
ATOMLESS r-MAXIMAL SETS

PETER A. CHOLAK AND ANDRÉ NIES

Abstract. We focus on L(A), the filter of supersets of A in the
structure of the computably enumerable sets under the inclusion
relation, where A is an atomless r-maximal set. We answer a
long standing question by showing that there are infinitely many
pairwise non-isomorphic filters of this type.

1. Introduction

Let E be the collection of computably enumerable sets ordered via
the inclusion relation. A main task concerning this structure is to
classify its orbits. That is, given a computably enumerable set A,
determine all the other computably enumerable sets B such that there
is an automorphism Φ of E with Φ(A) = B. (It is understood that
from this point on all sets are computably enumerable.) There has
been some success in this area. For example, the maximal sets form an
orbit [Soare, 1974] and the hemi-maximal sets (Friedberg splittings of
maximal sets) form an orbit [Downey and Stob, 1992].

It is easy to see that if A and B are in the same orbit then L(A) is
isomorphic to L(B). (By work of Cholak [1995] and Soare [1974], and
some unpublished work of Herrmann, the converse fails unless L∗(A) is
finite.) L(A) is the principal filter that A determines in E ; ie. L(A) =
{{A ∪We}e∈ω;⊂} and L∗(A) is L(A) modulo the ideal of finite sets.
Hence we will turn our attention to classifying the various different
principal filters that are possible.

Principal filters of E are in a correspondence with intervals of E . Fix
infinite computably enumerable sets A ⊆ B. Define E(X) = {{We ∩
X}e∈ω;⊂}, where X need not be computably enumerable; for example
X = B − A. Now one can find an one-to-one computable function f
whose range is B. The principal filter formed by the pullback of A,
f−1(A), is isomorphic to E(B − A). Similarly, if one has a principal
filter one can easily find a corresponding interval. The only intervals of
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E which have been (at least partially) classified in terms of isomorphism
are either isomorphic to E , M (the interval formed by A ⊂m B, for
more see below), a Σ3 Boolean algebra, or the principal filter formed
by a r-maximal set. We will survey what is known.

By work of Soare [1982], if A is low then L∗(A) ≈ E∗. (And then
we can use another result of Soare to show L(A) ≈ E .) This has been
improved to low2, in yet to be published work of Harrington, Lachlan,
Maass and Soare. Also, in Cholak [1995], it is shown this remains true
if A is semi-low2 and has the outer splitting property. The point is that
a large class of sets determine principal filters which are isomorphic to
E .

It is useful to recall the definition of a major subset:

Definition 1.1. A is a major subset of B, A ⊂m B, if B−A is infinite
and for every computably enumerable set W, B ⊆∗ W =⇒ A ⊆∗ W .

Let A ⊂m B and C ⊂m D, then by Maass and Stob [1983], we know
that E(B −A) ≈ E(D − C). We define M = E(B −A).

By Lachlan [1968], a set H is hh-simple iff L∗(H) is isomorphic to
a Σ3 Boolean algebra. A maximal set M is a hh-simple set; L∗(M)
is the two element Boolean algebra. Since there are infinite many
non-isomorphic Boolean algebras, we know that the collection of hh-
simple sets breaks up into infinitely many orbits. Slaman and Woodin
(unpublished) used this result of Lachlan to show:

Theorem 1.2 (Slaman-Woodin). The set {〈h1, h2〉 : hi is an index for
a hh-simple set Hi and L(H1) ≈ L(H2)} is Σ1

1 complete.

To prove this, build a uniformly computable collection of computable
Boolean algebras {Bi}i∈ω such that the set

{〈i, j〉 : Bi is isomorphic to Bj}
is Σ1

1 complete. To this computable collection apply Lachlan’s construc-
tion of a hh-simple set to get a computable collection of computably
enumerable sets {Hi}i∈ω where L∗(Hi) is isomorphic to Bi.

With these results in mind, we turned towards the r-maximal sets.
Recall the following definition and lemmas: (The proofs of the lemmas
can be found in Soare [1987, X.4].)

Definition 1.3. (i) An infinite set C is r-cohesive if there is no com-
putable set R such that R ∩ C and R ∩ C are both infinite.
(ii) A computably enumerable set A is r-maximal if A is r-cohesive.
(Clearly if A is r-maximal and A ⊆ B then B is r-maximal.)

Lemma 1.4 (Lachlan). Assume A ⊂∞ B and B is r-maximal. Then
A ⊂m B iff A is r-maximal.
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Corollary 1.5. If B is r-maximal and A ⊂m B then A is r-maximal
but not maximal.

If A and B are r-maximal sets with maximal supersets then L∗(A)
and L∗(B) are isomorphic: fix two such sets. If M1 and M2 are two
maximal supersets of A then either M1 =∗ M2 or M1 ∪ M2 =∗ ω.
The latter cannot occur. So modulo the ideal of finite sets, A can
only have one maximal superset M . Similarly, B can only have one
maximal superset M ′. So L(M) and L(M ′) are isomorphic. A ⊂m M
and B ⊂m M ′ by Lemma 1.4. By Maass and Stob [1983], we know
that E(M − A) ≈ E(M ′ − B) ≈ M. Then we can piece together an
isomorphism between L(A) and L(B).

Definition 1.6. A coinfinite computably enumerable set A is atomless
if A has no maximal superset.

Much less is known about atomless r-maximal sets. It is known that
there are two atomless r-maximal sets A and B such that L(A) and
L(B) are not isomorphic [see Soare, 1987, X.5.7-8]. It has been a long
standing open question whether there were infinite many such sets.
Our main result gives an answers:

Theorem 1.7. There are infinitely many atomless r-maximal sets such
that the principal filters formed by these sets are pairwise non-isomorphic.

Hence the atomless r-maximal sets also break up into infinitely many
orbits. In the next two sections we will focus on providing a proof of this
result. First, in Section 2, we give a general construction of an atomless
r-maximal set and then, in Section 3, we use this construction to get
the desired result.

So far we were unable to classify all the possible principal filters
which can be formed by an atomless r-maximal set. To prove the
above theorem, we came up with infinitely many such principal filters.
But we are on the fence as to whether this list of principal filters (or
any finite modification of it) is inclusive of all such principal filters. We
would like to think that our construction of an atomless r-maximal set
is the canonical construction of an atomless r-maximal set as Lachlan’s
[1968] construction provided for the hh-simple sets. But we have no
evidence to support this claim.

However, in our desire to find a classification, we were able to prove
the following:

Theorem 1.8. There is a satisfiable definable property P (in the lan-
guage {⊂}) such that if P (A) and P (B) then A and B are atomless
r-maximal sets and L∗(A) ≈ L∗(B)
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A proof of this can be found in Section 4. There are other examples
of definable classes of sets {A : L∗(A) ≈ L}, where L is not a Boolean
algebra. The set {A : ∃M(A ⊂m M & M is a maximal set)} is such a
definable class. For all k, by Soare [1974], we know that {A : L∗(A) ≈
L} is definable, where L is the Boolean algebra of size 2k. In Harrington
and Nies [n.d.], there are other examples where L is an infinite Boolean
algebra. For example, L might be the dense Boolean algebra or the
Boolean algebra formed by the finite and cofinite sets – the completely
atomic Boolean algebra.

Our notation is standard and follows Soare [1987].

2. The Basic Construction of an Atomless r-Maximal Set

Theorem 2.1 ([Robinson, 1967; Lachlan, 1968]). There exists an atom-
less r-maximal set A.

The goal of this section is to provide a proof of the above theo-
rem. The basic construction we present is a modified version of John
Norstad’s construction (unpublished) which can be found in Lerman
and Soare [1980] and Soare [1987]. In general, this section follows
the course of Soare [1987, Section X.5] However, the construction we
present will have two major modifications. Briefly, the modifications
consist of laying out the markers on a tree and making each set built
simple w.r.t. to its successors over its predecessor on the tree (to un-
derstand how we are using simple in this context we refer the reader
to Definition 2.4).

Definition 2.2. A sequence of computably enumerable sets {Hn}n∈ω

forms a tower if ∪nHn = ω and for all n, Hn ⊂∞ Hn+1.

Lemma 2.3. If A is a computably enumerable set and {Hn}n∈ω is a
tower such that A = H0 and the requirements

Wn ⊆∗ Hn or A ⊆∗ WnPn

holds for all n > 0, then A is atomless and r-maximal.

Proof. If A ⊆ Wn, then A ⊆ Wn ⊆ Hn ⊂∞ Hn+1 and hence Wn is
not maximal. So A is atomless. Assume R splits A. Let R = Wi and
R = Wj, i > j. By Pi and Pj , Wi ⊆∗ Hi and Pj, Wj ⊆∗ Hj. But then
Wi ∪Wj = ω ⊆∗ Hi, a contradiction. So A is r-maximal.

Herrmann (unpublished) observed that the converse of the above
lemma is true. In particular, if A is an atomless r-maximal set then
there exists a tower; furthermore, this tower is computable in 0(3).
Given Hn choose Hn+1 such that Hn ⊂∞ Hn+1 ⊂∞ ω and if A +⊆∗ Wn+1

then Wn+1 ⊆ Hn+1.
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Let T ⊆ ω<ω be an infinite computable tree. For this section, we
will restrict all lower Greek letters to T . Let α → iα be a one-to-one
onto computable function from T to ω such that α ≺ β =⇒ iα < iβ.
Note that iλ = 0, where λ is the empty string. For α += λ, let α−

be α’s immediate predecessor in the tree T . The trees will be used in
conjunction with the simplicity requirements. In later sections we will
vary the trees that we use.

Let {Γ〈iα,j〉}α∈T−{λ},j∈ω be a collection of markers arranged along T .
ds

n will denote the element associated with Γn at stage s. We must
ensure that for all n > 0,

dn =dfn lim
s

ds
n exists.Nn

We let As = {ds
n}n∈ω, A = {dn}n∈ω,

Cs
α = Cs

iα = {ds
〈iα,j〉}j∈ω,

Cα = Ciα = {d〈iα,j〉}j∈ω,

and

Hα = Hiα = A ∪ (
⋃

{Ci : i ≤ iα}).

To ensure that A is an atomless r-maximal set (and to do slightly more)
we will meet the following requirements for all α,

A ∪
⋃

{Cβ : β / α} is a computably enumerable setRα

and Nn, for all n. In Definition 2.9 we will define a computably enu-
merable set Aα and Lemma 2.11 we will show that Aα =∗ A ∪

⋃
{Cβ :

β / α}. Given that we meet these requirements and the definition of
iα, it is easy to see that the {Hn}n∈ω form a tower. These requirements
will also allow us to show that Aα ∩Aβ = Aα∩β, see Lemma 2.10.

To meet the above requirements it is enough to do a slightly modified
Friedberg construction maximizing e-states measured w.r.t. to

Un,s = {x : (∃t ≤ s)[x = dt
〈i,j〉 & x ∈Wn,t & n < i}.

Of course, Un =
⋃
{Un,s : s ∈ ω}. The e-state of x at stage s,

σ(e, x, s) = {i ≤ e : x ∈ Ui,s}. The construction will ensure that
di is in the highest possible i-state.

Definition 2.4 (Simplicity). We say that A is simple w.r.t. a superset
B over a subset C iff for every computably enumerable set W , if W ∩
(B−A) is infinite then W ∩ (A−C) is infinite. (For example, a simple
set A, is simple w.r.t. to ω over ∅.) Clearly this is definable in E given
parameters for A, B, and C.
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Our goal is to make Aα simple w.r.t. Aβ over Aα− iff λ += α ≺ β ∈ T .
Assuming we meet the requirements Rα, if β|α then Aα cannot be
simple w.r.t. Aβ over Aα− ; by Lemma 2.10, Aα∩Aβ = Aα∩β , so Aβ is not
a superset of Aα. Hence it is enough to ensure that if λ += α ≺ α̂ j ∈ T
then Aα is simple w.r.t. Aα j over Aα− . Therefore, it is enough to meet
the following requirements for all α, j and n such that α ĵ ∈ T and
α += λ,

|Wn ∩ Cαˆj| = ∞ =⇒ |Wn ∩ Cα| ≥ 1Qα,j,n

If we meet Qα,j,n, for all n, then |W ∩Cα j| =∞ implies |W ∩Cα| = ∞,
for all W .

The markers {Γ〈iα,〈j,n,l〉〉}l∈ω will be used to meet Qα,j,n. We only
allow Γ〈iα,〈j,n,l〉〉 to pull elements y at stage s which are in Cs

αˆj ∩Wn,s,
assuming Qα,j,n is not already met. If we pull y for the sake of Qα,j,n,
we will call y a witness. y will remain a witness until its position in
terms of the markers changes (in which case it is either pulled for some
higher priority requirement or dumped into A).

There is a slight conflict between the requirements Qα,j,n and Rα.
To meet Rα we will pull to maximize dm’s m-state. We must be careful
that we do not lose every witnesses y = ds

m for the sake of Rα. In
this regard, we will find witnesses for Qα,j,n which are in the maximum
〈iα, j, n〉-state. Hence we will only allow Γ〈iα,〈j,n,l〉〉 to pull elements y at
stage s if y ∈ Cs

αˆj ∩Wn,s and y and ds
〈iα,〈j,n,l〉〉 have the same 〈iα, j, n〉-

state, assuming Qα,j,n is not already met. And if ds
m is a witness for

Qα,j,n, we will only pull to increase its 〈iα, j, n〉-state (not its m-state).
To this end, we define ẽs, ẽs = e unless ds

e is a witness for Qα,j,n at
stage s in which case ẽs = 〈iα, j, n〉.

The Construction 2.5. Stage s = 0. Let d0
n = n.

Stage s + 1.
Part I: Find the least e such that for some i, e < i ≤ s, σ(ẽs, ds

i , s) >
σ(ẽs, ds

e, s). Choose such an i with σ(ẽs, ds
i , s) as large as possible and

define d̂s
e = ds

i (Γe pulls ds
i for Rẽs). Enumerate ds

k, e ≤ k ≤ s, k += i,
into A (the standard dump). Let d̂s

j = ds
j, for all j < e, and d̂s

e+k = ds
s+k,

for all k > 0.
Part II: Find the least e, j, n, and i (in that order) such that for

some l, e = 〈iα, 〈j, n, l〉〉; e < i ≤ s; for some k, i = 〈iαˆj , k〉 [note
that iα < iαˆj ]; σ(〈iα, j, n〉, d̂s

i , s) = σ(〈iα, j, n〉, d̂s
e, s); for all l′ ≤ l,

d̂s
〈iα,〈j,n,l′〉〉 /∈ Wn,s [hence there are no smaller witnesses that Qα,j,n is

already met]; and d̂s
i ∈ Wn,s. Define ds+1

e = d̂s
i (Γe pulls the witness d̂s

i

for Qα,j,n at stage s; we also say that Qα,j,n acts at stage s). Enumerate
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d̂s
k, e ≤ k ≤ s, k += i, into A (another dump). Let ds+1

k = d̂s
k, for all

k < e, and ds+1
e+k = d̂s

s+k, for all k > 0.

Lemma 2.6. For every e, de = lims ds
e exists and A = {de}e∈ω}.

Proof. By induction on e. Assume the lemma holds for i < e. Choose
s such that for all i < e, di = ds

i . Part I of the construction can only
apply to Γe at most 2e times after stage s. Choose a stage t such that
Part I never applies to Γe after stage t. Part II can only apply to Γe at
most once after stage t.

Lemma 2.7. For all n, Un ∩A is finite or A ⊆∗ Um.

Proof. By induction on n. Using the construction and the definition of
U0, it is easy to see that U0 is infinite iff A ⊆ U0. Now fix n > 0 and
suppose for all m < n that

Um ∩ A is finite or A ⊆∗ Um.(2.1)

Let σ = {m < n : A ⊆∗ Um} (the (n−1)-state of A). Let Uσ =
⋃
{Um :

m ∈ σ}. If Un∪Uσ is finite then Un∩A is finite and Wn ⊆∗ Hn, by the
definition of Un. By the definition of ẽs, we have that for almost all e
and for all s, ẽs > n. So if Un∩Uσ is infinite then, by the construction,
A ⊆∗ Un. Thus we can continue the induction.

Lemma 2.8. Assume that α ĵ ∈ T and α += λ. Then for all n, Qα,j,n

is met. Furthermore, Qα,j,n only acts finitely often.

Proof. Assume not. Fix some n such that |Wn ∩Cαˆj| = ∞ but |Wn ∩
Cα| = ∅. Let σ be the 〈iα, j, n〉-state of A (see Equation 2.1). Choose
n′ such that σ(〈iα, j, n〉, dm) = σ, for all m ≥ n′. Find the least l such
that m = 〈iα, 〈j, n, l〉〉 ≥ n′. Choose the least s such that ds

m = dm.
Since |Wn ∩ Cαˆj| = ∞, there must exist an i and a stage t > s
such that m < i ≤ t, i = 〈iαˆj , k〉, for some k, σ(〈iα, j, n〉, d̂t

m, t) =
σ(〈iα, j, n〉, d̂t

i, s) = σ and d̂t
i ∈ Wn,t. Γm will pull d̂s

i for Qα,j,n at stage
t. This contradicts the choice of s.

Definition 2.9. Fix α ∈ T . Let σ = {i ≤ iα : A ⊆∗ Ui} (by 2.1 this is
the iα-state of A). Choose n′ such that σ(iα, dm) = σ, for all m ≥ n′.
Choose s′ such that for dm = ds′

m, for all m < n′ and if 〈iβ, j, n〉 < iα
then Qβ,j,n never acts after stage s′. Define a computably enumerable
set Aα = Aiα as follows: y = dt

k enters Aα at stage t + 1 > s′ if either
y enters A at stage t + 1 or n′ ≤ k ≤ t,

there is a β, j such that k = 〈iβ, j〉 and β / α,

for all m, if n′ ≤ m ≤ k then σ(iα, dt
m, t) = σ, and
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for all m ≤ k, dt
m = dt+1

m .

Lemma 2.10. Let y = dt
〈iα,l〉 enter Aα at stage t + 1. Then for all

stages s ≥ t + 1, either y ∈ As or y = ds
〈iβ ,l〉, for some β / α. Further-

more, if y = ds
k′ then for all m, if n ≤ m ≤ k′ then σ(iα, ds

m, s) = σ !
(iα + 1).

Proof. By induction on s. If y’s position in terms of the markers does
not change from stage s − 1 to stage s then, by the definitions of Aα

and Un, the lemma holds at stage s. By the induction hypothesis, the
construction, the definitions of σ, n′, s′ and Aα, no Γm will pull y for
Part I at stage s. However, some Γm could pull y for Qβ−,j,l. In this
case, clearly β− ≺ β and, by the definitions of Un and n′, the iα state
of the balls less than y which are not dumped into A does not change.
The only other possible movement of y is into A.

Lemma 2.11. For all α, Aα =∗ A ∪
⋃
{Cβ : β / α}. Hence for all e,

He is a computably enumerable set.

Proof. By the definition of Aα and Lemma 2.7, A∪
⋃
{Cβ : β / α} ⊆∗

Aα. Assume y enters Aα at stage t+1. Then, by the above lemma and
the definition of iα, either y ∈ A or for some β / α, y in Cβ.

We will wrap up this section by noting that the construction proves
the following theorem:

Theorem 2.12. Let T ⊆ ω<ω be an infinite computable tree. Let α →
iα be a one-to-one onto computable function from T to ω such that
α ≺ β implies iα < iβ. Then there is an atomless r-maximal set A and
computably enumerable sets {Aα}α∈T containing A such that

(i) the computably enumerable sets {He}e∈ω form a tower, where
He =

⋃
{Aα : iα ≤ e},

(ii) if β− = α and α− = γ, then the sets Aβ − Aα and Aα − Aγ are
infinite and Aα is simple w.r.t. to Aβ over Aγ, and

(iii) Aα ∩ Aβ = Aα∩β.
(iv) Let AC =

⋃
{Aα : α ∈ C}. AC is computably enumerable iff C is

finite and closed under initial segments or C = T (and AC =∗ ω).

(For (iv) note that every coinfinite computably enumerable superset
of A is contained in some He. Hence if C += T and is infinite then AC
is not a computably enumerable set.)

3. Infinitely many non-isomorphic L∗(A)

Consider an atomless r-maximal set A built in the fashion of the last
section using the computable tree T . The sets {Aα : α ∈ T} form a
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substructure of L∗(A). We will let AT denote this atomless r-maximal
set and {AT

α : α ∈ T} the corresponding substructure.
In this section we will explore how this substructure can distinguish

A from other atomless r-maximal sets built in the same fashion. We
will explore how different trees give rise to atomless r-maximal sets
whose principal filters are non-isomorphic.

In the next section we will discuss some partial results about how
similar trees give rise to isomorphic principal filters and the relationship
between the atomless r-maximal sets we construct and the ones which
were constructed previously.

Notation 3.1. Let F and T be trees. The tree F (T ) is formed by
adding T above any node in F ; F (T ) = F ∪ {β α̂ : β ∈ F & α ∈ T}.
Let T 0 = {0n : n ∈ ω}, T 1 = {0n, 0n ĵ : n, j ∈ ω}, and T n+1 = T 1(T n).
Let T) = {i : i ∈ ω} (this is all the strings of length 1 in ω<ω). We will
call T) the triangle tree and T 0 the chain. The atomless r-maximal
sets constructed using T) and T n are called A) and An respectively
and the corresponding substructures are called {A)

α : α ∈ T)} and
{An

α : α ∈ T n}.

Definition 3.2. Let A be an atomless r-maximal set. We call the sets
{Vi : i ∈ ω} a triangle over V in A if A ⊆ V ; for all i, V ⊂∞ Vi; for all
i, j, if i += j then Vi∩Vj =∗ V ; and for all computably enumerable sets
W , if W is coinfinite then there is a largest n such that (Vn − V ) ∩W
is nonempty.

If {α̂ j : j ∈ ω} ⊆ T then the sets {AT
α j : j ∈ ω} form a triangle over

AT
α in AT . This follows from the fact that the sets {AT

α j : j ∈ ω} are
part of the tower used to show AT is an atomless r-maximal set. Hence
the sets {A)

i } form a triangle over A) in A). If the sets {Vi : i ∈ ω}
are a triangle over V in A and Φ is an isomorphism, taking L∗(A) to
some other L∗(B), then the sets {Φ(Vi) : i ∈ ω} form a triangle over
Φ(V ) in B.

The last clause in the above definition is necessary: Assume A ⊂m B.
Then we can split B into infinitely many sets Bi such that A ⊂∞ Bi

by using the Owings Splitting Theorem infinitely many times. These
sets will satisfy all but the last clause in the above definition.

Definition 3.3. Let A be an atomless r-maximal set. We call the sets
{Si : i ∈ ω} a spine in A if for all i, A ⊂∞ Si ⊂∞ Si+1; for all i > 0 and
for all computably enumerable sets W, if W ∩(Si+1−Si) is infinite then
W ∩ (Si− Si−1) is infinite; and for all computably enumerable sets W ,
if W is coinfinite then there is a largest n such that (Sn − Sn−1) ∩W
is nonempty.



10 P. CHOLAK AND A. NIES

If the strings {αi : i ∈ ω} form an infinite path through a tree T
then the sets {AT

αi
: i ∈ ω} form a spine in AT (see Definition 2.4 and

Lemma 2.8). Hence the sets {A0
0n : n ∈ ω} form a spine in A0. If the

sets {Si : i ∈ ω} are a spine in A and Φ is an isomorphism, taking
L∗(A) to some other L∗(B), then the sets {Φ(Si) : i ∈ ω} form a spine
in B. If i += 0 then Si is simple w.r.t. Si+1 over Si−1.

The following lemma contains the key idea for this paper! Informally,
it says that one cannot use a triangle to build a spine and a spine to
build a triangle.

Lemma 3.4. Let A be an atomless r-maximal set. Assume that {Vi :
i ∈ ω} forms a triangle over V in A and that {Si : i ∈ ω} a spine
in A. Then there are n and k such that for all m and all l, if (Sm −
Sm−1) ∩ (Vl − V ) is infinite then m ≤ n and l ≤ k. Furthermore,
V ∩

⋃
i∈ω Si ⊆∗ Sn.

Proof. There is a largest n′ such that (Sn′ − Sn′−1) ∩ V is infinite. So

V ∩
⋃

i∈ω

Si ⊆∗ Sn′.(3.1)

There is a largest k such that Sn′+1 ∩ (Vk − V ) is infinite. Therefore

Sn′+1 ∩
⋃

i∈ω

Vi ⊆∗
⋃

j≤k

Vj.(3.2)

There is a largest n such that (Sn − Sn−1) ∩
⋃

j≤k Vj is infinite. So
n ≥ n′ and

⋃

j≤k

Vj ∩
⋃

i∈ω

Si ⊆∗ Sn.

Hence the lemma holds for l ≤ k.
Fix l > k. Suppose that (Sm−Sm−1)∩ (Vl−V ) is infinite. Then, by

the choice of k, m > n′. By the definition of a spine, (Sn′+1 − Sn′)∩ Vl

is infinite. Then, by Equation 3.1, (Sn′+1 − Sn′) ∩ (Vl − V ) is infinite.
But, by Equation 3.2, (Sn′+1−Sn′)∩ (Vl−V ) ⊆∗ ⋃

j≤k Vj Since, by the
definition of a triangle, (Vl∩

⋃
j≤k Vj)−V is finite, (Sn′+1−Sn′)∩(Vl−V )

is finite. Contradiction.

Let Φ be an embedding of {An
α}α∈T n into some L∗(A). We say that

Φ is a T n-embedding if Φ preserves triangles and spines. If Φ is an
isomorphism between L∗(An) and L∗(AT ) then Φ is a T n-embedding
into L∗(AT ).

Assume that Φ is a T n-embedding of {An
α}α∈T n into some L(AT ).

For ease of notation, we let Φ(An
α) = Ãn

α, for all α ∈ T n. Let I(Φ) =
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{β : ∃α[(AT
β −AT

β−) ∩ Ãn
α is infinite]}. Note that Ãn

α ⊆∗ ⋃
{AT

β : (AT
β −

AT
β−) ∩ Ãn

α is infinite} and the set of such β’s for any fixed α is finite.

Lemma 3.5. Assume that Φ is a T n+1-embedding into L(AT ). Then
for all finite trees F , I(Φ) +⊆∗ F (T n).

Proof. By induction on n. Assume that we have a T n+1 embedding
Φ, where I(Φ) ⊆ F (T n) for some finite tree F . We will derive a
contradiction. γ will always be used to denote a node of F . Note
that F is a subtree of F (T n) and without loss of generality we can
assume that F ⊂ T .

The Base Case: n = 0. For all γ, there is a nγ such that either
γ 0̂nγ+1 /∈ T or the sets {AT

γ 0m}m∈ω form a spine in L(AT ). The sets

{Ã1
j}j∈ω form a triangle over Ã1. By Lemma 3.4, for all γ (where nγ

is not already defined), there is a nγ and kγ such that if (AT
γ 0m −

AT
γ 0m−1) ∩ (Ã1

l − Ã1)) is infinite then m ≤ nγ and l ≤ kγ. Hence for

all j, Ã1
j − Ã1 ⊆∗ ⋃

γ AT
γ 0nγ . Contradiction (this embedding does not

preserve triangles).
The Inductive case: Suppose the lemma holds for n. In this case,

we will use Φ to construct a T n-embedding which violates the lemma.
Briefly the idea is find a node δ in T n+1 such that the tree above δ
is isomorphic to T n and the images of the sets constructed above δ
violates the lemma for n.

Now the sets {Ãn+1
j }j∈ω form a triangle over Ãn+1 in AT . For all

γ, let fγ be the rightmost (0 is to the right of 1 in our trees) infinite
branch extending γ in I(Φ) ∩ T , if such a branch exists. We will now
restrict γ to those nodes in F where fγ exists. The sets {AT

β}β∈fγ form
a spine in L∗(AT ).

By Lemma 3.4, for all γ there is a nγ and kγ such that if β ⊂ fγ and
(AT

β − AT
β−) ∩ (Ãn+1

l − Ãn+1) is infinite then |β| ≤ nγ and l ≤ kγ. Let
k = max{kγ, nγ} + 1.

Assume k ⊆ α and (AT
β − AT

β−) ∩ Ãn+1
α is infinite. We will show

by induction on α that fγ ! k +⊆ β. Assume otherwise. Then, by the
simplicity requirements, Ãn+1

α ∩ (AT
fγ k − AT

fγ (k−1)) is infinite. Clearly
this is false for α = k. Hence the base case of our induction holds. By
the inductive hypothesis and the choice of k, Ãn+1

α− ∩ (AT
fγ k−AT

fγ (k−1))

is finite. So (Ãn+1
α − Ãn+1

α− )∩ (AT
fγ k −AT

fγ (k−1)) is infinite. Now, again

by the simplicity requirements, (Ãn+1
k − Ãn+1) ∩AT

fγ k is infinite. This
contradicts the choice of k.
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Let F1 = F ∪ {β : γ ⊆ β ⊆ fγ ! (k − 1)} ∪ {β : Ãn+1
k ∩ (AT

β −
AT

β−) is infinite}. At this point we will lift the above restrictions on γ
and replace them with the restriction that γ ∈ F1.

The sets {Ãn+1
k 0m}m∈ω form a spine in AT . For all γ either there is

a largest kγ such that γ (̂kγ + 1) /∈ T or the sets {AT
γ j}γ j∈T form a

triangle over AT
γ in AT .

By Lemma 3.4, for all γ (where kγ is not already defined), there is a
nγ and kγ such that if (Ãn+1

k 0m − Ãn+1
k 0m−1) ∩ (AT

γ l −AT
γ ) is infinite then

m ≤ nγ and l ≤ kγ. Let q = max{nγ, kγ} + 1.
Assume k̂ 0q ⊆ α and (AT

β −AT
β−)∩ Ãn+1

α is infinite. We will show by
induction on α that, for all l > q, γ l̂ +⊆ β. Assume otherwise. Then,
by the simplicity requirements, Ãn+1

α ∩ (AT
γ l − AT

γ ) is infinite. By the

inductive hypothesis and the choice of q and F1, Ãn+1
α− ∩ (AT

γ l − AT
γ )

is finite. So (Ãn+1
α − Ãn+1

α− ) ∩ (AT
γ l − AT

γ ) is infinite. Clearly this is

false for α = k̂ 0q. Now, again by the simplicity requirements, (Ãn+1
k 0q −

Ãn+1
k 0q−1) ∩ AT

γ l is infinite. By Lemma 3.4, (Ãn+1
k 0q − Ãn+1

k 0q−1) ∩ AT
γ is

finite. But this implies that (Ãn+1
k 0q − Ãn+1

k 0q−1) ∩ (AT
γ l − AT

γ ) is infinite
which contradicts the choice of q.

Let F ′ = F ∪ F1 ∪ {γ l̂ : l ≤ q}. Let δ = k̂ 0q. If either α ⊆ δ or
δ ⊂ α and Ãn+1

α ∩ (AT
β − AT

β−) is infinite then β extends some node of
F ′ or is in F ′. By the definition of T n+1, {β : β ∈ I(Φ) & β extends
some node in F ′} ⊆ F ′(T n−1).

Now clearly there is a T n-embedding Ψ into L(An+1) such that
I(Ψ) = {0p, 0p k̂, α : δ ⊆ α}. (By the definition of T n+1, {α : δ ⊆ α} ≈
T n. Use this to get Ψ.) So the composition Φ ◦ Ψ is a T n-embedding
into L(AT ). But I(Φ ◦Ψ) ⊆ F ′(T n−1). Contradiction.

It is possible to improve the above lemma to show that I(Φ) cannot
be embedded (as a tree) into F (T n). The following is our main result:

Theorem 3.6. For all n, L∗(An+1) is not isomorphic to L∗(An). Hence
there are infinitely many principal filters formed by atomless r-maximal
sets.

Proof. If L∗(An+1) is isomorphic to L∗(An), we would have a T n+1-
embedding Φ into L∗(An) such that I(Φ) ⊆ T n. Contradiction.

4. Towards a classification

4.1. The case of A). We claim that L∗(A)) is isomorphic to L∗(A),
where A is the atomless r-maximal set constructed in Soare [1987,
Theorem X.5.4]. In fact, we will show something much stronger.
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Definition 4.1. We say an atomless r-maximal set A is a triangle
set if there are infinitely many computably enumerable sets Ai such
that A ⊂∞ Ai, if i += j, then Ai ∩ Aj =∗ A and for all computably
enumerable sets W , if W is coinfinite then there is some n such that
W ⊆∗ Ân =dfn

⋃
i≤n Ai.

It is clear that triangle sets are atomless r-maximal sets. The {Ân}n∈ω

form a tower. No superset of a triangle set A is simple w.r.t. to any
other superset of A. A) is a triangle set and so is the atomless r-
maximal set constructed in Soare [1987, Theorem X.5.4]. If the sets
{Ai}i∈ω form a triangle over A in L(A) and

⋃
i Ai =∗ ω, then A is a

triangle set. If B is a coinfinite superset of a triangle set then B is a
triangle set. Furthermore, if A and B are triangle sets then L∗(A) and
L∗(B) are isomorphic: Map Ai to Bi. Since A ⊂m Ai and B ⊂m Bi,
by Maass and Stob [1983], we know that E(Ai − A) ≈ E(Bi − B) via
Φi. If W is cofinite then map W to ω. Otherwise find the least n such
that W ⊆∗ ⋃

i≤n Ai and map W to
⋃

i≤n Φi(W ∩ Ai). This induces an
isomorphism between L∗(A) and L∗(B).

Theorem 4.2. The set {A : A is a triangle set} is definable in E .

Proof. We will show that A is a triangle set iff the following property
holds for A in E :

A is atomless r-maximal set &

∀V ⊇ A ∃S ⊇ A[V ⊆∗ S & ∀W ⊇ A

∃B ⊇ A[S ∩B = A & W ⊆∗ V ∪B]],

P (A)

where the quantifiers range over all coinfinite computably enumerable
sets.

If : Given V find the least m > n such that V ⊆∗ ⋃
i≤m Ai. Let

S =
⋃

i≤m Ai. Given W find p such that W ⊆∗ ⋃
i≤p Ai. Let B =

A ∪
⋃

m<i≤p Ai.
Only if : We will construct the desired Ai’s by induction. Assume

that we have {Ai}i<n. Let V = A ∪
⋃

i<n Ai. Let m be the least such
that S ⊂∞ S ∪Wm ⊂∞ ω, where S is given by P (A). Let W = Wm

and An equal the corresponding B.

Note that if P (A) holds then for all C ⊇ A, P (C) holds. Also the
sets {Ai} are computable in 0(4). Hence if A and B are two triangle sets
then L∗(A) and L∗(B) are isomorphic via an isomorphism computable
in 0(4).

4.2. r-maximal sets with spines. Let A be an atomless r-maximal
set with a spine. Then, by Lemma 3.4, no superset of A is a triangle set.
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(Let {Ai}i∈ω form a triangle over some superset B of A and {Si}i∈ω

form a spine in A. Let n be as given in Lemma 3.4 then Sn+1 !∗

A ∪
⋃

i Ai. Hence the sets {Ai}i∈ω do not witness that B is a triangle
set.) Therefore, the property P does not holds for any superset of A.

Theorem 4.3. (Stob) An atomless r-maximal set A has a spine iff

(∀B ⊇ A)(∃C ⊇ B)(∀W )[W ∩ C +=∗ ∅ →W ∩ (C −B) +=∗ ∅],

where A and B range over all coinfintite computably enumerable sets
and W ranges over all computably enumerable sets.

Proof. Suppose that V0 ⊂ V1 ⊂ V2 ⊂ · · · is the spine. Given B let n
be such that B ⊆ Vn. Let C = Vn+1. Given W such that W ∩ C +=∗ ∅
either C ⊆∗ W in which case W ⊇ (C − B) +=∗ ∅ (by Lemma 1.4) or
W ∩ (Vk+1−Vk) +=∗ ∅ some k > n. But then W ∩ (Vn+1−Vn) is infinite
and contained in C −B.

Suppose on the other hand the condition. Let A = V0. Given Vn,
let m be least such that Vn ⊂∞ Vn ∪Wm ⊂∞ ω, let Bn+1 = Vn ∪Wm

and let Vn+1 be the set Cn+1 given by the condition with B = Bn+1.
Obviously, for all n, either Wn ⊇ A or Wn ⊆ Vn+1. Suppose that W is
an computably enumerable set such that W ∩ (Vn+1 − Vn) is infinite.
Now Vn = Cn as defined by our recursion. Thus W ∩ Cn is infinite.
Thus we have that W ∩ (Cn − Bn) is infinite. But W ∩ (Cn − Bn) ⊆
Vn − Vn−1.

4.3. Another definable class. We can use P (A) to define another
class of atomless r-maximal sets: Let R(C) be the formula which says
that C is an atomless r-maximal set, ¬P (C) and there exists A such
that C ⊂ A and P (A).

Let T = {0, 0̂ j : j ∈ ω}. In this case, A0 is a triangle set but
A0 is simple w.r.t. A0 j (over AT ), for all j (see Definition 2.4 and
Lemma 2.8). Hence R(AT ) holds. The atomless r-maximal set C
constructed in Soare [1987, Exercises X.5.8] also satisfies R.

A property similar to R(C) was used to found the first example of
two atomless r-maximal sets A and B such that L∗(A) and L∗(B) are
not isomorphic [see Soare, 1987, Exercises X.5.8]. We conjecture that
if R(C) and R(C̃) hold then L∗(C) and L∗(C̃) are isomorphic. In fact,
it is open whether L∗(AT ) and L∗(C) are isomorphic (where T is as
above and C is the atomless r-maximal set constructed in Soare [1987,
Exercises X.5.8]).

We will spend the rest of this section exploring what sets satisfy the
property R. We would like to classify those trees T where R(AT ) holds.
If T has an infinite branch then, by the work in the above subsection,
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we know that R(AT ) does not hold (and does not hold for any superset
of AT ).

Lemma 4.4. Let T be an infinite computable tree T such that T has no
infinite branch (with at least one infinitely branching node other than
the empty string). Then T has only finitely many infinitely branching
nodes iff R(AT ) holds.1

Proof. If : C be the set of all nodes α in T such that α is an infinitely
branching node and no extension of α in T is infinitely branching. By
our assumption C is non-empty. Let A =

⋃
α∈C AT

α . The sets

{
⋃

γ∈C

{
⋃

γ i⊆γ′

Aγ′}}i∈ω

(where it is understood that γ′ ∈ T ) witness that A is a triangle set.
(By Theorem 2.12 (iv) and our assumption about T , A and all the
above mentioned sets are computably enumerable.) P (AT ) fails but A
witnesses that R(AT ) holds.

Only If : Let A be a superset of AT such that A is a triangle set. By
Theorem 2.12 (iv), there is some non-empty finite set of nodes in T ,
C, such that A ⊆∗ AC . Since every computably enumerable coinfinite
superset of a triangle set is a triangle set, AC is a triangle set. So
WLOG we can assume that A = AC. Let {Vi}i∈ω be the sets which
witness the fact A is a triangle set.

Let γ be an infinitely branching node γ ∈ T which is not in C. So
Aγ − A is infinite. Hence there is a least n such that Aγ ⊆∗ Ân =defn⋃

i≤n Vi. By simplicity, if γ′ is any proper extension of γ in T then

Aγ′ ⊆∗ Ân. (Assume for some i of the least m such that Aγ i ⊆∗ Âm is
greater than n. But then Vm∩(Aγ i−Aγ) is infinite and Vm∩(Aγ−Aγ′)
is finite. The argument is by induction for other extensions of γ.)
But, by Theorem 2.12, there is a finite set C′ such that Ân ⊆∗ AC′.
Contradiction. Hence every infinite branching node is in C and there
are most finitely such nodes.

4.4. Spines and beyond. We have no good ideas how to classify
atomless r-maximal sets with spines. The following is an outline of
a plan to come up with a classification of principal filters formed by
atomless r-maximal sets (with spines).

First show that there is some (hopefully with some degree of ef-
fectiveness – this might be needed below) way to go from an atom-
less r-maximal set to the substructures (the {Aα}’s) we used to show

1The “only if” direction is due to Mike Stob
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these sets form infinitely many non-isomorphic principal filters. Per-
haps identifying all the triangles and spines and how they are arranged
together is enough. In this regard, we do not know if every atomless
r-maximal set has a triangle or spine of supersets. Under some ad-
ditional assumption (see below) this would say that our construction
constructs an atomless r-maximal set of every type. One thing to con-
sider in this is the effect that turning off the simplicity requirements at
various levels in the tree has on the construction (ie. not using Qα,j,n

for α of various lengths). We conjecture this just collapses these levels
of the substructure.

Then show that atomless r-maximal sets with isomorphic substruc-
tures (maybe with an additional effectiveness condition on the isomor-
phism) form isomorphic principal filters. This should be possible since
we know, by Maass and Stob [1983], the intervals of supersets of an
atomless r-maximal set are isomorphic to M. Hence one should be
able to combine this and the isomorphism between the substructures
together in one argument to build the desired isomorphism between
the principal filters (it is here that we may need a good deal of effec-
tiveness). A good first step in this direction would be to show that if
one builds two atomless r-maximal set A and B using our construction
and the chain as the tree then these sets form isomorphic principal
filters. A next step would be to show that if two atomless r-maximal
sets A and B are built using the same tree then they form isomorphic
principal filters. Perhaps this remains true if A and B are built using
different but very “similar” trees. For example, for all n, and for all
finite trees F , L∗(An) and L∗(AF (T n)) may be isomorphic and in which
case we would consider T n and F (T n) as “similar” trees.

Even if work along the lines we outlined above does not lead to a
classification of the principal filters formed by atomless r-maximal sets,
it should be enough to prove the following conjecture:

Conjecture 4.5. The set {〈r1, r2〉 : where ri is an index for an atom-
less r-maximal set Ai and L(A1) ≈ L(A2)} is Σ1

1 complete.
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