lam-
balgen and D. Zambella asked whether there exist noncomputable sets
that are low for 1-randomness. (The question was first stated in Zambella
[145].) This question was raised in the context of a comparison between
randomness properties in classical dynamic systems (specifically, Bernoulli
sequences) and computability-theoretic randomness. A result of Kamae
[59] showed that the infinite binary sequences that have no information
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about Bernoulli sequences (normal sequences) are precisely those with
zero entropy. This fact raised the issue of whether a similar characteri-
zation exists for sets that have no information about 1-random sets, and
motivated the question of the existence of noncomputable sets that are
low for 1-randomness, which was answered by Kučera and Terwijn [71].

Theorem 7.1 (Kučera and Terwijn [71]). There exists a noncomput-
able c.e. set that is low for 1-randomness.

Proof. It is not difficult to build a c.e. operator I such that IA is a
universal Solovay test relative to A for every oracle A. (Here we think of
Solovay tests as collections of basic clopen sets.) Given a set A, we can
attempt to cover IA with an unrelativized Solovay test J by adding [σ] to
J at stage s whenever [σ] is in IAs at stage s. We then have J ⊇ IA, but
we also need to build A to ensure that µ(

⋃
J) =

∑
[σ]∈J µ([σ]) <∞, and

hence J is a Solovay test. That is, we need to build A so that the total
measure of the “mistakes” we make in approximating IA is not too big.

The crucial idea comes from [71]: Let Ms(n) be the collection of σ which
are in IAs at stage s with use greater than n. If n /∈ As and we enumerate
n into A, then the elements of Ms(n) may be in J − IA, where J is as
above, so we need to ensure that µ(

⋃
Ms(n)) for n ∈ As+1 −As is small,

while still making A noncomputable. Thus at each stage s, for the least
e < s such that As ∩We,s = ∅, if there is an n ∈ We,s such that n > 2e
and µ(

⋃
Ms(n)) < 2−e, then we put the least such n into A.

It is easy to see that such an enumeration can happen at most once for
each e, and hence the total measure of our mistakes, namely the sets in
J − IA, is bounded by

∑
e 2−e, which implies that J is a Solovay test.

If X is not 1-random relative to A then X is in infinitely many elements
of IA, and hence X is in infinitely many elements of J , which implies that
X is not 1-random. Thus A is low for 1-randomness, so the only thing
left to prove is that A is noncomputable. Since A is clearly coinfinite, it
is enough to show that if We is infinite then A ∩We 6= ∅.

Given e such that We is infinite, let s be a stage such that for all i < e
we have A ∩Wi 6= ∅ ⇒ As ∩Wi,s 6= ∅. Suppose for a contradiction that
A ∩We = ∅. It is easy to build sequences 2e < n0 < n1 < n2 < · · · and
s 6 s0 < s1 < s2 < · · · such that the Msi(ni) are pairwise disjoint and
ni ∈ We,si for each i. Since ni /∈ A for all i, it must be the case that
µ(

⋃
Msi(ni)) > 2−e for all i. But Msi(ni) ⊂ J for all i, so µ(

⋃
J) = ∞,

contradicting the fact that J is a Solovay test. a
Kučera and Terwijn left open questions about the possible complexity

of sets that are low for 1-randomness. As we will see, this complexity is
restricted in various ways. For instance, if A is low for 1-randomness then
it is GL1, meaning that A′ 6T A⊕∅′ (Kučera [69]; see also Corollary 7.8),
and has certain traceability properties.
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Definition 7.2 (Zambella, see [135]). A set A is c.e.-traceable if there
is a computable function p such that, for each function f 6T A, there is
a computable function h (called a trace for f) satisfying, for all n,
(i) |Wh(n)| 6 p(n) and
(ii) f(n) ∈Wh(n).

It is not hard to check that the above definition does not change if
we replace “there is a computable function p” by “for every unbounded
nondecreasing computable function p” (cf. Proposition 11.2). Since one
can uniformly enumerate all c.e. traces for a fixed bound p, there is a
universal trace with bound p, that is, one that traces each function f 6T A
on almost all inputs.

Theorem 7.3 (Terwijn and Zambella [137]). If A is low for 1-random-
ness then A is c.e.-traceable.

Nies [104] has recently improved this result by replacing c.e.-traceability
with a stronger property called jump-traceability; see [104] for details.

Kučera, Terwijn, and Zambella asked whether all sets that are low for
1-randomness are ∆0

2. It was also noted by Downey, Hirschfeldt, Nies, and
Stephan [39] that the construction in the proof of Theorem 7.1 bears a
close resemblance to that of a K-trivial set. This is no coincidence, as the
two classes are in fact the same!

Theorem 7.4 (Nies [105]). A set A is low for 1-randomness iff A is
K-trivial.

Both directions of this theorem are rather hard to prove, particularly
the “if” direction, which will be discussed in Section 8. The proof of this
direction is based on Nies’ proof that the class of K-trivial sets is closed
downward under Turing reducibility, and is necessarily nonuniform, in a
sense that will be made precise below. As we will see in Section 8, it can
be extended to show that every K-trivial set is low for K (as defined in
Section 6.1).

The proof of the “only if” direction of Theorem 7.4 went through various
stages; see Nies [106] for details. One approach is to convert the hypothesis
that A is low for 1-randomness into a combinatorial condition, which can
then be used to establish the K-triviality of A. For instance, an early
version of the proof used the condition, due to Frank Stephan, that for
some Σ0

1 open set R ⊂ 2ω of measure less than 1,

∃b ∈ ω ∀σ ∈ 2<ω [KA(σ) 6 |σ| − b ⇒ [σ] ⊆ R],

whereKA denotes prefix-free complexity relative to A. This condition says
in essence that A cannot be used to reduce the prefix-free complexity of
very many strings. A more recent version of the proof uses martingales,
and will be sketched in the proof of Theorem 11.12 below. We will see
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another approach to establishing this direction of Theorem 7.4 in Theorem
8.10 below.

For c.e. sets A, however, there is an easier proof. In fact, Nies, Stephan,
and Terwijn [109] have shown that in this case it suffices to require that
A be low for Ω, which is defined as follows.

Definition 7.5. A set B is low for Ω if Ω is 1-random relative to B.

Theorem 7.6 (Nies, Stephan, and Terwijn[109]). If a c.e. set A is low
for Ω then it is K-trivial.

The hypothesis that A be c.e. cannot be entirely dropped. As we will
see in Theorem 12.8 below, every 2-random set is low for Ω, so the class
of sets that are low for Ω has measure 1! On the other hand, Theorem
8.10 will show that Theorem 7.6 can be extended to all ∆0

2 sets A.

Proof Sketch of Theorem 7.6. We enumerate a Martin-Löf test
{RA

d }d∈ω relative to A, and use the fact that there is a d such that Ω /∈ RA
d

to define a Kraft-Chaitin set Ld that shows that A is K-trivial (that is,
for each n there is a request 〈r,A � n〉 ∈ Ld for some r 6 K(n) + d+ 1).

We define Ld as a union S∪Cd, where S supplies a new request whenever
the approximation to K(n) decreases, and Cd does the same when A � n
changes (after some delay).

Let S = {〈Ks(n) + 2, As � n〉 : n, s ∈ ω ∧ Ks(n) < Ks−1(n)}. It is easy
to check that S is a Kraft-Chaitin set of weight 6 Ω/2 < 1/2.

When k enters A at stage s, we want to enumerate requests 〈Ks(n) +
d+ 1, As � n〉 into Cd for each n with k < n 6 s. We also want to ensure
that Cd is a Kraft-Chaitin set of weight at most 1/2, which implies that
Ld = S∪Cd is a Kraft-Chaitin set. To do so, we “force” the approximation
to Ω to increase by 2−Ks(n)−d before we put 〈Ks(n)+d+1, As � n〉 into Cd.
This allows the weight of requests enumerated into Cd to be “accounted
against” increases of Ω. (That is, it ensures that increases in the weight of
Cd are bounded by increases in the approximation to Ω, or more precisely,
one half of such increases.)

The increase in Ω is achieved by putting an interval [Ωs,Ωs+2−Ks(n)−d]
into RA

d with an A-use n. Either A changes below n (in which case we
do not need the new request anymore, and have not enumerated it into
RA

d ), or Ω has to move out of the interval, since we are assuming that
Ω /∈ RA

d . a
Notice that this proof shares some elements with that of Kučera and
Slaman [70] showing that each 1-random left-c.e. real is Solovay complete
(Theorem 4.6).

¿From Theorem 7.4 we can conclude that all K-trivial sets are low, as
we now see.
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Theorem 7.7 (Nies and Stephan (unpublished)). If a ∆0
2 set A is B-

random, then B is GL1.

Proof. Let f(n) be the least s such that ∀t > s [At � n = As � n]. Note
that f 6T ∅′. Let R̂e be the open set [Ase

� e+1] where se is the stage at
which ΦB

e (e) converges (or R̂e = ∅ if ΦB
e (e)↑). Let Ri =

⋃
e>i R̂e. Clearly,

{Ri}i∈ω is a Martin-Löf test relative to B. Since A /∈
⋂

iRi, only finitely
many R̂e’s contain A. Thus f(e) > se for almost all e such that ΦB

e (e)↓.
So using f and B, we can compute whether ΦB

e (e) ↓, which implies that
B′ 6T B ⊕ ∅′. a

Applying this result with A = Ω, we obtain the following corollary, first
proved by Nies, Stephan, and Terwijn [109].

Corollary 7.8 (Nies, Stephan, and Terwijn [109]). Every set that is
low for Ω is GL1.

Since all K-trivial sets are ∆0
2, by Theorem 7.4 we have the following

result.

Corollary 7.9 (Nies [105]). Every K-trivial set is low.

§8. Characterizing the K-trivial sets. In this section we discuss
the harder direction of Theorem 7.4, along with several related results
about the class K of K-trivial sets. These results indicate that K is a
robust class, in the sense that it captures several different intuitive no-
tions of computational weakness related to randomness, and is of great
computability-theoretic interest.

Recall from Section 6.1 that A is low for K if K(σ) 6 KA(σ) + O(1);
that is, using A as an oracle does not help us to reduce the prefix-free
complexity of any string (up to a constant). Let M denote the class of
sets that are low for K. This class was studied by Muchnik; as mentioned
above, he showed that it contains a noncomputable set (see [12]).

If A 6T B then KB(σ) 6 KA(σ) + O(1), so M is closed downward
under 6T. Since both 1-randomness and K-triviality are defined in terms
of prefix-free complexity, if a set is low for K then it is both low for
1-randomness and K-trivial.

In Nies [105], Theorem 7.4 is proved in two separate pieces, by showing
that both the class of sets that are low for 1-randomness and K actually
coincide with M. We have already discussed the fact that lowness for
1-randomness implies K-triviality (and will return to it at the end of this
section, when we discuss bases for 1-randomness). The converse follows
immediately from the following theorem.

Theorem 8.1 (Nies and Hirschfeldt, see Nies [105]). Every K-trivial
set is low for K.
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The proof of this result is a reasonably straightforward modification of
that of the following theorem.

Theorem 8.2 (Nies [105]). The class K is closed downward under Tur-
ing reducibility.

As we will discuss below, the proof of Theorem 8.2 also yields the result
that the construction in the proof of Theorem 6.2 is in fact a character-
ization of K, in that it is in essence the only way to obtain a K-trivial
set!

Proof Sketch of Theorems 8.1 and 8.2. We first discuss the eas-
ier proof that every K-trivial set is Turing incomplete, but present it as
a “projection” of the proofs of Theorems 8.1 and 8.2 in Nies [105]. We
then briefly discuss the modifications needed to convert this argument
into proofs of Theorems 8.1 and 8.2.

Assume for a contradiction that ∀n [K(A � n) 6 K(n) + b] and A is
Turing complete. By Theorem 6.1, we can choose a ∆0

2 approximation
{As}s∈ω to A. We will enumerate requests into a Kraft-Chaitin set L (in
fact enumerating at most one request 〈r, n〉 for each n ∈ ω, with r ∈ ω).
The weight of X ⊆ ω is

wt(X) :=
∑

{2−r : 〈r, n〉 ∈ L ∧ n ∈ X}.

This weight coincides with the measure of the corresponding descriptions
given by the prefix-free machine Md defined by L (using the Kraft-Chaitin
Theorem). Roughly, we will enumerate appropriate requests 〈r, n〉 into L
in order to ensure that K(n) 6 r + d. Since A is K-trivial via b, at some
stage s after this enumeration the opponent has to give a short description
of As � n, by ensuring that Us(σ) = As � n for some σ with |σ| 6 r+d+b,
where U is the universal prefix-free machine that is being used to defineK.
We use the Turing completeness of A to make the approximation to A � n
change after stage s, so that the opponent has to come up with a short
description of the new approximation to A � n. If we can change A often
enough, then the measure corresponding to the opponent’s descriptions
exceeds 1, which is impossible.

More precisely, by the Recursion Theorem we can assume we have an
index d such that Md is a prefix-free machine corresponding to L in the
sense of the Kraft-Chaitin Theorem. If we let c = b + d, then as an
answer to our enumeration of the request 〈r, n〉 into L, the opponent has
to provide a U -description of A � n of length 6 r + c. Let k = 2c+1. If
we manage to put requests of total weight 1/2 into L and also force the
approximation to A � n to change at least k times for each n mentioned
in our requests, then the total measure of the opponent’s descriptions
will exceed 1. (Here we only count a change in the approximation to



CALIBRATING RANDOMNESS 33

A � n if the opponent has provided a short description of the previous
approximation to this initial segment.)

The proof is much easier if we assume that ∅′ 6wtt A. In this case,
we build an auxiliary c.e. set B, and by the Recursion Theorem we can
assume we are given a total wtt-reduction Γ such that B = ΓA, with use
bounded by a computable increasing function g. Let n = g(k). We put the
single request 〈0, n〉 into L. (The weight of this single request is 1.) Each
time ΓAs(j) converges to Bs(j) for all j < k and the opponent provides
a U -description of As � n of length 6 c, we force the approximation to
A � n to change by putting into B the largest number < k that is not yet
in B. Once we reach k such changes, the total measure of U -descriptions
is at least k2−c > 1, which is a contradiction.

For the Turing case, we still build B and have a total reduction ΓA = B
given by the Recursion Theorem, but now there is no computable bound
on the use γA of ΓA. The problem now is that, when we have an m such
that γAs(m) = n and we put a request 〈r, n〉 into L, the opponent might,
before providing a short description of As � n, move γA(m) beyond n,
thereby depriving us of the possibility of causing further changes in the
approximation to A � n by enumerating numbers < m into B. Broadly
speaking, the solution is to carry out many attempts, based on different
computations ΓA(m). Each time the use of such a computation changes,
some of what we placed in L for this attempt becomes “garbage”, but as
the reduction Γ is total, this only happens finitely often for each m. We
have to ensure that the total weight of the garbage produced by all our
attempts is limited, since otherwise L will not be a Kraft-Chaitin set.

For each s, we can effectively determine a stage f(s) > s such that
∀n < s [Kf(s)(Af(s) � n) 6 Kf(s)(n) + b]. Let s0 = 0 and si+1 = f(si).
The construction is restricted to stages in {si : i ∈ ω}. The following is a
way to keep track of the number of times the opponent has had to give
new descriptions of approximations to A � n. We say that the number n
is in a j-set if this has happened j times. More precisely, for 1 6 j 6 k,
we say that a finite set E ⊆ ω is a j-set at stage t if, for all n ∈ E, at
some stage u < t a request 〈r, n〉 went into L and at stage t there are
at least j distinct strings σ of length n such that Kt(σ) 6 r + c. A c.e.
set E with an enumeration E =

⋃
tEt is a j-set if Et is a j-set at each

stage t. In our construction, the strings σ will have the form As � n for
certain stages s with u 6 s 6 t. Since the opponent has to match every
description of n we provide via L with descriptions of A � n that are at
most c longer, we have the following straightforward but important fact.
(Recall that k = 2c+1.)

If the c.e. set E is a k-set, then wt(E) 6 1/2.
As in the wtt case, our construction will build a k-set Ck of weight > 1/2
to reach a contradiction.
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The procedure Pj (2 6 j 6 k) enumerates a j-set Cj . The construction
begins by calling Pk, which calls Pk−1 several times, and so on down to
P2, which enumerates L (and C2).

Each procedure Pj has rational parameters q, β ∈ [0, 1]. The goal q is
the weight it wants Cj to reach, and the garbage quota β is how much it
is allowed to waste.

We now describe the procedure Pj(q, β), where 1 < j 6 k, and the
parameters q = 2−x and β = 2−y are such that x 6 y.

1. Choose m large.
2. Wait until ΓA(m)↓.
3. Let v > 1 be the number of times Pj has gone through step 2.
j = 2: Pick a large number n. Put 〈rn, n〉 into L, where 2−rn = 2−vβ.

Wait for a stage t such that Kt(n) 6 rn + d, and put n into C1.
(If Md is a prefix-free machine corresponding to L, then t exists.)

j > 2: Call Pj−1(2−vβ, β′), where β′ = min(β, 2j−k−w−1) and w is the
number of Pj−1 procedures started so far. (The most important
point to understand here is that the goals of the Pj−1 procedures
called by a Pj procedure are related to the garbage quota of the
Pj procedure, which ensures that even if all such procedures are
canceled, the wasted measure will still be below this garbage
quota. Another important point is that the garbage quotas are
chosen so that their sum over all procedures started during the
construction is less than 1/2.)

In any case, if wt(Cj−1) < q then repeat step 3, and otherwise return.
4. Put m into B. This forces A to change below γ(m) < min(Cj−1),

and hence makes Cj−1 a j-set (if we assume inductively that Cj−1 is
a (j − 1)-set). So put Cj−1 into Cj , and declare Cj−1 = ∅.

If γA(m) changes during the execution of the loop at step 3, then cancel
the run of all subprocedures, and go to step 2. Despite the cancelations,
Cj−1 is now a j-set because of this very change. (This is an important
point, as it ensures that the measure associated with numbers already in
Cj−1 is not wasted.) So put Cj−1 into Cj , and declare Cj−1 = ∅.

This completes the description of the procedures. The construction con-
sists of calling Pk(1, 1/4). One can check that, because of the way the
garbage quotas are chosen, L is a Kraft-Chaitin set. The set Ck is a k-set,
and therefore should have weight at most 1/2. But, since ΓA is total, each
procedure returns unless canceled, so the initial procedure Pk, which is
never canceled, eventually ensures that Ck has weight > 1/2, which is a
contradiction.

We can visualize this construction by thinking of a machine similar to
Lerman’s pinball machine (see [125, Chapter VIII.5]). However, since we
enumerate rational quantities instead of single objects, we replace the balls
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in Lerman’s machine by amounts of a precious liquid, say 1955 Biondi-
Santi Brunello wine. Our machine consists of decanters Ck, Ck−1, . . . , C0.
At any stage Cj is a j-set. We put Cj−1 above Cj so that Cj−1 can be
emptied into Cj . The height of a decanter is changeable. The procedure
Pj(q, β) wants to add weight q to Cj , by filling Cj−1 up to q and then
emptying it into Cj . The emptying corresponds to adding one more A-
change.

The emptying device is a hook (the γA(m)-marker), which besides being
used on purpose may go off finitely often by itself. When Cj−1 is emptied
into Cj then Cj−2, . . . , C0 are spilled on the floor, since the new hooks
emptying Cj−1, . . . , C0 may be much longer (the γA(m)-marker may move
to a much bigger position), and so we cannot use them any more to empty
those decanters in their old positions.

We first pour wine into the highest decanter C0, representing the left
domain of L, in portions corresponding to the weight of requests entering
L. We want to ensure that at least half the wine we put into C0 reaches
Ck. Recall that the parameter β is the amount of garbage Pj(q, β) allows.
If v is the number of times the emptying device has gone off by itself,
then Pj lets Pj−1 fill Cj−1 in portions of size 2−vβ. Then when Cj−1 is
emptied into Cj , at most 2−vβ much liquid can be lost because of being
in higher decanters Cj−2, . . . , C0. The procedure P2(q, β) is special but
limits the garbage in the same way: it puts requests 〈rn, n〉 into L where
2−rn = 2−vβ. Once it sees the corresponding A � n description, it empties
C0 into C1 (but C0 may be spilled on the floor before that because of a
lower decanter being emptied).

We briefly sketch how to show that the class of K-trivial sets is closed
downward under Turing reducibility. Let A be K-trivial and let a Turing
reduction B = ΓA be given. We cannot change B at will any more, since
we do not directly control it. However, if B does not change enough, we
can build a Kraft-Chaitin set W showing that B is K-trivial. We now
have a tree of runs of procedures. The root node is the single run of Pk,
which as before tries to reach a k-set of weight 1. The leaves behave like
the P2 procedure above. A node Pj,τ (2 < j 6 k) calls procedures Pj−1,σ,
at stages where Us(σ) = m and Bs = ΓAs converges on all inputs < m.
For in this case we want to enumerate a request 〈|σ| + d,Bs � m〉 into
the Kraft-Chaitin set W built at node Pj,τ (where d is an appropriate
constant depending on the node Pj,τ ).

As before, once Pj−1,σ returns, Pj,τ needs an A � γ(m) change. If such
a change happens sufficiently often then Pj,τ reaches its goal. Otherwise,
the cost of changes of B, in the sense of the proof of Theorem 6.2, is small,
so W is a Kraft-Chaitin set, showing that B is K-trivial. There must be a
run on the tree where this cost is small (called the “golden run” in [105]),
as otherwise the root node would reach its goal. However, the proof is
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nonuniform since one cannot identify the golden run effectively, as we will
see below.

The proof of Theorem 8.1 proceeds in a similar way, except that Pj,τ

calls procedures Pj−1,σ based on computations UA(σ) = y (since we now
want to enumerate requests 〈|σ|+d, y〉), and the marker γ(m) is replaced
by the use of this computation. The details can be found in Nies [105]. a

We next discuss two theorems from Nies [105] that can be obtained
by extending the methods in the proof of Theorem 8.2. The first shows
that the construction in the proof of Theorem 6.2 actually provides a
characterization of the K-trivial c.e. sets. That is, each K-trivial c.e.
set A can be thought of as being built by such a construction, for an
appropriate effective enumeration. The proof of this result uses the proof
of downward closure of K, for the special case of the identity functional.
We state it here for c.e. sets, but a version for ∆0

2 sets is also given in
[105].

Theorem 8.3 (Nies [105]). For any c.e. set A, the following are equiv-
alent.
(i) A is K-trivial.
(ii) There is a c.e. approximation {As}s∈ω to A such that∑

{c̃(x, s) : x is minimal in As(x)−As−1(x)} < 1,

where c̃(x, s) =
∑

x<y6s 2−Ks(y).

Note that c̃(x, s) is the cost of putting x into A at stage s.
As an application of this characterization in the ∆0

2 case, one obtains
the fact that K-triviality is, in essence, a notion about c.e. sets.

Theorem 8.4 (Nies [105]). For each K-trivial set A, there is a K-
trivial c.e. set D such that A 6tt D.

A further application of the methods in the proof of Theorem 8.2 is that
there is a uniform listing of the c.e. sets in K that includes the constants
via which K-triviality holds. (This result can be extended to all of K; see
[39].)

Theorem 8.5 (Downey, Hirschfeldt, Nies, and Stephan [39]). There is
an effective listing {〈{Be,s}s∈ω, de〉}e∈ω of c.e. approximations such that
every K-trivial set occurs as a Be = limsBe,s, and each Be is K-trivial
via the constant de.

Nies [104] proved that Theorem 8.5 fails if one replaces the notion “K-
trivial via d” by the notion “low for K via d”. In other words, one can
not list the c.e. sets B in K while also providing constants d such that
∀y [K(y) 6 KB(y) + d]. The reason is that from such a constant one can
effectively obtain an index for the lowness of B [105, Proposition 2.8]. On
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the other hand, for any sequence {Be}e∈ω of uniformly low c.e. sets, an
extension of the construction in Theorem 6.2 provides an A ∈ K = M
that is not Turing below any Be, and hence the sequence {Be}e∈ω does
not exhaust K. Thus the nonuniformity in the proof of Theorem 8.1 is
necessary. Details can be found in [104, Theorem 5.9].

Corollary 8.6 (Nies [104]). There is no effective way to obtain from
a pair (A, d), where A is a c.e. set that is K-trivial via d, a constant d̃
such that A is low for K via d̃.

We summarize the degree-theoretic properties of K. Recall that A is
ω-c.e. iff A 6wtt ∅′. It follows from Theorem 8.4 that every K-trivial set
is ω-c.e. In fact, as shown in Downey, Hirschfeldt, Miller, and Nies [37],
every K-trivial set is a d.c.e. real, that is, the difference of two left-c.e.
reals.

Theorem 8.7 (Nies [105]). The K-trivial sets form a nonprincipal Σ0
3

ideal in the low ω-c.e. Turing degrees, which is generated by its c.e. mem-
bers.

Proof. That K is an ideal follows from Theorem 8.2 and the closure of
K under join mentioned in Section 6.2. By Corollary 7.9 and Theorem 8.4,
this ideal is contained in the low ω-c.e. Turing degrees, and is generated
by its c.e. members. The ideal is nonprincipal because, by the above-
mentioned extension of the construction in the proof of Theorem 6.2, one
can build a K-trivial set not Turing below a given low c.e. set. a

Corollary 8.8 (Nies [105]). There is a low2 c.e. set E such that A 6T

E for every K-trivial set A.

Proof. By Theorem 8.4, it suffices to give such a bound E for the
K-trivial c.e. sets. By work of Nies to be published in [34] and [107], any
proper Σ0

3 ideal in the c.e. degrees has a low2 c.e. upper bound. a
Another notion of computational weakness related to 1-randomness is

that of bases for 1-randomness.

Definition 8.9. A set A is a basis for 1-randomness if there is an
X >T A such that X is 1-random relative to A.

Kučera [67] and Gács [47] showed that every set can be computed
by some 1-random set (see Theorem 12.1 below), so if A is low for 1-
randomness then A is a basis for 1-randomness. In the other direction,
Kučera [69] showed that every basis for 1-randomness is GL1. More re-
cently, Hirschfeldt, Nies, and Stephan [51] gave an exact characterization
of the bases for 1-randomness.

Theorem 8.10 (Hirschfeldt, Nies, and Stephan [51]). A set is K-triv-
ial iff it is a basis for 1-randomness.
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Proof Sketch. If a set is K-trivial then it is low for 1-randomness,
and hence is a basis for 1-randomness.

The converse is proved by what has been called the “hungry sets” con-
struction. Suppose that A is a basis for 1-randomness, and let Z and Φ
be such that ΦZ = A and Z is 1-random relative to A. We enumerate a
Kraft-Chaitin set Ld for each d ∈ ω. We want to ensure that there is a d
such that Ld contains a request 〈K(|τ |) + d + 2, τ〉 for each τ ≺ A. The
idea is to build sets Cτ

d ⊆ 2ω for d ∈ ω and τ ∈ 2<ω with the following
properties. (These are the “hungry sets”.)

(i) The Cτ
d are uniformly c.e.

(ii) For each fixed d, the Cτ
d are pairwise disjoint.

(iii) If we let Ud =
⋃

τ≺AC
τ
d , then the following hold.

(a) {Ud}d∈ω is a Martin-Löf test relative to A.
(b) If Z /∈ Ud then µ(Cτ

d ) = 2−K(|τ |)−d for all τ ≺ A.
We then define Ld by enumerating a request 〈Ks(|τ |) + d + 2, τ〉 at
stage s whenever we have not previously enumerated such a request and
µ(Cτ

d [s]) > 2−Ks(|τ |)−d−1. Since the Cτ
d are pairwise disjoint, this is a

Kraft-Chaitin set. Since Z is 1-random relative to A, we have Z /∈ Ud for
some d and hence µ(Cτ

d ) = 2−K(|τ |)−d for all τ ≺ A, which implies that
〈K(|τ |) + d+ 2, τ〉 ∈ Ld for all τ ≺ A, as desired.

To build the Cτ
d , as long as µ(Cτ

d ) < 2−Ks(|τ |)−d, we look for strings σ
such that τ 4 Φσ and µ(Cτ

d ) + 2−|σ| 6 2−Ks(|τ |)−d, and put [σ] into Cτ
d .

To keep our sets pairwise disjoint, we then ensure that no [σ′] such that
σ′ is compatible with σ is later put into any Cν

d . If Z /∈ Ud, then no [σ]
with σ ≺ Z is ever put into any Cτ

d , which means that the measure of
each Cτ

d with τ ≺ A = ΦZ must eventually reach 2−K(|τ |)−d−1. a
One corollary of this result is the easier direction of Theorem 7.4,

namely that every set that is low for 1-randomness is K-trivial. Another
is an extension of Theorem 7.6: if A is ∆0

2 and low for Ω, then it is a basis
for 1-randomness, and hence K-trivial.

One way to look at Theorem 8.10 is in connection with the following
classical theorem.

Theorem 8.11. (de Leeuw, Moore, Shannon and Shapiro [76], Sacks
[119]). If A is not computable then µ({X : X >T A}) = 0.

There is a sense in which this result cannot be effectivized, since {X :
X >T A} is never Martin-Löf null, as by Theorem 12.1 it always contains
a 1-random set. However, if A is not a basis for 1-randomness, then {X :
X >T A} is contained in the universal Martin-Löf test relative to A,
and hence is Martin-Löf null relative to A. Thus we have the following
consequence of Theorem 8.11, which can be taken to say that the K-
trivial sets are exactly those relative to which Theorem 8.11 cannot be
effectivized.
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Corollary 8.12 (Hirschfeldt, Nies, and Stephan [51]). A set A is not
K-trivial iff {X : X >T A} is Martin-Löf null relative to A.

Theorem 8.10 has found a surprising application to computability the-
ory. A Scott set is a Turing ideal S such that for each infinite binary tree
T ∈ S, there is an infinite path of T in S. Scott sets occur naturally in
various contexts, such as the study of models of arithmetic and reverse
mathematics. H. Friedman and A. McAllister independently asked the
following question: if S is a Scott set and X ∈ S is not computable, does
there necessarily exist a Y ∈ S such that X |T Y ? Kučera showed that
the answer is positive if X is not a basis for 1-randomness, by the fol-
lowing argument. If X ∈ S, then S contains an infinite binary tree all
of whose infinite paths are 1-random relative to X, so there is a Y ∈ S
that is 1-random relative to X. Of course Y 
T X, but if X is not a
basis for 1-randomness, then also X 
T Y , so X |T Y . Slaman (personal
communication) has recently used Theorems 8.1 and 8.10 to handle the
case in which X is a basis for 1-randomness, thus giving a full positive
answer to the question.

Most of the topics in this Section are surveyed in [108] and the cor-
responding proceedings paper. The interaction of K-triviality and 1-ran-
domness via Turing reducibility is in the focus of current research; see [96,
Section 4].

§9. Kummer complex c.e. sets, array noncomputability, and
c.e.-traceability. As we saw in Theorem 7.3, Terwijn and Zambella [137]
showed that the sets that are low for 1-randomness are c.e.-traceable. In
Theorem 11.6, we will see that an analogous concept to c.e.-traceability is
relevant to the characterization of another class of sets satisfying a lowness
notion. In the case of c.e. sets, there is a fascinating connection between
Kolmogorov complexity and the notion of array computability introduced
by Downey, Jockusch, and Stob [40], which, as shown by Ishmukhametov
[53], coincides with c.e.-traceability on the c.e. degrees.

Again we are concerned with initial segment complexity, this time of c.e.
sets. We work with plain complexity. The following result is well-known.

Theorem 9.1 (Barzdins’ Lemma [7]). Let A be a c.e. set. Then C(A �
n | n) 6 log n+O(1) and C(A � n) 6 2 log n+O(1).

Proof. To compute A � n given n, it suffices to know the number of
elements 6 n in A, since we can run the enumeration of A until this
many elements appear. So A � n can be described given n with at most
log n+O(1) many bits. Similarly, to compute A � n, it suffices to know n
and the number of elements 6 n in A, which can be encoded in a string
of length 2 log n. a
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A longstanding open question was whether the 2 log n is optimal in the
second part of Theorem 9.1. The best we could hope for is to have C(A �
n) > 2 log n−O(1) for infinitely many n, since the following is known (and
implies that there is no c.e. set A such that C(A � n) > 2 log n−O(1) for
every n).

Theorem 9.2 (Solovay (unpublished)). There is no c.e. set A such that
C(A � n | n) > log n−O(1) for every n.

Proof. Define g(n) so that A � g(n) has exactly 2n elements. Note
that log g(n) > n. We can compute A � g(n) given g(n) and n, by running
the enumeration of A until 2n elements enter A below g(n). Thus we can
describe A � g(n) given g(n) using only log n+ O(1) bits of information,
and hence C(A � g(n) | g(n)) � log g(n)−O(1). a

Solovay explicitly asked whether it is possible for C(A � n) > 2 log n−
O(1) to happen infinitely often for a c.e. set A.

Definition 9.3. We say that a c.e. set A is (Kummer) complex if for
each d there are infinitely many n such that C(A � n) > 2 log n− d.

Kummer proved that such complex sets do exist. The classification of
the degrees containing Kummer complex sets is an interesting interplay
between computability theory and algorithmic complexity. We need the
following definition.

Definition 9.4 (Downey, Jockusch, and Stob [40]).
(i) Let D0, D1, . . . be a standard enumeration of the finite sets. A strong

array is a set of the form {Df(x) : x ∈ N} for a computable function
f .

(ii) A strong array {Df(x) : x ∈ N} is called a very strong array if
|Df(x)| > |Df(y)| for all x > y.

(iii) For a very strong array F = {Df(x) : x ∈ N}, we say that a c.e. set
A is F-array noncomputable if for each c.e. set W there exists a k
such that

W ∩Df(k) = A ∩Df(k).

(iv) A c.e. set is array noncomputable (a.n.c.) if it is F-array noncomput-
able for some very strong array F . A degree is array noncomputable
if it contains an array noncomputable set; otherwise it is array com-
putable.

This definition was designed to capture a certain kind of multiple per-
mitting construction. The intuition is that for A to be F-a.n.c., A needs
|Df(k)| many permissions in order to agree with W on Df(k).

In Downey, Jockusch, and Stob [41], a new definition of array noncom-
putability was introduced, based on domination properties of functions.
We first recall that f 6wtt A (for a function f and a set A) means that
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there are an index e and a computable function b such that f = ΦA
e

and, furthermore, for each n, the use of the computation ΦA
e (n) does not

exceed b(n). It is easily seen that f 6wtt ∅′ iff there are computable func-
tions h(., .) and p(.) such that, for all n, we have f(n) = lims h(n, s) and
|{s : h(n, s) 6= h(n, s+ 1)}| 6 p(n).

Definition 9.5. A degree a is array noncomputable if for each f 6wtt

∅′ there is a function g computable in a such that g(n) > f(n) for infinitely
many n. Otherwise, a is array computable.

Theorem 9.6 (Downey, Jockusch, and Stob [40, 41]). Let a be a c.e.
degree and let {Fn}n∈N be a very strong array. Then the following are
equivalent:
(i) The degree a is a.n.c. in the sense of Definition 9.4.
(ii) There is a c.e. set A of degree a such that ∀e∃n [We ∩Fn = A∩Fn].
(iii) The degree a is a.n.c. in the sense of Definition 9.5.
Hence for c.e. degrees, the two definitions of array noncomputability co-
incide, and the first definition is independent of the choice of very strong
array.

It is well known that an arbitrary degree a is in GL2 (i.e., (a ∪ 0′)′ <
a′′) iff for each function f computable in a ∪ 0′ there is a function g
computable in a such that g(n) > f(n) for infinitely many n. From this
fact it immediately follows that if a ∈ GL2, then a is a.n.c., and if a is
∆0

2 and array computable, then a is low2.
There are a number of other characterizations of the array noncomput-

able c.e. degrees (see [40, 41]). For example, the a.n.c. c.e. degrees are
precisely those that bound c.e. sets A1, A2, B1, B2 such that A1 ∩ A2 =
B1 ∩ B2 = ∅ and every separating set for A1, A2 is Turing incomparable
with every separating set for B1, B2. In fact, they are the degrees that
bound disjoint c.e. sets A,B that have no separating set of degree 0′. The
a.n.c. c.e. degrees also form an invariant class for the perfect thin Π0

1-
classes, which form an orbit in the lattice of Π0

1-classes, in the same way
that the maximal sets realize all high c.e. degrees and are an invariant
orbit for the high c.e. degrees (see Cholak, Coles, Downey, and Herrmann
[25]).

Of relevance here is the following result.

Theorem 9.7 (Ishmukhametov [53]). A c.e. degree is array computable
iff it is c.e.-traceable.

Using this characterization, Ishmukhametov proved the following re-
markable theorem. A degree m is a strong minimal cover of a degree
a < m if for all degrees d < m, we have d 6 a.

Theorem 9.8 (Ishmukhametov [53]). A c.e. degree is array computable
iff it has a strong minimal cover.
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We can now state Kummer’s classification of the c.e. degrees containing
complex c.e. sets. Again there is a deep connection with traceability.

Theorem 9.9 (Kummer’s Gap Theorem [72]).
(i) A c.e. degree contains a complex set iff it is array noncomputable.
(ii) In addition, if A is c.e. and of array computable degree, then for

every unbounded, nondecreasing, total computable function f ,

C(A � n) 6 log n+ f(n) +O(1).

(iii) Hence the c.e. degrees exhibit the following gap phenomenon: for each
c.e. degree a, either
(a) there is a c.e. set A ∈ a such that C(A � n) > 2 log n−O(1) for

infinitely many n, or
(b) there are no c.e. set A ∈ a and ε > 0 such that C(A � n) >

(1 + ε) log n−O(1) for infinitely many n.

Thus we have the remarkable fact that a c.e. degree contains a c.e. set
whose initial segment complexity is as large as possible iff it has a strong
minimal cover!

In Theorem 10.30 we will see that the degrees containing Kummer com-
plex c.e. sets are the same as those containing sets that are random rel-
ative to a variation of Kurtz randomness. It is natural to ask whether
there is a classification of, say, all jump classes in terms of initial segment
complexity.

§10. Other notions of algorithmic randomness. We now return
to our consideration of the basic definition of randomness. We have seen
that the three approaches (through measure theory, unpredictability, and
incompressibility) all yield the same notion of randomness. But consider
the characterization of 1-randomness in terms of martingales, namely that
no computably enumerable martingale succeeds on the given set. In [121],
Schnorr gave this characterization, then analyzed it. He argued that it
demonstrates a clear failure of the intuition behind the notion of Martin-
Löf randomness. He argued that randomness should be concerned with
defeating computable strategies rather than computably enumerable ones,
since the latter are fundamentally asymmetric, in the same way that a
c.e. set is semi-decidable rather than decidable. We can make a similar
argument about Martin-Löf tests being effectively null (in the sense that
we know how fast they converge to zero), but not effectively given, in the
sense that the test sets Vn themselves are not computable, but rather c.e.
(The discussion may have been obscured by the fact that for a Martin-Löf
test {Vn}n∈ω, the sets Vn can always be chosen to be computable (as sets
of finite initial segments). However, their measures are not necessarily
computable.)
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Armed with this fundamental insight, and following Schnorr [121], we
will look at two notions of randomness that refine the notion of Martin-Löf
randomness. Both notions are natural, one being inspired by the measure-
theoretic approach and the other by the martingale approach. The first
notion we introduce is most naturally defined using tests.

Definition 10.1 (Schnorr [121]).
(i) We say that a Martin-Löf test {Vn}n∈ω is a Schnorr test if µ(Vn) =

2−n for all n. In this case we call any subset of
⋂

n Vn a Schnorr null
set.

(ii) A set A is Schnorr random if A /∈
⋂

n Vn for all Schnorr tests {Vn}n∈ω.

In his original version of Definition 10.1, Schnorr only required that
the numbers µ(Vn) be uniformly computable, which is easily seen to yield
the same notions of null set and random set as the definition given here.
When dealing with Schnorr randomness, we will use whichever version of
the definition is most convenient.

Our next notion of randomness is based on computable martingales.

Definition 10.2 (Schnorr [121]).
(i) A martingale f : 2<ω → R+∪{0} is computable if its values f(σ) are

uniformly computable reals.
(ii) A set A is computably random if no computable martingale succeeds

on A.

Schnorr proved that we can take the range of the martingales in the
definition of computable randomness to be the non-negative rationals
Q+ ∪ {0}.

Lemma 10.3 (Schnorr [121]). For each computable martingale F there
is a computable martingale f : 2<ω → Q+ ∪ {0} such that S[F ] = S[f ].

The notion of computable randomness has enjoyed considerable popu-
larity in complexity theory since it naturally admits complexity-theoretic
versions, such as polynomial time randomness, which can be used to
explore both randomness and Hausdorff dimension in small complexity
classes. For more discussion and references, see Lutz [83, 84] and Ambos-
Spies and Kučera [1].

It is clear that Martin-Löf random implies computably random, and
Theorem 10.5 below shows that computably random implies Schnorr
random. Neither of these implications can be reversed. That there are
computably random sets that are not Martin-Löf random was proved
by Schnorr [121], and that there are Schnorr random sets that are not
computably random was proved by Wang [139]. (See also Section 15.3.)
The precise separation of these concepts in terms of Turing degrees was
determined by Nies, Stephan, and Terwijn [109]; see Theorem 10.13.
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We remark that a natural algorithmic randomness notion C ought to
be invariant under a computable rearrangement of the bits. Thus one
should have Z ∈ C → ρ(Z) ∈ C for any computable permutation ρ. For
Martin-Löf and Schnorr randomness this is clear, since the underlying test
concepts are invariant under such permutations, and likewise for Kurtz
randomness (defined in Section 10.3). Merkle, Miller, Nies, Reimann, and
Stephan [93] showed that closure under computable permutations also
holds for computable randomness.

10.1. Schnorr randomness. Although the critique in Schnorr’s book
[121] was subtle and well-put, the notion of Schnorr randomness initially
did not attract the attention that it deserved. Perhaps part of the rea-
son was that Martin-Löf randomness was good enough for many results.
Another reason was that the notion is much less tractable than Martin-
Löf randomness. For instance, Schnorr proved that there is no univer-
sal Schnorr test. Many basic questions remained open for a long time.
For instance, one of the cornerstones of the theory of 1-randomness is
that the three characterizations, via machine incompressibility, tests, and
martingales, all coincide, and hence the notion of 1-randomness is math-
ematically robust. It is thus interesting to ask whether similar equivalent
characterizations exist for the notions of randomness proposed by Schnorr.

Schnorr gave the following martingale characterization of Schnorr ran-
domness. The crucial notion is that of an order.

Definition 10.4 (Schnorr [121]). An order is an unbounded nonde-
creasing function h : N → N. (Note that an “Ordnungsfunktion” in
Schnorr’s terminology is always computable, whereas we prefer to leave
the complexity of orders unspecified in general.) For a martingale d and
an order h we define

Sh[d] := {X : lim sup
n→∞

d(X � n)
h(n)

> 1}.

Schnorr pointed out that the rate of success of a c.e. martingale d can
be so slow that it cannot be computably detected. Thus, rather than
working with null sets contained in sets of the form S[d] with d ∈ Σ0

1,
he worked with null sets contained in sets of the form Sh[d] where both
d and h are computable. He showed that these null sets are the same
as the Schnorr null sets from Definition 10.1. The following result gives
Schnorr’s characterization of Schnorr randomness in terms of computable
martingales and the “speed of success”. (Note that it implies that every
computably random set is Schnorr random.)

Theorem 10.5 (Schnorr [121], Sätze 9.4, 9.5). A ⊆ 2ω is Schnorr null
iff there are computable functions d and h such that A ⊆ Sh[d].

It had been a longstanding open problem to provide a machine charac-
terization for Schnorr randomness. Terwijn [135] had made some progress
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in this area. Downey and Griffiths gave the following machine character-
ization of Schnorr randomness.

Definition 10.6 (Downey and Griffiths [31]). We say a prefix-free ma-
chine M is computable if

µ(dom(M)) =
∑

σ∈dom(M)

2−|σ|

is a computable real.

Theorem 10.7 (Downey and Griffiths [31]). A set A is Schnorr ran-
dom iff KM (A � n) > n − O(1) for all computable prefix-free machines
M .

The proof of Theorem 10.7 filtered through a Solovay test characteri-
zation of Schnorr randomness. (An equivalent definition in terms of mar-
tingales is given in Wang [139].)

Definition 10.8 (Downey and Griffiths [31]). A total Solovay test is a
computable collection of c.e. open sets {Vi}i∈ω such that

∑
i µ(Vi) is finite

and computable. A set A passes this total Solovay test if A ∈ Vi for at
most finitely many i.

Theorem 10.9 (Downey and Griffiths [31]). A set is Schnorr random
iff it passes all total Solovay tests.

The Kučera-Slaman Theorem 4.6 shows that all 1-random left-c.e. reals
are wtt-complete, since they are Solovay-complete. (As we have seen in
Theorem 4.1, Kučera [67] was the first to prove that they are all Tur-
ing complete.) There is also a characterization of the Turing degrees of
Schnorr random left-c.e. reals: Downey and Griffiths [31] proved that ev-
ery Schnorr random left-c.e. real has high Turing degree, and they also
proved that there is a Turing incomplete Schnorr random left-c.e. real.
Later, Downey, Griffiths, and LaForte [32] proved that every high c.e.
Turing degree contains a Schnorr random left-c.e. real. This also follows
from Theorem 10.13 below, which is due to Nies, Stephan, and Terwijn
[109].

The machine characterization of Martin-Löf randomness allows us to
calibrate randomness via 6K , and we can similarly calibrate the com-
plexity of sets in terms of their Schnorr complexity.

Definition 10.10 (Downey and Griffiths [31]). We write A 6Sch B if
for each computable prefix-free machine M there is a computable prefix-
free machine M̂ such that

KcM (A � n) 6 KM (B � n) +O(1),

where the constant depends on M .
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Clearly, if α 6Sch β for all left-c.e. reals α, then β is Schnorr random.
Virtually nothing is known about 6Sch. Downey and Griffiths constructed
a “Schnorr trivial” left-c.e. real.

Theorem 10.11 (Downey and Griffiths [31]). There exist noncomput-
able left-c.e. reals α such that α 6Sch ∅.

Recently, Downey, Griffiths, and LaForte [32] proved that Schnorr triv-
ial sets are quite different from K-trivial sets.

Theorem 10.12 (Downey, Griffiths, and LaForte [32]).
(i) There exist Turing complete c.e. sets that are Schnorr trivial.
(ii) No Schnorr trivial left-c.e. real is wtt-complete.
(iii) There exist nonzero c.e. degrees containing no Schnorr trivial sets.

10.2. Computable randomness. It is not hard to prove that there is
no computable enumeration of all computable martingales. Thus, as with
Schnorr randomness, arguments about computable randomness need to
deal with Π0

2 behavior. We have already noted that there is a computably
random set that is not Martin-Löf random. Wang [140] proved that there
is also a Schnorr random set that is not computably random. Downey,
Griffiths, and LaForte [32], and independently Nies, Stephan, and Terwijn
[109], showed that this also holds for left-c.e. reals. The following theorem
shows precisely how complex it is to separate these randomness notions.

Theorem 10.13 (Nies, Stephan, and Terwijn [109]). For every set A,
the following are equivalent.
(i) A is high.
(ii) ∃B ≡T A s.t. B is computably random but not Martin-Löf random.
(iii) ∃C ≡T A s.t. C is Schnorr random but not computably random.
Furthermore, if A is a left-c.e. real then B and C can also be chosen to
be left-c.e. reals.

Proof. We only prove that ¬(i) ⇒ ¬(ii) ∧ ¬(iii). For the other impli-
cations, see [109]. Let A be a nonhigh set that is not Martin-Löf random.
Let {Ui}i∈ω be the universal Martin-Löf test. We show that A is not
Schnorr random, and hence also not computably random. Let f be the
function that tells us when A is covered by the Ui. That is, f(i) is the
first stage at which an initial segment of A enters Ui. Notice that f is A-
computable. Let g be a computable function that is infinitely often larger
than f (which exists because A is not high). We can define a Schnorr test
{Vn}n∈ω by stopping the enumeration of each Un after g(n) many steps
to obtain Vn. Then every Vn is finitely presented, so {Vn}n∈ω is a Schnorr
test, and A is in Vn for infinitely many n, which is sufficient to show that
A is not Schnorr random (since we can convert the Schnorr test {Vn}n∈ω

into a Schnorr test {Ṽn}n∈ω covering just as much and with the additional
property that Ṽn+1 ⊆ Ṽn, by letting Ṽn =

⋃
m>n Vm). a
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We finish this section by mentioning that there is a measure-theoretic
characterization (which could be turned into a machine characterization)
of computable randomness.

Definition 10.14 (Downey, Griffiths, and LaForte [32]). We say that
a Martin-Löf test {Vn}n∈ω is computably graded if there exists a com-
putable map f : 2<ω × ω → R such that, for any n ∈ ω, any σ ∈ 2<ω,
and any finite prefix-free set of strings {σi}i6I with

⋃I
i=0[σi] ⊆ [τ ], the

following conditions are satisfied:
(i) µ(Vn ∩ [σ]) 6 f(σ, n)
(ii)

∑I
i=0 f(σi, n) 6 2−n

(iii)
∑I

i=0 f(σi, n) 6 f(τ, n)

From conditions (i) and (ii) it immediately follows that µ(Vn) 6 2−n for
all n. Furthermore, if condition (ii) holds for any finite prefix-free set
{σi}i6I then it also holds for any infinite prefix-free set of strings: the
infinite sum is just the supremum of the associated finite sums, and so is
also no greater than 2−n. Similarly, since (iii) holds for finite prefix-free
sets it also holds for infinite prefix-free sets. If

⋃
i[σi] = [τ ] then we can

summarize conditions (i)–(iii) by the following:

µ(Vn ∩ [τ ]) 6
I∑

i=0

f(σi, n) 6 f(τ, n) 6 2−n.

The computably graded tests give an alternative to the martingale char-
acterization of computable randomness:

Theorem 10.15 (Downey, Griffiths, and LaForte [32]). A set is com-
putably random iff it passes all computably graded tests.

A similar characterization was found by Merkle, Mihailović, and Slaman
[92].

Hirschfeldt, Nies, and Stephan [51] have investigated bases for com-
putable randomness, that is, sets A for which there is a B >T A that is
computably random relative to A (cf. Theorem 8.10). They obtained a
partial characterization in terms of two well-known classes of degrees. The
PA-degrees are the degrees of complete extensions of Peano Arithmetic.
This is an important class of degrees, with many equivalent definitions.
For instance, a degree d is a PA-degree iff every computable infinite bi-
nary tree has a d-computable infinite path. (More generally, we say that d
is a PA-degree relative to A if every A-computable infinite binary tree has
a d-computable infinite path.) The PA-degrees are also those that con-
tain {0, 1}-valued total functions f that are diagonally noncomputable,
in the sense that ∀e [Φe(e) 6= f(e)]. The class of PA-degrees is strictly
contained in the class of diagonally noncomputable (DNC) degrees, which
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are those that contain (not necessarily {0, 1}-valued) diagonally noncom-
putable functions.

Theorem 10.16 (Hirschfeldt, Nies, and Stephan [51]).
(i) If a ∆0

2 set does not have DNC degree then it is a basis for computable
randomness.

(ii) No set of PA-degree is a basis for computable randomness.

The proof of the second part of Theorem 10.16 uses a lemma of inde-
pendent interest: If A has PA-degree relative to B and X is computably
random relative to A, then X is 1-random relative to B.

Let A be an n-c.e. set. If A is Turing incomplete then A does not
have diagonally noncomputable degree, by Jockusch, Lerman, Soare and
Solovay [56] (which extends Arslanov’s Completeness Criterion). So A is
a basis for computable randomness. On the other hand, if A is Turing
complete then A has PA-degree, and hence is not a basis for computable
randomness. Thus we have the following result.

Corollary 10.17 (Hirschfeldt, Nies, and Stephan [51]). An n-c.e. set
is a basis for computable randomness iff it is Turing incomplete.

It would be interesting to investigate bases for other notions such as
Schnorr and Kurtz randomness.

10.3. Kurtz randomness. In [73], Kurtz introduced a new notion of
randomness which looks at the idea from another perspective. Namely,
instead of thinking of a set as random if it avoids all effectively given null
sets, Kurtz suggested that a set should be considered random if it obeys
every effectively given test of measure 1.

Definition 10.18 (Kurtz [73]). (i) A Kurtz (positive) test is a c.e.
open set U such that µ(U) = 1.

(ii) A set is called Kurtz random (or weakly 1-random) if A ∈ U for all
Kurtz tests U .

Kurtz originally called this notion weak randomness, and it is a weak
notion in that, as shown by Wang [139], it is not stochastic in the sense
of Church.5 It is nevertheless a very interesting concept, especially in
its relativized form. As we will see in Section 12, Kurtz 2-randomness,
which means being in every Σ0

2 open set of measure 1, is equivalent to
passing every “generalized” Martin-Löf test {Un}n∈ω, where we still have
µ(Un) → 0, but there may be no decreasing computable upper bound on
the measures.

5For more on stochasticity, see Ambos-Spies and Kučera [1]. That a notion is not
stochastic might even disqualify it from being called a randomness notion. Kurtz ran-
domness is called so mainly because of the analogy with other definitions of randomness,
but we note here that it is in fact more like a notion of genericity.
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Most of the definitions of tests so far have been negative. There is an
equivalent formulation of Kurtz randomness in terms of a negative test.

Definition 10.19 (Wang [139]). A Kurtz null test is a sequence of c.e.
open sets {Vn}n∈ω such that
(i) µ(Vn) 6 2−n and
(ii) there is a computable function f : N → (2<ω)<ω such that Vn =⋃

σ∈f(n)[σ].

Theorem 10.20 (Wang [139], after Kurtz [73]). A set A is Kurtz ran-
dom iff it passes all Kurtz null tests.

Proof. We show how Kurtz positive tests correspond to Kurtz null
tests. Given a c.e. open set W with µ(W ) = 1, define a Kurtz null test
{Vn}n∈ω as follows. To define Vn, enumerate W until a stage s is found
with µ(Ws) > 1 − 2−n, then let Vn = Ws. Note that Vn is of the correct
form to be able to define a function f as in Definition 10.19, and

⋂
n Vn =

W .
For the converse, given a Kurtz null test {Vn}n∈ω, let W =

⋃
n Vn. Then

W is a c.e. open set of measure 1, and W =
⋂

n Vn. a
There is a martingale definition of Kurtz randomness (cf. the martingale

characterization of Schnorr randomness given by Theorem 10.5):

Theorem 10.21 (Wang [139]). A set A is not Kurtz random iff there
exist a computable martingale d and a nondecreasing unbounded com-
putable function h such that d(A � n) > h(n) for all n.

Because of this result we easily see that Schnorr randomness implies
Kurtz randomness. No Kurtz random set can be a c.e. set. In fact:

Theorem 10.22 (Jockusch, see Kurtz [73]). If A is Kurtz random then
it is bi-immune; that is, neither A nor A contains an infinite computable
subset. Hence, by Jockusch [54], there are 2ℵ0 degrees that contain no
Kurtz random sets.

While no c.e. set can be Kurtz random, as with Martin-Löf randomness,
the same is not true for left-c.e. reals. Kurtz [73, Corollary 2.3a] proved
that every nonzero c.e. degree contains a Kurtz random set. The following
improves this result to left-c.e. reals.

Theorem 10.23 (Downey, Griffiths, and Reid [33]). Each nonzero c.e.
degree contains a Kurtz random left-c.e. real.

No characterization of the degrees containing Kurtz random sets is
known. Nies and Yu (unpublished) have shown that the conclusion of
the previous theorem can be strengthened: Each nonzero c.e. degree con-
tains a weakly 1-generic left-c.e. real. Here A is weakly 1-generic if A is
in each dense c.e. open set.



50 R. DOWNEY, D. R. HIRSCHFELDT, A. NIES, AND S. A. TERWIJN

Downey, Griffiths, and Reid [33] gave a machine characterization of
Kurtz randomness in the style of Theorem 10.7.

Definition 10.24 (Downey, Griffiths, and Reid [33]). We say a prefix-
free machine M is computably layered if there is a computable function
f : ω → (2<ω)<ω such that
(i)

⋃
i f(i) = dom(M).

(ii) If γ ∈ f(i+ 1), then ∃τ ∈ f(i) such that M(τ) 4 M(γ).
(iii) If γ ∈ f(i), then |M(γ)| = |γ|+ i+ 1.

The idea of a computably layered machine is that each layer f(i) of
the domain provides a layer of the range, and the range elements become
more refined as i increases.

Theorem 10.25 (Downey, Griffiths, and Reid [33]). A set A is Kurtz
random iff KM (A � n) > n − O(1) for each computably layered machine
M .

Interestingly, there is yet another machine characterization of Kurtz
randomness, this one in terms of computable prefix-free machines (cf.
Theorem 10.7).

Theorem 10.26 (Downey, Griffiths, and Reid [33]). A set A is not
Kurtz random iff there are a computable prefix-free machine M and a
computable function f : N → N such that

∀d [KM (A � f(d)) < f(d)− d].

It is also possible to come up with suitable Solovay type characteri-
zations of Kurtz randomness, as per Wang [139] and Downey, Griffiths,
and Reid [33]. Using such a characterization, Downey, Griffiths, and Reid
[33] provided a characterization of Schnorr randomness in terms of Kurtz
randomness.

Kurtz positive tests can also be used to define 1-randomness, if the
speed of enumeration is also taken into account.

Theorem 10.27 (Davie [28]). A set A is 1-random iff there is a con-
stant c such that for each p, if the p-th computable sequence of intervals
I1, I2, . . . is such that µ(

⋃
j Ij) = 1, then there is an n with A ∈ In and

µ(
⋃

j6n Ij) < 1− 2−|p|−c.

10.4. Kolmogorov-Loveland randomness. The computable bet-
ting strategies (martingales) used to define computable randomness are
monotonic, in the sense that they bet on the bit positions in their nat-
ural order. Dropping this monotonicity condition yields a more powerful
notion of betting strategy.

We give an informal version of the definition in Muchnik, Semenov, and
Uspensky [101]. See also Merkle, Miller, Nies, Reimann, and Stephan [93]
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for a more formal definition. A nonmonotonic betting strategy behaves
as follows. Given a set A, at stage s suppose the previously scanned bit
positions are n0, . . . , ns−1 and the corresponding values are ri = A(ni).
From n0, . . . , ns−1 and r0, . . . , rs−1, the strategy determines a new posi-
tion ns 6= n0, . . . , ns−1, or may choose to be undefined. If defined, it also
chooses an i < 2 and makes a bet v ∈ Q with 0 6 v 6 V on A(ns) being
equal to i, where V is the current capital (if s = 0, then V > 0 is the
initial capital). If the bet turns out right, then v is added to the capi-
tal; otherwise it is subtracted. A set A is Kolmogorov-Loveland random
(KL-random) if no computable nonmonotonic betting strategy succeeds
on A, in the sense that the limsup of the capital it obtains by betting on
A is infinity. In [101] such sets are called unpredictable, and they have also
been called nonmonotonically random. Clearly, KL-random sets are com-
putably random, since computable martingales are a particular kind of
nonmonotonic betting strategy. In fact, if A is KL-random then no partial
computable martingale succeeds on A. However, by results in Muchnik,
Semenov, and Uspensky [101], the converse is not true; that is, there are
non-KL-random sets on which no partial computable martingale succeeds.

Muchnik, Semenov, and Uspensky [101] showed that every 1-random
set is KL-random. Whether the converse holds is a major open problem.

Question 10.28. Is every KL-random set 1-random?

While we allow partial betting strategies, we could as well require them
to be total: Merkle (see [93]) proved that for each nonmonotonic betting
strategy M there exist total (even primitive recursive) nonmonotonic bet-
ting strategies L0, L1 such that, if M succeeds on A, then one of L0, L1

succeeds on A. Thus if the answer to Question 10.28 is affirmative, then
one might argue that Schnorr’s critique of 1-randomness ceases to ap-
ply, as we will then have a characterization of 1-randomness based on
computable strategies.6 However, presently we do not even know whether
the inclusion holds for left-c.e. reals. Several results have been obtained
suggesting that KL-randomness is at least close to 1-randomness. Much-
nik (see [101, Theorem 9.1]) showed that if there is an unbounded com-
putable function d such that K(A � n) 6 n − d(n) for all but finitely
many n, then A is not KL-random. (In fact the weaker hypothesis that
∀n [K(A � g(n)) 6 g(n)− n], where g is an unbounded computable func-
tion, suffices.)

Merkle, Miller, Nies, Reimann, and Stephan [93] showed that if A =
A0⊕A1 is KL-random, then at least one of A0, A1 is 1-random, and in fact
both are if A is ∆0

2. Extending this argument shows that lim infn(K(A �

6This is debatable, however, since Schnorr believed that even computable martingales
are not effective enough, because their rates of success may not be computable.
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n)/n) = 1 (i.e., the effective Hausdorff dimension7 of A is 1); see [93].
On the other hand, Merkle [90] showed that the effective Hausdorff di-
mension of a set on which no partial computable martingale succeeds is
not necessarily 1. All of these results on KL-randomness are proved by
constructing several strategies, one of which succeeds. The problem in an-
swering Question 10.28 seems to be to understand the interplay between
such strategies. A possible approach to answering this question might be
to first investigate (apparently) weaker versions of KL-randomness, such
as permutation randomness and injective randomness. For the definitions
and a discussion of these notions, see Miller and Nies [96].

It follows from Theorem 11.12 below that every set that is low for KL-
randomness is K-trivial.

10.5. Finite randomness. The notions above would seem to indicate
that all of the randomness notions are linearly ordered in strength. We
briefly mention a further randomness notion8 which shows that this may
not always be the case. A finite test {Un}n∈ω is a Martin-Löf test where
each Un is a finitely presented open set. For example, a Kurtz null test is
finite. We say that A is finitely random if it passes all finite tests. It is not
hard to see that a ∆0

2 set is Martin-Löf random iff it is finitely random.
We say that a finite test {Un}n∈ω is computably bounded if the Un are
presented by sets Pn for which there is a computable function g such that
|Pn| < g(n). We say that A is computably finitely random if it passes all
computably bounded tests.

Theorem 10.29 (Downey, Miller, and Reimann [43]).
(i) Martin-Löf randomness implies finite randomness, but not converse-

ly. However, finite randomness and computably finite randomness
neither imply nor are implied by either Schnorr or computable ran-
domness.

(ii) On the left-c.e. reals, (i) remains true, except that finite randomness
coincides with Martin-Löf randomness.

Once again we see a connection with traceability and array noncom-
putability:

Theorem 10.30 (Downey, Miller, and Reimann [43]). If a left-c.e. real
is computably finitely random then it is array noncomputable.

§11. Lowness properties revisited. Recall that in Section 7 a set
A was called low for a class C if C = CA. When discussing lowness for
randomness notions, one has two options. For Schnorr randomness, for
instance, one can look at sets A that are low for the Schnorr null sets

7See Section 15 for more on effective Hausdorff dimension.
8The notion of finite randomness discussed here is not stochastic, so the same remarks

apply as in the case of Kurtz randomness; see footnote 5.



CALIBRATING RANDOMNESS 53

(called S0-low in [1]), meaning that every set that is Schnorr null relative
to A is Schnorr null, or one can look at the potentially larger class of
sets A that are low for Schnorr randomness, meaning that every Schnorr
random set is Schnorr random relative to A. In the case of 1-randomness,
there is no difference between these notions because there is a universal
Martin-Löf test. Ambos-Spies and Kučera [1, Problem 4.5] asked whether
the two notions are different for Schnorr randomness. It will follow from
Theorem 11.10 below that the answer is no, despite the absence of a
universal Schnorr test. For computable randomness, the answer is even
easier: the only sets that are low for computable randomness are the
computable ones! (See Theorem 11.14.)

11.1. Lowness for Schnorr and Kurtz null sets. One nice aspect
of Schnorr randomness is that there is a complete characterization of the
sets that are low for Schnorr randomness. As usual, let Dn denote the
n-th canonical finite set.

Definition 11.1 (Terwijn and Zambella [137]; c.f. Definition 7.2). A
set A is computably traceable if there is a computable function p (called
a bound) such that, for each function g 6T A, there is a computable
function h satisfying, for all n,
(i) |Dh(n)| 6 p(n) and
(ii) g(n) ∈ Dh(n).

The following proposition shows that it does not matter what bound p
we choose.

Proposition 11.2 (Terwijn and Zambella [137]). Let A be computably
traceable and let p be an unbounded nondecreasing computable function
such that p(0) > 0. Then A is computably traceable with bound p.

A degree is hyperimmune-free if each function of that degree is ma-
jorized by some computable function. If A is computably traceable then
each function g 6T A is majorized by the function f(n) = maxDh(n),
where h is as in Definition 11.1. Thus every computably traceable set
has hyperimmune-free degree. One may think of computable traceabil-
ity as a uniform version of hyperimmune-freeness. Terwijn and Zam-
bella [137] showed that a simple variation of the standard construction
of hyperimmune-free sets by Miller and Martin [99] produces continuum
many computably traceable sets.

Kjos-Hanssen and Nies (unpublished) have recently characterized the
computably traceable sets within the class of sets of hyperimmune-free
degree using prefix-free complexity.

Definition 11.3 (Kjos-Hanssen and Nies (unpublished)).
(i) A set A is weakly c.e. traceable if Definition 7.2 holds for the com-

putably bounded A-computable functions; that is, if there is a bound
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p such that for every f 6T A that is majorized by some computable
function, there is a c.e. trace for f with bound p (as before, the choice
of bound does not matter).

(ii) A set X is facile if for every nondecreasing unbounded computable
function h, for almost all n we have K(X � n | n) 6 h(n).

Proposition 11.4 (Kjos-Hanssen and Nies (unpublished)). A set A is
weakly c.e. traceable iff every set X 6T A is facile.

Thus every computably traceable set is facile. Conversely, suppose that
A has hyperimmune-free degree and is facile. It is not hard to see that
the facile sets are closed downwards under wtt-reducibility, but Turing
reducibility implies wtt-reducibility within the hyperimmune-free degrees,
so every A-computable set is facile. Thus by Proposition 11.4, A is weakly
c.e. traceable, and hence c.e. traceable (since every A-computable function
is computably bounded). But as shown below in step 2 of the proof of part
(ii) of Theorem 11.10, we can use the fact that A has hyperimmune-free
degree to convert a c.e. trace into a computable trace, so A is computably
traceable. Thus we have the following corollary.

Corollary 11.5. Suppose that A has hyperimmune-free degree. Then
A is computably traceable iff A is facile.

Remarkably, the class of sets that are low for the Schnorr null sets
is characterized by the purely computability-theoretic property of com-
putable traceability.

Theorem 11.6 (Terwijn and Zambella [137]). A set is low for the
Schnorr null sets iff it is computably traceable.

One direction of the proof of Theorem 11.6 relies on ideas of Raisonnier
[113] on rapid filters for the “mathematical” proof of Shelah’s theorem
that the inaccessible cardinal cannot be removed from Solovay’s [128]
construction of a model of set theory where every set of reals is Lebesgue
measurable.

Interestingly, we have the following fact about the degrees of sets that
are low for Schnorr randomness (which was proved by Terwijn and Zam-
bella [137] for the sets that are low for the Schnorr null sets, before it was
known that these two classes are the same).

Theorem 11.7 (Terwijn and Zambella [137]). The degrees of sets that
are low for Schnorr randomness are a proper subclass of the hyperimmune-
free degrees, and hence, except for 0, none of them are ∆0

2. In particular,
the degrees of noncomputable sets that are low for 1-randomness and the
degrees of noncomputable sets that are low Schnorr randomness are dis-
joint.
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Recently, an easier result relating a lowness notion to the computably
traceable and hyperimmune-free degrees was obtained by Downey, Grif-
fiths, and Reid [33]. We give the proof below since it is representative of
the much more difficult proof of Theorem 11.6. A Kurtz null set is any
subset of the intersection of a Kurtz null test (see Definition 10.19). A
set A is low for the Kurtz null sets if every Kurtz null set relative to A
is Kurtz null. It is currently not known whether being low for the Kurtz
null sets is equivalent to being low for Kurtz randomness.9

Theorem 11.8 (Downey, Griffiths, and Reid [33]).
(i) If a set is computably traceable then it is low for the Kurtz null sets.
(ii) If a set is low for the Kurtz null sets then it has hyperimmune-free

degree.

Proof. (i) Let A be computably traceable and let {Vn}n∈ω be a Kurtz
null test relative to A. We build a (computable) Kurtz null test {Un}n∈ω

such that
⋂

n Un ⊇
⋂

n Vn.
Let E0, E1, . . . be an effective listing of all finite subsets of 2<ω. Let g be

an A-computable function such that Vn =
⋃

σ∈Eg(n)
[σ] for all n. Let h be

as in Definition 11.1, with the bound p being defined by p(n) = n+1. (We
are free to choose this bound by Proposition 11.2.) For each n, define the
open set Fn as follows. For each i ∈ Dh(n), if µ(

⋃
σ∈Ei

[σ]) 6 2−n then add⋃
σ∈Ei

[σ] to Fn. Since g(n) ∈ Dh(n) and µ(
⋃

σ∈Eg(n)
[σ]) = µ(Vn) 6 2−n,

we have Vn ⊆ Fn, and since |Dh(n)| 6 n+1, we have µ(Fn) 6 (n+1)2−n.
So if we let Un = F2n then {Un}n∈ω is a Kurtz null test and

⋂
n Un ⊇⋂

n Vn.

(ii) Let A be low for the Kurtz null sets, and let g 6T A. We show that
g is dominated by a computable function. Define {Un}n∈ω by letting Un

be the union of all basic clopen sets of the form [γ11γ21 . . . γn1], where
|γi| = g(i). Clearly, µ(Un) = 2−n, so this is a Kurtz null test relative to
A. Since A is low for the Kurtz null sets, there is a (computable) Kurtz
null test {Vn}n∈ω such that

⋂
n Vn ⊇

⋂
n Un.

We use the Vn to build a function f dominating g. The Kurtz null set⋂
n Un contains all sets with a 1 at bits g(1) + 1, g(1) + g(2) + 2, etc., so

9Stephan and Yu have recently announced the following results, where a set A is
weakly 1-generic if every dense Σ0

1 subset of 2<ω contains an initial segment of A:
(i) A set is low for weak 1-genericity iff it is hyperimmune-free and not of diagonally
noncomputable degree. (ii) There is a set of hyperimmune-free degree that is neither
computably traceable nor of diagonally noncomputable degree. (iii) If a set is low for
weak 1-genericity then it is low for Kurtz randomness. (iv) Thus lowness for weak
1-genericity, and hence lowness for Kurtz randomness, are not the same as lowness
for Schnorr randomness. Also, Johanna Franklin in her forthcoming PhD Dissertation
has a number of interesting results concerning Schnorr triviality. In particular, she has
shown that if a set is low for Schnorr randomness, then it is Schnorr trivial.
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V1 must also contain all such sets. Since µ(V1) 6 1/2, there must be some
k such that V1 does not contain all sets with k-th bit 0, and this k must
be one of g(1) + 1, g(1) + g(2) + 2, . . . . Notice that because {Vn}n∈ω is a
Kurtz null test, we can effectively find such a k. Now letting f(1) = k, we
have f(1) > g(1).

Since µ(V2) 6 1/4, there must be k1 < k2 such that V2 does not contain
all sets with k1-th bit 0, and also does not contain all sets with k1-th bit 1
and k2-th bit 0. Again, k1 and k2 are among g(1) + 1, g(1) + g(2) + 2, . . . ,
so letting f(2) = k2, we have f(2) > g(2). We can continue this process
to define a computable function f dominating g. a

11.2. Lowness for pairs of randomness notions. A more complete
view of lowness arises when we consider lowness for any pair of randomness
notions C ⊆ D. Since relativizing D usually makes it smaller, one would
expect that in general C 6⊆ DA. The following class consists of the sets A
for which the inclusion still holds.

Definition 11.9. A set A is in Low(C,D) if C ⊆ DA.

Clearly, if C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions, then Low(C̃, D̃) ⊆
Low(C,D). That is, we make the class Low(C,D) larger by decreasing C
or increasing D.

Let MLRand,CRand and SRand denote the classes of 1-random, com-
putably random, and Schnorr random sets, respectively. Then, for in-
stance, Low(MLRand,CRand) is the class of sets A such that every 1-
random set is computably random relative A. We want to characterize
lowness for any pair of randomness notions.

Recall from Definition 7.2 that a set A is c.e.-traceable if there is a
computable p such that for every function f 6T A, there is a computable
function h such that for all n, we have |Wh(n)| 6 p(n) and f(n) ∈ Wh(n).
We have seen that both c.e.-traceability and computable traceability, de-
fined in the previous subsection, are deeply related to lowness notions.
The following result expands on this relationship.

Theorem 11.10 (Kjos-Hanssen, Nies, and Stephan [63]).
(i) A set is in Low(MLRand,SRand) iff it is c.e.-traceable.
(ii) A set is in Low(CRand,SRand) iff it is computably traceable.

Proof Sketch. (i) Notice that A ∈ Low(MLRand,SRand) iff every
Schnorr null set relative to A is contained in the intersection of the uni-
versal Martin-Löf test. This already looks quite similar to “there is a c.e.
trace for the functions computable in A”. We obtain (i) by modifying the
methods in Terwijn and Zambella [137] to the case of c.e. traces instead
of computable ones.

(ii) Because of Theorem 11.6, it only remains to be shown that every
set in Low(CRand,SRand) is computably traceable.
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1. The first step was made by Bedregal and Nies [11, 63], who proved
that every set in Low(CRand,SRand) has hyperimmune-free degree. To see
this, assume that A has hyperimmune degree, so that there is a function
g 6T A not dominated by any computable function. Use g to define an
A-computable martingale that succeeds in the sense of Schnorr, with the
computable lower bound n/4, on some Z ∈ CRand. The construction of
this martingale uses the fact that g is infinitely often above the running
time of each computable martingale. Special care has to be taken with
partial martingales, which results in a set Z that is only ∆0

3.
2. Next we use the fact that if A has hyperimmune-free degree and is

c.e.-traceable, then A is computably traceable. To see this, let f 6T A and
let h be as in the definition of c.e.-traceability. Let g(n) be the least s such
that f(n) ∈ Wh(n),s. Then g 6T A and so, since A is hyperimmune-free,
g is majorized by a computable function r. So if we choose a computable
function h̃ such that Deh(n)

= Wh(n),r(n) for all n, then we obtain a com-
putable trace for A.

3. By part (i), if A ∈ Low(CRand,SRand) then A is c.e.-traceable, which
by 1 and 2 imply that A is computably traceable. a

If a set is low for the Schnorr null sets then it is obviously low for
Schnorr randomness. Conversely, if A is low for Schnorr randomness then
A ∈ Low(CRand,SRand), and hence by part (ii) of Theorem 11.10, A is
computably traceable. But then by Theorem 11.6, A is low for the Schnorr
null sets. Thus we have the following result.

Corollary 11.11 (Kjos-Hanssen,Nies, and Stephan [63]). A set is low
for Schnorr randomness iff it is low for the Schnorr null sets.

We have seen that K-triviality is equivalent to lowness for 1-random-
ness. Nies [105] showed that K-triviality already follows from the weaker
hypothesis of being in Low(MLRand,CRand). (One consequence of this
result is that every set that is low for Kolmogorov-Loveland randomness
is K-trivial. Nothing about this class of sets is known beyond that.)

Theorem 11.12 (Nies [105]). A set is Low(MLRand,CRand) iff it is K-
trivial.

Proof Sketch. The “if” direction has been discussed in Section 8. For
the remaining direction, suppose that A ∈ Low(MLRand,CRand). Then
for every set Z, if N is an A-computable martingale that succeeds on Z,
then Z /∈ MLRand. We first show that this fact implies a certain condition
on finite strings. Let R be any c.e. open set such that µ(R) < 1 and all
sets in the complement of R are 1-random (for instance, let R = {τ :
∃σ 4 τ [K(σ) 6 |σ| − 1]}). The following condition expresses the failure
to build a set /∈ R on which N succeeds.
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Lemma 11.13. Let N be any martingale that succeeds only on sets not
in MLRand. Then there are σ ∈ 2<ω and d ∈ ω such that [σ] * R and

∀τ < σ [N(τ) > 2d ⇒ [τ ] ⊆ R].(1)

Proof. Otherwise one could inductively build a sequence of strings
σ0 ≺ σ1 ≺ · · · such that [σi] * R and N(σi) > 2i, which would imply
that N succeeds on the set Z =

⋃
n σn, which is not in R, since R is

open. a
Note that [σ] * R implies that the relative measure µσ(R) = 2|σ|µ(R ∩

[σ]) is less than 1 (otherwise let X /∈ R be a set extending σ; then X is a
1-random set in a Π0

1-class of measure 0, which is impossible).
As in the proof of Theorem 7.6, we want to enumerate a Kraft-Chaitin

set W showing that A is K-trivial, in the sense that for each n there is a
request 〈r,A � n〉 ∈ W with r 6 K(n) + O(1). Recall that in that proof,
the Kraft-Chaitin set (which was called Ld) depended on a number d such
that Ω /∈ RA

d . This time the Kraft-Chaitin set W depends on a witness
〈σ, d, u〉 for Lemma 11.13, where u is a number such that 2−u 6 1−µσ(R).
We build a Turing functional L such that LX is a martingale for each set
X. We first pretend that we know a witness 〈σ, d, u〉 for Lemma 11.13
with N = LA.

We have to approximate the possible initial segments A � n to make W
c.e., and need to be careful not to make too many errors, since otherwise
W will not be a Kraft-Chaitin set. Roughly speaking, we work with a
computable sequence of finite trees {Ts}s∈ω, where at each stage s, strings
γ on Ts represent the possible initial segments of A of length 6 s. The
tree Ts checks whether condition (1) holds at stage s: if for some τ we
have defined Lγ(τ) > 2d for a string γ on a previous tree Tt with t < s,
then γ is only allowed to be on the present tree Ts if [τ ] ⊆ Rs.

A procedure α is a pair 〈ρ, γ〉, where ρ, γ ∈ 2<ω. We start α when there
is a stage s such that γ ∈ Ts and Us(ρ) = |γ|, where U is the universal
prefix-free machine used to defineK. Now α wants to put 〈r+c, γ〉 intoW ,
where r = |ρ| (and c is an appropriate constant), as this would result in
K(γ) 6 r+O(1). First, α causes a clopen set C ⊆ [σ] of relative measure
µσ(C) = 2−(r+c) to enter R. Basically, α chooses a clopen set C = C(α)
of that measure, which is disjoint from Rs and the sets chosen by other
procedures, and causes (in a way to be specified below) LX(τ) > 2d for
each X < γ and each string τ ∈ C of minimal length. If at a stage t > s
we once again have γ ∈ Tt, then C ⊆ Rt, and α now has permission to put
〈r+c, γ〉 into W . In short, the weight of requests put into W is accounted
against the measure of new enumerations into R. If the sets belonging to
different procedures are disjoint, then W is a Kraft-Chaitin set.

We discuss how to guarantee this disjointness. Suppose β 6= α is a
procedure that wants to choose its set C(β) at a stage s′ > s. If γ is in



CALIBRATING RANDOMNESS 59

some Tq with s < q < s′ , then C(α) ⊆ Rs′ , so there is no problem, since
β chooses its set disjoint from Rs′ . However, if γ has not appeared in any
such tree (and it possibly never will), then α wants to keep C(α) away
from possible assignment to other procedures, which may cause a conflict
because C(α) is relatively large. The solution to this problem is to build
up the set C(α) in small portions D, whose measure is a fixed fraction
of 2−(r+c), and only assign a new set D once the old one is in R. If γ
always reappears on a tree after such a set is assigned, then eventually
C(α) reaches the required measure 2−(r+c), in which case α is allowed to
enumerate the request 〈r + c, γ〉 into W . Otherwise, α keeps away from
assignment to other procedures only a single set D, whose measure is so
small that the union (over all procedures) of the measures of sets kept
away in this fashion is at most the small quantity 2−u−2.

To ensure that LX(τ) > 2d for each X < γ, the procedure α = 〈ρ, γ〉
acts as follows. Once Us(ρ) = |γ|, it claims ε = 2−r of the initial capital
1 of L at the root node λ (recall that r = |ρ|), and generally preserves
it along both extensions of a string. It chooses its strings τ of the form
ν0r+d+1, where ν is a string where the capital claimed by α is still avail-
able. At ν it “withdraws” this capital, by defining Lγ(ν0) = Lγ(ν) + ε
and, to maintain the martingale property, Lγ(ν1) = Lγ(ν) − ε. From ν0
on, it doubles the capital along τ , always betting all the capital on 0, thus
eventually reaching an increase of 2d at τ .

Different procedures 〈ρ, γ〉 and 〈ρ′, γ′〉 have to choose their sets D to be
disjoint, but there is no conflict as far as the capital is concerned: if γ, γ′

are incompatible, then they refer to different martingales LX . Otherwise
they claim different amounts of the initial capital. For any LX , the total
capital claimed is at most Ω, as a procedure 〈ρ, γ〉 with γ ≺ X claims
2−|ρ| much of the capital only once U(ρ) converges, and there is at most
one such procedure for each ρ.

Finally, as a witness for Lemma 11.13 is not actually known, we do
the above for each possible witness 〈σ, d, u〉. Let {〈σm, dm, um〉}m∈ω be
an effective listing of such witnesses. For each m we build a martingale
functional LX

m as above, but now with initial capital 2−m, and make it
eventually constant if it turns out that µσm(Rs) > 1−2−um for some s. We
now have to choose τ of the form ν0m+r+d+1 to make up for the smaller
capital. Now simply let L =

∑
m Lm. Since A ∈ Low(MLRand,CRand),

Lemma 11.13 holds for N = LA, via a witness 〈σm, dm, um〉. Now (1)
holds for N = LA

m, since LA > LA
m. Thus each γ ≺ A reappears infinitely

often on the trees Ts, and so the “accounting against” trick outlined in
the proof of Theorem 7.6 allows us to define the desired Kraft-Chaitin set
W (where the constant c is dm +m+ um + 3). a

We have seen characterizations of lowness for 1-randomness and Schnorr
randomness. These results raise the question of characterizing lowness for
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computable randomness. In [1, Problem 4.8], Ambos-Spies and Kučera
asked whether there is a noncomputable set that is low for computable
randomness. Downey conjectured that the answer is negative, and this
conjecture was confirmed by Nies [105].

Theorem 11.14 (Nies [105]). A set is low for computable randomness
iff it is computable.

The proof in [105] is a direct argument similar to but preceding the
proof of Theorem 11.12 discussed above. But we can also use Theorem
11.12: Suppose that A is low for computable randomness. Then A ∈
Low(MLRand,CRand), and hence A is K-trivial, and thus ∆0

2. On the
other hand, by a result of Bedregal and Nies [11], A has hyperimmune-
free degree. But the only ∆0

2 sets of hyperimmune-free degree are the
computable ones, by Miller and Martin [99].

The original proof has the advantage of being extendible to the resource
bounded setting, and also to show that each set in Low(PrecRand,CRand)
is computable. Here PrecRand is the class of sets on which no partial
computable martingale succeeds (i.e., no martingale whose values are uni-
formly computable, but that may choose to be undefined on strings off
the given set).

§12. Relativized randomness. We have so far focused on 1-random-
ness and weaker notions. We can also obtain stronger notions of random-
ness by increasing the complexity of tests in terms of the arithmetical
hierarchy. These notions are of particular interest when we study the re-
lationship between randomness and Turing degrees. The basic result con-
necting 1-randomness to Turing reducibility is the celebrated one often
attributed only to Gács, but actually first proved by Kučera.

Theorem 12.1 (Kučera [67], Gács [47]). Every set is wtt-reducible to
a 1-random set.

The easiest proof of Theorem 12.1 is the recent one of Merkle and Mi-
hailović [91]. That proof shows that the bound on the wtt-reduction can
be taken to be n + o(n). However, this bound cannot be improved to
n+O(1); that is, there are sets that are not sw-reducible to a 1-random
set (see [34] for a proof). It is an open question whether every set is
rK-reducible (or even K-reducible) to a 1-random set.

Other results on the Turing degrees of 1-random sets include Kučera’s
theorem [67] that all degrees above 0′ contain 1-random sets. As noted in
Section 4, for each c, the collection of sets with initial segment prefix-free
complexity > n − c for all n is a Π0

1-class, so there are 1-random sets
of low Turing degree. Kučera [67] proved that the ∆0

2 degrees containing
1-random sets are not closed upwards. On the other hand, their jumps
are better behaved: using a new basis theorem for Π0

1-classes with no
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computable members, Downey and Miller [42] showed that for every S
that is c.e. in and above ∅′, there is a ∆0

2 1-random set A with A′ ≡T S.
This result was stated earlier by Kučera [68], who constructed a high
incomplete ∆0

2 1-random set using a similar technique.
Kučera also observed that 1-randomness is connected to the PA-degrees,

which were discussed in Section 10.2. This connection was recently clari-
fied by Stephan [133], who proved the following.

Theorem 12.2 (Stephan [133]). If X is 1-random and has PA-degree,
then ∅′ 6T X.

The following is another result demonstrating the computational weak-
ness of the 1-random sets that cannot compute ∅′.

Theorem 12.3 (Hirschfeldt, Nies, and Stephan [51]). Suppose A is a
c.e. set and X >T A is 1-random and such that ∅′ 
T X. Then A is
K-trivial.

Theorems 12.2 and 12.3 establish that there are two kinds of 1-random
sets. The first are those that are computationally rich and can compute the
halting problem. The second are those that are computationally feeble and
cannot even compute a {0, 1}-valued diagonally noncomputable function
or a non-K-trivial c.e. set. As we see below, this means that all 2-random
sets (defined below) are computationally weak.

The basic definition of 1-randomness can be generalized quite easily.
We will use the following definitions, noted by several researchers, such
as Solovay [129] and Kurtz [73].

Definition 12.4. (i) A Σ0
n-test is a sequence {Vk}k∈ω of uniformly

Σ0
n-classes such that µ(Vk) 6 2−k. A set A passes this test if A /∈⋂
k Vk.

(ii) A set is Σ0
n-random or n-random if it passes all Σ0

n tests.
(iii) One can similarly define Π0

n, ∆0
n, etc. tests and randomness.

(iv) A set is arithmetically random if it is n-random for all n.

These definitions can be relativized in the same way as 1-randomness,
to yield notions such as n-randomness relative to a set X.

We have identified Σ0
1-classes of sets with c.e. sets of strings, since every

Σ0
1-class is equivalent to

⋃
{[σ] : σ ∈ W} for some (prefix-free) c.e. set

of strings W . However, we cannot do the same at higher levels of the
arithmetical hierarchy. For example, consider the Σ0

2-class consisting of
those sets that are zero from some point onwards. This Σ0

2-class is not
equivalent to one of the form

⋃
{[σ] : σ ∈ W} for some Σ0

2 set of strings
W .

The use of open sets is basic in many arguments involving 1-randomness.
Fortunately, this technique can be resurrected for higher-order random-
ness, as we now see. We denote the n-th jump of ∅ by ∅(n).
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Theorem 12.5 (Kurtz [73], Kautz [61]).
(i) From the index of a Σ0

n-class S and q ∈ Q, we can compute the index
of a Σ∅(n−1)

1 -class U ⊇ S that is also an open Σ0
n-class and such that

µ(U)− µ(S) < q.
(ii) From the index of a Π0

n-class T and q ∈ Q, we can compute the index
of a Π∅(n−1)

1 -class V ⊆ T that is also a closed Π0
n-class and such that

µ(T )− µ(V ) < q.
(iii) From the index of a Σ0

n-class S and q ∈ Q, we can ∅(n)-compute
the index of a closed Π0

n−1-class V ⊆ S such that µ(S)− µ(V ) < q.
Moreover, if µ(S) is computable from ∅(n−1) then the index of V can
be found computably from ∅(n−1).

(iv) From the index of a Π0
n-class T and q ∈ Q, we can ∅(n)-compute

the index of an open Σ0
n−1-class U ⊇ T such that µ(U)− µ(T ) < q.

Moreover, if µ(S) is computable from ∅(n−1) then the index of U can
be found computably from ∅(n−1).

Using the above result, we can easily show, for instance, that (n +
1)-randomness coincides with 1-randomness relative to ∅(n), which is a
theorem of Kurtz [73].

Let U be the standard universal prefix-free machine. Then UX will
be a universal prefix-free machine relative to any X, and we obtain the
following natural (n+ 1)-random sets.

Ω(n) :=
∑

U∅(n)
(σ)↓

2−|σ|.

See Section 14 for more on relativizing Ω. There are other natural ex-
amples of n-random sets, defined without the use of relativization; see
for instance Becher, Daicz, and Chaitin [9]; Becher and Chaitin [8]; and
Becher and Grigorieff [10].

There is a very interesting intertwining of plain Kolmogorov complexity
and relativized randomness.

Definition 12.6. A set A is Kolmogorov random if for some c,

∃∞n [C(A � n) > n− c].(2)

We say that A is time-bounded Kolmogorov random with time bound t
if (2) holds with Ct instead of C, where Ct is the time-t-bounded Kol-
mogorov complexity. (For more on time-bounded complexity, see Li and
Vitányi [81].)

While we have seen in Section 3.3.1 that no set can satisfy (2) with
∀ in place of ∃∞, the class of Kolmogorov random sets has measure 1.
The next theorem shows that Kolmogorov randomness is equivalent to 2-
randomness. Yu, Ding, and Downey [144] proved that every 3-random set
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is Kolmogorov random. They also observed that there is no ∆0
2 Kolmo-

gorov random set. This fact is also implied by the following result, since
2-random sets cannot be ∆0

2.

Theorem 12.7 (Nies, Stephan, and Terwijn [109]). Let g be a comput-
able time bound such that g(n) > n2−O(1). The following are equivalent
for any set Z:

(i) Z is 2-random.
(ii) Z is Kolmogorov random.
(iii) Z is Kolmogorov random with time bound g.

The implication (i) ⇒ (ii) in Theorem 12.7 was proved independently
and earlier by Miller [94].

A set A is strongly Chaitin random if there is a c such that ∃∞n [K(A �
n) > n+K(n)−c]. Solovay [129] showed that (up to additive constants) if
a string has maximal prefix-free Kolmogorov complexity then it has max-
imal plain Kolmogorov complexity, so by Theorem 12.7, strong Chaitin
randomness implies 2-randomness. It is also known that 3-randomness
implies strong Chaitin randomness (see Theorem 13.11 below). It is not
known whether strong Chaitin randomness is equivalent to either 2-ran-
domness or 3-randomness.

Another characterization of 2-randomness can be given by considering
sets that are low for Ω (see Definition 7.5).

Theorem 12.8 (Nies, Stephan, and Terwijn [109]). A set is 2-random
iff it is 1-random and low for Ω.

Proof. By Corollary 12.18 below, for any two sets A and B, if A is
1-random and B is 1-random relative to A, then A is 1-random relative to
B. Thus if A is 1-random, then A is 2-random ⇔ A is 1-random relative
to Ω ⇔ Ω is 1-random relative to A⇔ A is low for Ω. Since any 2-random
set is 1-random, the equivalence follows. a

Thus every 2-random set is low for Ω, which by Corollary 7.8 gives us
the following result.

Corollary 12.9 (Sacks and Stillwell, see Kautz [61, Thm. IV.2.4]).
Every 2-random set is GL1.

It is straightforward to define Kurtz, Schnorr, and computably n-ran-
dom sets for all n by analogy with the above. It is not difficult to see that
being Kurtz 2-random coincides with passing all generalized Martin-Löf
tests {Un}n∈ω, where we have µ(Un) → 0, but there may be no com-
putable decreasing bound on µ(Un). Thus every Kurtz 2-random set is
1-random. Relativizing this observation and the fact that every 1-random
set is Kurtz 1-random (see Section 10.3), we see that every n-random
set is Kurtz n-random, and every Kurtz (n+ 1)-random set is n-random.
Neither implication can be reversed.
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Theorem 12.10 (Kurtz [73]). For every n > 1, there is an n-random
set that cannot be computed by any Kurtz (n+ 1)-random set.

Proof. By relativizing the proof that there are 1-random sets below
∅′, we see that there is an n-random set A 6T ∅(n). For each e, let

Pe = {B : ΦB
e = A} =

{B : ∀x∃s [ΦB
e,s(x)↓] ∧ ∀x∀s [ΦB

e,s(x)↓→ ΦB
e,s(x) = A(x)]}.

By Theorem 8.11, if A is not computable then µ({B : A 6T B}) = 0, so
each Pe is a Π∅(n)

1 -class of measure 0, and hence each Pe is a Σ0
n+1-class

of measure 1. So every Kurtz (n+1)-random set must be in each Pe, and
hence cannot compute A. a

Corollary 12.11 (to the proof of Theorem 12.10).
(i) No Kurtz (n+ 1)-random set is computable from ∅(n).
(ii) For n > 1, there is an n-random set computable from ∅(n).

The following result was first proved by Kautz, although it was stated
without proof by Gaifman and Snir [48]. Kautz’s proof was fairly compli-
cated, but we can obtain a simpler proof using relativizations of results
mentioned above.

Theorem 12.12 (Kautz [61], Kurtz [73] for n = 1). Let n > 1. There
is a Kurtz n-random set that is not n-random.

Proof. Let X be a Σ∅(n−1)

1 set such that ∅(n−1) <T X <T ∅(n). By
Theorem 10.23 relativized to ∅(n−1), there is a Kurtz n-random set A such
that A⊕ ∅(n−1) ≡T X. On the other hand, by Theorem 4.1 relativized to
∅(n−1), A cannot be n-random, since that would imply thatX ≡T ∅(n). a

Kurtz [73], Kautz [61], and van Lambalgen [74] examined the relation-
ship between relativized randomness and the Turing degrees. They proved
a number of classic results. We give a sample, along with some more recent
related results, and include a few proofs as examples.

Theorem 12.13 (van Lambalgen [74], Kautz [61]).
(i) If A⊕B is n-random, then so are A and B.
(ii) If A is n-random, then so is A[n], the n-th column of A.

Theorem 12.14 (van Lambalgen [74]). If A⊕ B is n-random, then A
is n-random relative to B.

Corollary 12.15 (Kučera (see [61]), van Lambalgen [74]). If A⊕B is
1-random, then A |T B.

Thus every 1-random set X splits into two Turing incomparable halves,
both of which are computable in X. So we have the following result.
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Corollary 12.16 (Kurtz [73]). No 1-random set has minimal degree.

Using Theorem 10.13, Yu [141] has recently shown that Theorem 12.14
fails for Schnorr and computable randomness, even for n = 1. Thus this
important tool in the theory of 1-randomness is not available in the study
of these notions.

The following is a converse to Theorem 12.14 (which, as pointed out by
Yu [141], does also hold for Schnorr and computable randomness).

Theorem 12.17 (van Lambalgen [74]). If B is n-random and A is n-
random relative to B, then A⊕B is n-random.

Proof. We give a proof due to Nies. Suppose A⊕B is not n-random.
We show that either B is not n-random or A is not n-random relative
to B. By Theorem 12.5, we can choose a sequence V0 ⊇ V1 ⊇ · · · of
uniformly Σ0

n open sets such that A⊕B ∈
⋂

i Vi and µ(Vi) 6 2−2i.
Let ∅ be the empty string. We write [σ ⊕ τ ] for the collection of sets

X = X0 ⊕X1 such that σ ≺ X0 and τ ≺ X1.
Let

Si =
⋃
{[σ] : µ(Vi ∩ [∅ ⊕ σ]) > 2−i−|σ|}.

Clearly, Si+1 ⊆ Si, and the Si are uniformly Σ0
n open sets. We show that

µ(Si) 6 2−i. Let σ0, σ1, . . . be a listing of the strings σ that are minimal
(under the substring relation) such that µ(Vi ∩ [∅ ⊕ σ]) > 2−i−|σ|. Then
Si =

⋃
j [σj ]. Since the sets Vi ∩ [∅ ⊕ σj ] are pairwise disjoint and µ(Vi) 6

2−2i, we see that
∑

j 2−i−|σj | 6 2−2i, and hence µ(Si) 6
∑

j 2−|σj | 6 2−i.
If B ∈

⋂
i Si, then B is not n-random. Otherwise, there is a j such that

B /∈ Si for all i > j. For such i, let

Rk
i =

⋃
{[σ] : |σ| = k ∧ [σ ⊕B � k] ⊆ Vi}.

Then µ(Rk
i ) 6 2−i, since B /∈ Si. Moreover, since Vi is open, Rk

i ⊆ Rk+1
i .

Let Ri =
⋃

k R
k
i . The Ri are open and uniformly Σ0

n relative to B, and
µ(Ri) = sup{µ(Rk

i ) : k ∈ ω} 6 2−i for i > j. Furthermore, A ∈ Ri for
each i > j, so A is not n-random relative to B. a

Combining Theorems 12.14 and 12.17, we have the following corollary,
which will be useful several times below.

Corollary 12.18 (van Lambalgen [74]). If B is n-random and A is
n-random relative to B, then B is n-random relative to A.

The following is an application of this result.

Theorem 12.19 (Miller and Yu [97]). If A is n-random and B 6T A
is 1-random, then B is n-random.

Proof. We can assume that n > 2. Let X ≡T ∅(n−1) be 1-random.
Since A is n-random, it is 1-random relative to X. So X is 1-random
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relative to A, and therefore relative to B. Hence B is 1-random relative
to X, and thus is n-random. a

By different means, Miller and Yu [97] proved the stronger result that
for any X, if A is 1-random relative to X and B 6T A is 1-random, then
B is 1-random relative to X.

Theorem 12.20 (Kautz [61]). If A and B are 2-random relative to each
other, then their degrees form a minimal pair.

Proof. Suppose that 0 <T C 6T A,B. Let e be such that ΦA
e = C. It

is easy to check that {X : ΦX
e = C} is a ΠC

2 -class, and by Theorem 8.11,
it has measure 0. So A is not 2-random relative to C, and hence relative
to B, contrary to hypothesis. a
Thus, by Theorem 12.14, every 2-random set is the join of a minimal pair.

Theorem 12.20 cannot be extended to the n = 1 case. Indeed, Kučera
[67] showed that no two ∆0

2 1-random sets form a minimal pair. However,
we have the following consequence of Theorem 8.10.

Theorem 12.21 (Hirschfeldt, Nies, and Stephan [51]). If A and B are
1-random relative to each other, then any X 6T A,B is K-trivial.

Proof. Since A is 1-random relative to B, it is 1-random relative to
X. So X is a basis for 1-randomness, and thus is K-trivial. a

Randomness is linked to properties of “almost all” degrees. Classically,
Kolmogorov’s 0-1 law states that any class of sets closed under finite
translations has measure 0 or 1 (see e.g. Oxtoby [112]). There is also an
effective 0-1 law.

Lemma 12.22 (Kurtz [73], Kautz [61], Kučera for n = 1). Let X be a
set, let n > 1, and let T be a ΠX

n -class of positive measure. If A ∈ 2ω

is n-random relative to X, then there are σ ∈ 2<ω and B ∈ T such that
A = σB. Thus, for every set A that is n-random relative to X, the class
T contains a member Turing equivalent to A.

A class C ⊆ 2ω is degree invariant if A ∈ C and B ≡T A implies B ∈ C.
It is closed under translations if A ∈ C implies σA ∈ C for every string σ.

Corollary 12.23 (Kurtz [73], Kautz [61]). Let C be a Σ0
n+1- or Π0

n+1-
class that is degree invariant, or even just closed under translations. Then
C contains either all n-random sets or no n-random sets.

For example, Martin (unpublished; see Kurtz [73, Theorem 3.3] for a
proof) showed that the class {A : deg(A) is hyperimmune} has measure
1. By analyzing Martin’s proof and applying the effective 0-1 law, Kautz
[61] showed that this class includes every 2-random set. This result cannot
be extended to the 1-random sets, since, by Jockusch and Soare [58], every
Π0

1-class has a member of hyperimmune-free degree.
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Kautz [61] also noted that the effective 0-1 law has an easy but inter-
esting consequence for the theory of the Turing degrees. For a degree a,
let Th(D6a) be the theory of the degrees less than or equal to a. For any
sentence ψ in the language of degree theory, the class of all A such that
ψ ∈ Th(D6deg(A)) is arithmetical, so if a and b are degrees of arithmeti-
cally random sets, then Th(D6a) = Th(D6b). A more careful analysis
can be made to calculate the level of randomness necessary to ensure the
equality of the n-quantifier fragments of these theories.

There is a wealth of material in this area, and not enough room to
present it all. We finish this section by looking at the initial segment
complexity of n-random sets, a topic which will also be addressed in the
next section. Of course, there is a natural characterization in terms of
relativized machines; namely, A is (n + 1)-random iff K∅(n)

(A � k) >
k − O(1). However, one would naturally expect n- and (n + 1)-random
sets to have different unrelativized initial segment complexities. This is
true for Ω(n).

Theorem 12.24 (Yu, Ding, and Downey [144]). For all c and n < m,

∃∞k [K(Ω(n) � k) < K(Ω(m) � k)− c].

For n = 0 and m = 1, Theorem 12.24 was proved by Solovay [129], using
totally different methods.

In contrast to this result, Miller and Yu [97] showed that the different
relativizations of Ω have incomparable K-degrees. Indeed, they proved
the following stronger result, which will be further discussed in the next
section.

Theorem 12.25 (Miller and Yu [97]). For all m 6= n, the K-degrees of
Ω(m) and Ω(n) have no upper bound.

§13. Results of Miller and Yu, and van Lambalgen reducibility.
Recently, Joe Miller and Liang Yu [95, 97, 98] have proved some remark-
able results on the initial segment complexities of random sets, which
highlight both the strengths and limitations of initial segment complexity
as a measure of relative randomness. Motivated by van Lambalgen’s The-
orems 12.14 and 12.17, they introduced the following measure of relative
randomness.

Definition 13.1 (Miller and Yu [97]). We say that A is van Lambal-
gen reducible to B, and write A 6vL B, if for all C ∈ 2ω, if A ⊕ C is
1-random then B ⊕ C is 1-random.

This notion is closely related to one introduced by Nies. In [105, Section
8], Nies defined A 6LR B if every set that is 1-random relative to B is
1-random relative to A. (So, for instance, A 6LR ∅ iff A is low for 1-
randomness.) Notice that this relation is implied by Turing reducibility.
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Nies [105] studied the monotone Σ0
3 operator LR(B) := {A : A 6LR B}.

He also showed that if A and B are c.e., then A 6LR B implies A′ 6tt B
′.

Moreover, applying the technique of pseudo-jumps from [57] to the c.e.
operator given by the construction of a set that is low for 1-randomness, he
showed that there is a c.e. set that is Turing incomplete but LR-complete.

If A and B are both 1-random then Theorems 12.14 and 12.17 imply
that A 6LR B iff B 6vL A. (Notice the inverse relationship.) If A is
not 1-random, then A ⊕ C is never 1-random, no matter what C is, so
the least vL-degree consists of all sets that are not 1-random. Thus vL-
reducibility is interesting only on the 1-random sets. It might be fruitful
to explore extensions of vL-reducibility that behave nontrivially on the
non-1-random sets.

The following result summarizes some of the basic properties of vL-
reducibility and the resulting vL-degrees.

Theorem 13.2 (Miller and Yu [97]).
(i) If A is n-random and A 6vL B, then B is n-random.
(ii) If A⊕B is 1-random then the vL-degrees of A and B have no upper

bound. Thus there is no join operator on the vL-degrees.
(iii) If A 6T B and A is 1-random, then B 6vL A.
(iv) There are 1-random sets A ≡vL B such that A <T B.
(v) There are no maximal or minimal vL-degrees of 1-random sets.
(vi) If A⊕B is 1-random then A⊕B <vL A,B.
(vii) Every finite partial order can be embedded into the vL-degrees, and

hence the Σ0
1-theory of the vL-degrees is decidable.

One of the attractive features of vL-reducibility is that it can be used
to prove results about K- and C-reducibility, in ways that are often eas-
ier than dealing directly with these reducibilities. The following result
is what allows for the transfer of results from vL-reducibility to K- and
C-reducibility.

Theorem 13.3 (Miller and Yu [97]). For any sets A and B,
(i) A 6K B ⇒ A 6vL B and
(ii) A 6C B ⇒ A 6vL B.

We state the following consequences for K-reducibility, but they also
hold for C-reducibility.

Corollary 13.4 (Miller and Yu [97]).
(i) If A 6K B and A is n-random, then B is n-random.
(ii) If A ⊕ B is 1-random, then A |K B, and the K-degrees of A and

B have no upper bound. Thus there is no join operator on the K-
degrees.

According to Miller and Yu [97], R. Rettinger independently announced
that if A⊕B is 1-random then A |K B.
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Theorem 12.25 follows from the second part of the above result, since
if m 6= n then Ω(m) and Ω(n) are 1-random relative to each other, and
hence Ω(m) ⊕ Ω(n) is 1-random.

Thus we see that, while there is no direct correlation between increasing
levels of randomness and increasing K-degrees, there is a relationship
between levels of randomness and initial segment complexity.

Although certain results on vL-reducibility can be transfered to K-
reducibility, there are some important differences between these notions.
For instance, by part (iii) of Theorem 13.2, every ∆0

2 1-random set is
>vL Ω. On the other hand, we have the following result, which shows
that if Ω = Ω0 ⊕ Ω1 then Ω0 is an example of a ∆0

2 1-random set �K Ω.

Theorem 13.5 (Miller and Yu [97]). If A ⊕ B is 1-random then A |K
A⊕B.

An even more significant difference between the vL-degrees and the
K-degrees is that the former are invariant under computable permuta-
tions (by part (iii) of Theorem 13.2 and the closure of the notion of 1-
randomness under computable permutations), but the latter are not.

Theorem 13.6 (Miller and Yu [97]). There is a computable permuta-
tion f : ω → ω such that for every 1-random set A, the K-degrees of A
and f(A) have no upper bound.

This result suggests that K-reducibility may be too strong as a measure
of relative randomness on the 1-random sets, and that vL-reducibility may
be a better measure in this context.

As pointed out by Miller and Yu [97], it follows from part (ii) of Theorem
13.2 that if we let Ωn be the n-th column of Ω, then {Ωn : n ∈ ω} is a
vL-antichain, and hence a K-antichain. So we have a concrete example of
infinitely many pairwise incomparable K-degrees of 1-random sets. It was
a vexing open question whether there are any comparable K-degrees of
1-random sets. Miller and Yu [98] recently answered this question, making
use of a converse to part (ii) of Theorem 3.10, which shows that the Ample
Excess Theorem (part (i) of Theorem 3.10) is in a sense tight.

Theorem 13.7 (Miller and Yu [98]). Let f be any function such that∑
n 2−f(n) <∞. There is a 1-random set A such that

K(A � n) 6 n+ f(n) +O(1).

Corollary 13.8 (Miller and Yu [98]). Let B be 1-random. There is a
1-random set A <K B. In fact, A can be chosen so that limnK(B �
n)−K(A � n) = ∞.

Proof. Let g(n) = K(B � n) − n. By the Ample Excess Theorem,∑
n 2−g(n) <∞, so there is a function f such that limn g(n)− f(n) = ∞
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and
∑

n 2−f(n) < ∞. Let A be as in Theorem 13.7. Then limnK(B �
n)−K(A � n) = ∞. a
Miller and Yu [98] showed that it is also possible to ensure additionally
that A⊕C <K B for all C. As they pointed out in [97], if we take a C that
is 1-random relative to A, then A⊕ C is 1-random, and the K-degree of
B bounds the K-degrees of A and A⊕C, which does away with a possible
improvement of Theorem 13.5.

Using new techniques and extensions of the above methods, Miller
proved the following.

Theorem 13.9 (Miller [95]).
(i) If A and B are 1-random and A ≡K B, then A′ ≡tt B

′. Thus every
K-degree of 1-random sets is countable.

(ii) If A and B are 3-random and A 6K B, then B 6T A ⊕ ∅′ and
B′ 6T A′.

As noted by Miller [95], it follows from part (ii) that the upper cone
above the K-degree of a 3-random set is always countable. On the other
hand, Miller and Yu [98] showed that there is a 1-random set whose K-
degree is below an antichain of K-degrees of size 2ℵ0 .

As we have seen in Theorem 3.5, Miller and Yu [97] gave a plain Kol-
mogorov complexity characterization of 1-randomness. They also gave the
following “mixed” characterization.

Theorem 13.10 (Miller and Yu [97]). A set A is 1-random iff

C(A � n) > n−K(n)−O(1).

Several results we have seen point to the computational weakness of
random sets. Indeed, there are ways in which sufficiently random sets
begin to resemble highly nonrandom sets such as K-trivial sets.10 For
instance, Miller [95] has shown that if A is 3-random, then it is often
useless in lowering the prefix-free complexity of strings, so that A re-
sembles sets that are low for K. We say that A is weakly low for K if
∃∞ [K(n) 6 KA(n) + O(1)]. That is, for infinitely many n, the informa-
tion in A is so useless that it cannot help to compress n.

Theorem 13.11 (Miller [95]).
(i) If A is 3-random, then it is weakly low for K.
(ii) If A is weakly low for K and 1-random, then it is strongly Chaitin

random (as defined in Section 12).

10Miller has suggested that we should find ways to quantify the idea that, while
highly random sets have a great deal of information, it is useless information. There
are existing concepts of useful information (see Antunes and Fortnow [3] for several
references), but none seem to have been successfully applied yet to the context of
higher order randomness.
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§14. Relativizing Ω. So far when we have looked at relativizations,
we have always looked at the “standard way” of forming a universal prefix-
free machine (as in the definition of Ω(n) in Section 12). Relativization acts
strangely on randomness notions, since we are dealing with c.e. operators,
but not CEA (computably enumerable in and above) operators. We have
already seen this (in Section 8) since, for instance, if A is not GL1, or even
just not K-trivial, then no set that is 1-random relative to A is Turing
above A (Kučera [69]; Hirschfeldt, Nies, and Stephan [51]). In particular,
whatever ΩΩ is, Ω 
T ΩΩ.

Notice that this means that if we could construe Ω as an invariant
operator, meaning that A ≡T B implies ΩA ≡T ΩB, then it would be a
degree invariant operator that is not the jump or an iterate of the jump,
thereby resolving a longstanding conjecture of Martin (see [62, p. 279]).
As we will see below, this is not the case, but given the central role of
Ω in this area, it is natural to try to understand it as an operator in the
same way that we seek to understand the halting problem, and hence the
jump operator, in classical computability theory.

The first thing we need to understand is what we actually mean when we
talk about relativizing Ω. Clearly, any reasonable definition must ensure
that ΩX is an X-left-c.e. real and is 1-random relative to X. Furthermore,
the definition should be relatively oracle-independent, in the sense that
it should only involve machines U such that UX is a universal prefix-free
machine relative to X for every oracle X, and the coding constants of
prefix-free oracle machines do not depend on the oracle. More precisely,
we have the following definitions from [37]. An oracle machine M is a
prefix-free oracle machine if MA is prefix-free for every A ∈ 2ω. A prefix-
free oracle machine U is universal if for every prefix-free oracle machine
M there is a τ ∈ 2<ω such that

∀A ∈ 2ω ∀σ ∈ 2<ω [UA(τσ) = MA(σ)].

In other words, U can simulate any prefix-free oracle machine in a way
that does not depend on the oracle. Given such a machine, we can define
the halting probability

ΩA
U :=

∑
UA(σ)↓

2−|σ|,

which can be thought of as an operator on 2ω; we call such an operator
an Omega operator.

Recall Theorems 4.5 and 4.6, which together imply that the only 1-
random left-c.e. reals are versions of Ω. We would like to relativize these
results. The relativization of Theorem 4.6 is straightforward, but the same
is not true of Theorem 4.5. We can relativize the notion of Solovay re-
ducibility in the natural way, and hence talk about X-Solovay complete
X-left-c.e. reals. The proof of Theorem 4.5 given above does relativize in
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the sense that if a real is X-left-c.e. and X-Solovay complete then it is
the halting probability of some prefix-free oracle machine MX that is uni-
versal with respect to prefix-free machines with oracle X. However, there
is no reason to expect that M should be a universal prefix-free oracle
machine, since it is unclear how MY should behave for Y 6= X.

However, Downey, Hirschfeldt, Miller, and Nies [37] did show that the
relativization of Theorem 4.5 holds. Together with the relativization of
Theorem 4.6, this result yields the following theorem.

Theorem 14.1 (Downey, Hirschfeldt, Miller, and Nies [37]). The fol-
lowing are equivalent.

(i) α is an X-left-c.e. real and is 1-random relative to X.
(ii) α is an X-left-c.e. real and is X-Solovay complete.
(iii) α = ΩX

U for some universal prefix-free oracle machine U .

This result has some rather counterintuitive consequences for the pos-
sible values of ΩX for various oracles X. Let us reconsider n-randomness,
that is, 1-randomness relative to ∅(n−1). Since every 2-random set is 1-
random relative to Ω, it follows from Corollary 12.18 that Ω is 1-random
relative to any 2-random set. Furthermore, Ω is a left-c.e. real relative
to any oracle. Since any version of ΩΩ is 2-random, we see that Ω is a
possible value of Ω relative to ΩΩ.

Another interesting property of Omega operators is that the class of low
1-random sets is closed under their action. Indeed, let U be a universal
prefix-free oracle machine and let A be low and 1-random. Since ΩA

U is 1-
random relative to A, Corollary 12.18 implies that A is 1-random relative
to ΩA

U . So by Theorem 7.7, ΩA
U is GL1. But ΩA

U is A-left-c.e., and hence
is ∆0

2. So ΩA
U is low.

Theorem 14.1 is particularly interesting in light of the following result.

Theorem 14.2 (Downey, Hirschfeldt, Miller, and Nies [37]). Let X ∈
2ω be 2-random. Then there is an A ∈ 2ω such that X is an A-left-c.e.
real and is 1-random relative to A. Thus X = ΩA

U for some universal
prefix-free oracle machine U .

So almost every real is a halting probability relative to some set. Fur-
thermore, as shown in [37], for every universal prefix-free oracle machine
U , the range of ΩU has positive measure, which implies (by Kolmogorov’s
0-1 law mentioned in Section 12) that for almost every X, there is an A
such that X =∗ ΩA

U , where we write B =∗ C to mean that B and C agree
on a cofinite set.

As pointed out in [37], Theorem 14.2 cannot be extended to all 1-
random sets, since if 1− Ω is an A-left-c.e. real then it is A-computable.

The case where ΩA
U is a left-c.e. real is particularly interesting. The

following result shows that this is not at all a rare occurrence.
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Theorem 14.3 (Downey, Hirschfeldt, Miller, and Nies [37]). Let U be
a universal prefix-free oracle machine.
(i) 0 < µ({A : ΩA

U is a left-c.e. real}) < 1.
(ii) If µ({A : ΩA

U = X}) > 0 then X is a left-c.e. real.

It is shown in [37] that A is low for Ω iff there is a universal prefix-free
oracle machine U such that ΩA

U is a left-c.e. real. By Theorem 12.8, every
2-random set is low for Ω, so almost every set is taken to a left-c.e. real
by some Omega operator.

Another result in [37] is that for any universal prefix-free oracle machine
U and any set X, the set of all B such that ΩB

U is 1-random relative to
X has positive measure. Together with the first part of Theorem 14.3,
this gives a resoundingly negative solution to the question of the degree-
invariance of Omega operators.

Theorem 14.4 (Downey, Hirschfeldt, Miller, and Nies [37]). Let U be
a universal prefix-free oracle machine.
(i) For all X ∈ 2ω, there are A,B ∈ 2ω with A =∗ B such that ΩA

U is a
left-c.e. real and ΩB

U is 1-random relative to X.
(ii) There are A,B ∈ 2ω such that A =∗ B and ΩA

U |T ΩB
U (and in fact,

ΩA
U and ΩB

U are 1-random relative to each other).

Proof. (i) Let S = {A : ΩA
U is a left-c.e. real} and R = {B : ΩB

U is
1-random relative to X}. Let R̂ = {A : ∃B ∈ R (A =∗ B)}. Since R has
positive measure, Kolmogorov’s 0-1 law implies that µ(R̂) = 1. Since S
has positive measure, there is an A ∈ S ∩ R̂.

(ii) By part 1, there are A,B ∈ 2ω with A =∗ B such that ΩA
U is a left-

c.e. real and ΩB
U is 2-random. Hence ΩB

U is ΩA
U -random and, by Corollary

12.18, ΩA
U is ΩB

U -random. This implies that ΩA
U |T ΩB

U . a
In light of this result, one might wonder whether there are any de-

grees on which Omega operators are invariant. Once again, the answer is
connected with K-triviality.

Theorem 14.5 (Downey, Hirschfeldt, Miller, and Nies [37]). Let A ∈
2ω. the following are equivalent.
(i) A is K-trivial.
(ii) Every Omega operator takes A to a left-c.e. real.
(iii) Every Omega operator is degree invariant on the degree of A.

There is an example in [37] of an Omega operator that is degree invari-
ant only on the K-trivial degrees. It is not known whether every Omega
operator has this property.

For further properties of Omega operators, including their interesting
analytic behavior, see [37].
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§15. Hausdorff dimension and partial randomness. In this sec-
tion, we look at the following intuitive notion, which provides yet another
way to calibrate randomness. Suppose that Ω = .a1a2 . . . . Then we would
expect .a10a20 . . . to be “1

2 -random”. To make this notion of partial ran-
domness precise, and describe some results that are very interesting in
their own right, we need to detour through the theory of Hausdorff di-
mension.

15.1. Classical Hausdorff dimension. First we recall the definition
of classical Hausdorff dimension [49]. For comments and discussion see for
instance Falconer [45].

Definition 15.1. (i) C ⊆ 2<ω is an n-cover if σ ∈ C → |σ| > n.
(ii) C covers A ⊆ 2ω if A ⊆

⋃
σ∈C [σ].

(iii) Define Hε
n(A) := inf

{ ∑
σ∈C

2−ε|σ| : C is an n-cover of A
}

.

(iv) Define Hε(A) := lim
n→∞

Hε
n(A). This is the ε-dimensional outer Haus-

dorff measure of A.

Lemma 15.2. Let A ⊆ 2ω. There exists ε ∈ [0, 1] such that
(i) Hε′(A) = 0 for ε′ > ε and
(ii) Hε′(A) = ∞ for 0 6 ε′ < ε.

The ε in Lemma 15.2 is called the Hausdorff dimension of A:

Definition 15.3. dim(A) := inf{ε : Hε(A) = 0}.

Hausdorff dimension has a number of basic properties:
(i) It gives a refinement of the notion of measure zero: If µ(X) 6= 0, then

dim(X) = 1.
(ii) (monotonicity) If X ⊆ Y then dim(X) 6 dim(Y ).
(iii) (countable stability) If I is countable, then

dim
( ⋃

i∈I

Yi

)
= sup

i∈I

{
dim(Yi)

}
.

In particular, dim(X ∪ Y ) is max{dim(X),dim(Y )}.
15.2. Effective Hausdorff dimension. We now discuss effectiviza-

tions of Hausdorff dimension. There has been a large amount of research
in effective dimension, and we only scratch the surface here. In particular,
we do not discuss work in effectivizing other types of fractal dimension,
such as packing dimension (see Athreya, Hitchcock, Lutz, and Mayor-
domo [4]). For more on effective dimension theory, see Reimann [115] or
Lutz [87]; for results on the complexity of these and related notions, see
Hitchcock, Lutz, and Terwijn [52].

Recall from Definition 10.4 the null sets of the form Sh[d]. Schnorr
also addressed null sets of exponential order, which have the form Sh[d]
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for h(n) = 2εn with ε ∈ (0, 1]. Although he did not make an explicit
reference to Hausdorff dimension, it turns out that the theory of Hausdorff
dimension can be cast precisely in terms of such null sets of exponential
order.

Lutz constructivized Hausdorff dimension in [85, 86], using what he
called s-gales (a generalization of martingales). Let s ∈ [0,∞). An s-gale
is a function d : 2<ω → R+ that satisfies the averaging condition

2sd(σ) = d(σ0) + d(σ1)(3)

for every σ ∈ 2<ω. (Notice that 1-gales are the same as martingales.) Simi-
larly, d is an s-supergale if (3) holds with > instead of equality. The success
set S[d] is defined exactly as was done for martingales in Section 2.2.

Although the following theorem shows that we do not really need s-gales
for the treatment of Hausdorff dimension, it is sometimes convenient to
use them.

Theorem 15.4. (Lutz [85], Ambos-Spies, Merkle, Reimann, and Ste-
phan [2], Calude, Staiger, and Terwijn [19]). For any A ⊆ 2ω and r ∈
[0, 1], the following are equivalent:

(i) A has Hausdorff dimension r,
(ii) r = inf{s ∈ Q : there is an s-(super)gale d s.t. A ⊆ S[d]}.
(iii) r = inf{s < 1 : there is a (super)martingale d s.t. A ⊆ S2(1−s)n [d]},

or r = 1 if this set is empty.

So we see that the theory of (effective) Hausdorff dimension falls out as
a special case of Schnorr’s treatment of effective measure theory.

Theorem 15.4 motivates the following definition:

Definition 15.5. Let C be a complexity class. A class A ⊆ 2ω has
C-dimension r if

r = inf{s < 1 : ∃d ∈ C [d is a supermartingale and A ⊆ S2(1−s)n [d] ]},
or r = 1 if this set is empty.

The C-dimension of a set A is the C-dimension of the singleton {A}.
There is an important connection between Σ0

1-dimension and Kolmogo-
rov complexity, which was established in the form given below by May-
ordomo [89] and prefigured by Ryabko [117, 118], Staiger [130, 131], and
Cai and Hartmanis [13] (see Staiger [132] for a discussion of these and
other related papers).

Theorem 15.6 (Mayordomo [89]). For any set A, the Σ0
1-dimension of

A is equal to

lim inf n
K(A � n)

n
.

Since plain and prefix-free Kolmogorov complexity are equal up to a
log factor, this theorem also holds with C in place of K.
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15.3. The picture of implications. The following relationships hold
between various notions of effective randomness and dimension, where ∆0

2-
randomness and Schnorr ∆0

2-randomness are the relativizations to ∅′ of
computable randomness and Schnorr randomness, respectively.

∆0
2-random
⇓

Schnorr ∆0
2-random =⇒ ∆0

2-dimension 1
⇓ ⇓

1-random =⇒ Σ0
1-dimension 1

⇓
computably random

=⇒

⇓
Schnorr random =⇒ computable dimension 1

No other implications hold than the ones indicated. That these implica-
tions hold follows easily from the definitions. The strictness of the impli-
cations in the first column was discussed in Section 10 (except for the fact
that there is a Schnorr ∆0

2-random set that is not 1-random, which follows
immediately from the fact that no ∆0

2 set can be Schnorr ∆0
2-random).

That there are no more implications between the first and the second
column follows from the next proposition. The strictness of the two im-
plications in the second column follows by similar means. (It is easy to
show (see [86]) that the class of computable sets has Σ0

1-dimension 0, but
is not computably null, so in particular the class of computable sets has
computable dimension 1. Also, Lutz [86] has shown that for every ∆0

2 real
r ∈ [0, 1], there is a ∆0

2 set of Σ0
1-dimension r, but it is obvious that every

∆0
2 set has ∆0

2-dimension 0.)

Proposition 15.7 (Terwijn [136]). There are sets that are not Schnorr
random but have ∆0

2-dimension 1.

An important related open question, formulated independently by Rei-
mann and by Terwijn (see [96]), is whether every set of positive Σ0

1-
dimension computes a 1-random set. Even if we strengthen the hypothesis
to Σ0

1-dimension 1, the question is still open.
15.4. Partial randomness. There are at least two possible versions

of partial Martin-Löf randomness, as we now discuss. First we might base
the definition upon a straightforward generalization of the original defi-
nition. A natural variation on s-gales is s-measure:

µs(V ) :=
∑
σ∈V

2−s|σ|

for an open set V . Here it is important to think of V as a prefix-free
collection of strings, since if s 6= 1 then different presentations of the
same open set can have different s-measures.
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We can use this notion to define partial Martin-Löf randomness as fol-
lows.

Definition 15.8 (Tadaki [134]). (i) A weak Martin-Löf s-test is a
computable collection of c.e. open sets {Vk}k∈ω such that µs(Vk) 6
2−k for all k.

(ii) We say that A is weakly Martin-Löf s-random if A /∈
⋂

k Vk for every
weak Martin-Löf s-test {Vk}k∈ω.

We can also define a set A to be weakly Levin-Chaitin s-random if
K(A � n) > sn − O(1) for all n. The analog of Schnorr’s Theorem 3.8
that Levin-Chaitin random is the same as Martin-Löf random can be
established with a similar proof.

Theorem 15.9 (Tadaki [134]). A set A is weakly Martin-Löf s-random
iff A is weakly Levin-Chaitin s-random.

Armed with this result, we can emulate the proof that Ω is Levin-
Chaitin random to show the following:

Theorem 15.10 (Tadaki [134]). Let 0 < s 6 1 be a computable real
and define

Ωs :=
∑

U(σ)↓

2−
|σ|
s ,

where U is a universal prefix-free machine. Then Ωs is weakly Martin-Löf
s-random.

Similarly, we can construct a universal weak Martin-Löf s-test, and
establish similar analogues to results on Martin-Löf randomness.

This notion squares with our intuition that if A = a1a2 . . . is random
then B = a10a20a2 . . . should be “somewhat” random. Indeed B is weakly
Martin-Löf 1

2 -random. To see this suppose that for each d there are in-
finitely many n such that K(B � n) < 1

2n − d. Consider the prefix-free
machine M that simulates the universal prefix-free machine U and, when
it finds that U(σ) ↓ is of the form b10b20 . . . bn0, outputs b1 . . . bn. Then
KM (A � n) = K(B � 2n), so for each c there are infinitely many n such
that KM (A � n) < n− c, and hence A is not 1-random.

We would like to prove the analogs of our basic results that martingale
randomness, test set randomness, and incompressibility all coincide. Un-
fortunately, the proof breaks down for the martingale case. Consider the
proof that if a set is Martin-Löf random then no c.e. martingale succeeds
on it. We are given a c.e. martingale d, and when we see d(σ) > 2k we
put σ into Uk. Now imagine we are following the same proof method for
the s < 1 case. The problem is that d is only c.e. We might see that
dt(σ0) > 2k and put σ0 into Vk. At some later stage u > t, we might see
that du(σ) > 2k. We would like to put σ into Vk, but need to keep the set
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prefix-free. In the s = 1 case we can do this by putting σ1 into Vk. But
in the s < 1 case, 2(2−s(|σ|+1)) might be much bigger than 2−s|σ|.

Another approach, taken by Lutz [85, 86], is to define partial random-
ness using martingales and orders, as in the development of Hausdorff
dimension. Recall that Schnorr proved that a set is 1-random iff no c.e.
martingale succeeds on A. Now we want to say that no c.e. martingale
quickly succeeds on A.

Definition 15.11 (Calude, Staiger, and Terwijn [19, 136]).
(i) A strong Martin-Löf s-test is a computable collection of c.e. sets of

strings {Vk}k∈ω (not necessarily prefix-free) such that for all prefix-
free subsets V̂k ⊆ Vk, ∑

σ∈bVk

2−s|σ| 6 2−k.

(ii) We say that A is strongly Martin-Löf s-random if A /∈
⋂

k

⋃
σ∈Vk

[σ]
for every strong Martin-Löf s-test {Vk}k∈ω.

(iii) We say that A is Schnorr s-random if for any c.e. (super)martingale
d,

lim sup
n→∞

d(A � n)
2(1−s)n

<∞.

(iv) We say that A is Lutz s-random if for any c.e. s-(super)gale d, we
have A /∈ S[d].

Theorem 15.12 (Calude, Staiger, and Terwijn [19, 136]). Fix a com-
putable s with 0 < s 6 1. Then a set A is strongly Martin-Löf s-random
iff A is Schnorr s-random iff A is Lutz s-random.

It is also possible to give a machine characterization of strong Martin-
Löf s-randomness. We say that a machine M is s-measurable if for all
prefix-free V ⊆ dom(M), we have µs(

⋃
σ∈V [σ]) 6 1.

Theorem 15.13 (Downey, Reid, and Terwijn (see [114])). A set A is
strongly Martin-Löf s-random iff KM (A � n) > n − O(1) for all s-
measurable machines M .

Reimann and Stephan (unpublished; see [116]) have recently shown
that weak Martin-Löf s-randomness does not imply strong Martin-Löf
s-randomness.
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[67] A. Kučera, Measure, Π0
1-classes and complete extensions of PA, in Recursion

Theory Week (H.-D. Ebbinghaus, G. H. Müller, and G. E. Sacks, eds.), Lect. Notes in
Math. 1141, Springer-Verlag, 1985, 245–259.
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