

CDMTCS

Research
Report Series

CDMTCS-062
October 1997

Centre for Discrete Mathematics and
Theoretical Computer Science

Chaitin Ω Numbers and Strong Reducibilities*

Cristian S. Calude ${ }^{\dagger}$ and André Nies ${ }^{\ddagger}$

Abstract

We prove that any Chaitin Ω number (i.e., the halting probability of a universal self-delimiting Turing machine) is wtt-complete, but not tt-complete. In this way we obtain a whole class of natural examples of wtt-complete but not tt-complete r.e. sets. The proof is direct and elementary.

1 Introduction

Kučera [8] has used Arslanov's completeness criterion ${ }^{1}$ to show that all random sets of r.e. T-degree are in fact T-complete. Hence, every Chaitin Ω number is T-complete. In this paper we will strengthen this result by proving that every Chaitin Ω number is weak truth-table complete. However, no Chaitin Ω number can be tt-complete as, because of a result stated by Bennett [1] (see Juedes, Lathrop, and Lutz [9] for a proof), there is no random sequence \mathbf{x} such that $K \leq_{t t} \mathbf{x} .{ }^{2}$ Notice that in this way we obtain a whole class of natural examples of wtt-complete but not tt-complete r.e. sets (a fairly complicated construction of such a set was given by Lachlan [10]).

[^0]We continue with a piece of notation. Let \mathbf{N}, \mathbf{Q} be the sets of non-negative integers and rationals. Let $\Sigma=\{0,1\}$ denote the binary alphabet, Σ^{*} is the set of (finite) binary strings, Σ^{n} is the set of binary strings of length n; the length of a string x is denoted by $|x|$. By $x \mid r$ we denote the prefix of length r of the string x. Let $p(x)$ be the place of x in Σ^{*} ordered quasi-lexicographically. Let Σ^{ω} the set of infinite binary sequences. The prefix of length n of the sequence $\mathbf{x} \in \Sigma^{\omega}$ is denoted by $\mathbf{x} \mid n$. For every $X \subset \Sigma^{*}, X \Sigma^{\omega}$ stands for the cylinder generated by X, i.e., set of all sequences having a prefix in X.

Fix an acceptable gödelization $\left(\varphi_{x}\right)_{x \in \Sigma^{*}}$ of all partial recursive (p.r.) functions from Σ^{*} to Σ^{*}, and let $W_{x}=\operatorname{dom}\left(\varphi_{x}\right)$ be the domain of $\left(\varphi_{x}\right)$. Denote by K the set $\{x \in$ $\left.\Sigma^{*} \mid x \in W_{x}\right\}$. A Chaitin computer (self-delimiting Turing machine) is a p.r. function $C: \Sigma^{*} \xrightarrow{o} \Sigma^{*}$ with a prefix-free domain dom (C). The program-size (Chaitin) complexity induced by Chaitin's computer C is defined by $H_{C}(x)=\min \left\{|y| \mid y \in \Sigma^{*}, C(y)=x\right\}$ (with the convention $\min \emptyset=\infty$).

A Chaitin computer U is universal if for every Chaitin computer C, there is a constant $c>0$ (depending upon U and C) such that for every x there is x^{\prime} such that $U\left(x^{\prime}\right)=C(x)$ and $\left|x^{\prime}\right| \leq|x|+c ;{ }^{3} c$ is the "simulation" constant of C on U.

A Martin-Löf test is an r.e. sequence $\left(V_{i}\right)_{i \geq 0}$ of subsets of Σ^{*} satisfying the following measure-theoretical condition:

$$
\mu\left(V_{i} \Sigma^{\omega}\right) \leq 2^{-i}
$$

for all $i \in \mathbf{N}$. Here μ denotes the usual product measure on Σ^{ω}, given by $\mu\left(\{w\} \Sigma^{\omega}\right)=$ $2^{-|w|}$, for $w \in \Sigma^{*}$.

An infinite sequence \mathbf{x} is random if for every Martin-Löf test $\left(V_{i}\right)_{i \geq 0}, \mathbf{x} \notin \bigcap_{i \geq 0} A_{i} \Sigma^{\omega}$. A real $\alpha \in(0,1)$ is random in case its binary expansion is a random sequence. ${ }^{\overline{4}}$

The halting probability of Chaitin's computer C is

$$
\Omega_{C}=\mu\left(\operatorname{dom}(U) \Sigma^{\omega}\right)=\sum_{x \in \operatorname{dom}(C)} 2^{-|x|} .
$$

Any real Ω_{C} is recursively enumerable (r.e.) in the sense that the set $\{q \in(0,1) \cap \mathbf{Q} \mid$ $\left.q<\Omega_{C}\right\}$ is r.e. (see more about r.e. reals in [3]). Reals of the form Ω_{U}, for some universal Chaitin computer U, are called Chaitin (Ω) numbers (see [4, 6, 2]). Chaitin [4] has proved that every Chaitin number is random. See Calude [2] for more details.

For a set $A \subset \Sigma^{*}$ we denote by χ_{A} the characteristic function of A. We say that A is Turing reducible to B, and we write $A \leq_{T} B$, if there is an oracle Turing machine φ_{w}^{B} such that $\varphi_{w}^{B}(x)=\chi_{A}(x)$. We say that A is weak truth-table reducible to B, and we write $A \leq_{w t t} B$, if $A \leq_{T} B$ via a Turing reduction which on input x only queries strings of length less than $g(x)$, where $g: \Sigma^{*} \rightarrow \mathbf{N}$ is a fixed recursive function. We

[^1]say that A is truth-table reducible to B, and we write $A \leq_{t t} B$, if there is a recursive sequence of Boolean functions $\left\{F_{x}\right\}_{x \in \Sigma^{*}}, F_{x}: \Sigma^{r_{x}+1} \rightarrow \Sigma$, such that for all x, we have $\chi_{A}(x)=F_{x}\left(\chi_{B}(0) \chi_{B}(1) \cdots \chi_{B}\left(r_{x}\right)\right) .{ }^{5}$ An r.e. set A is $\mathrm{tt}(\mathrm{wtt})$-complete if $K \leq_{t t} A$ ($K \leq_{w t t} A$). See Odifreddi [11] for more details.

2 Main Results

In what follows we will fix a universal Chaitin computer U and write $H=H_{U}, \Omega=\Omega_{U}$.

Theorem 2.1 The set $\mathcal{H}=\left\{(x, n) \mid x \in \Sigma^{*}, n \in \mathbf{N}, H(x) \leq n\right\}^{6}$ is wtt-complete.
Proof. We will refine the proof by Arslanov and Calude in [7]. To this aim we will use Arslanov's Completeness Criterion (see Theorem III.8.17 in Odifreddi [11], p. 338) for wtt-reducibility
an r.e. set A is wtt-complete iff there is a function $f \leq_{w t t} A$ without fixedpoints
and the estimation due to Chaitin $[4,5]$ (see Theorem 5.4 in Calude [2], pp. 77):

$$
\begin{equation*}
\max _{x \in \Sigma^{n}} H(x)=n+\mathrm{O}(\log n) . \tag{1}
\end{equation*}
$$

First we construct a positive integer $c>0$ and a p.r. function $\psi: \Sigma^{*} \xrightarrow{o} \Sigma^{*}$ such that for every $x \in \Sigma^{*}$ with $W_{x} \neq \emptyset$,

$$
\begin{equation*}
U(\psi(x)) \in W_{x}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
|\psi(x)| \leq p(x)+c . \tag{3}
\end{equation*}
$$

Consider now a Chaitin computer C such that $C\left(0^{p(x)} 1\right) \in W_{x}$ whenever $W_{x} \neq \emptyset$. Let c^{\prime} be the simulation constant of C on U, and let θ be a p.r. function satisfying the following condition: if $C(u)$ is defined, then $U(\theta)(u)=C(u)$ and $|\theta(u)| \leq|u|+c^{\prime}$. Put

[^2]$c=c^{\prime}+1$ and notice that in case $W_{x} \neq \emptyset, C\left(0^{p(x)} 1\right) \in W_{x}$, so $\theta\left(0^{p(x)} 1\right)$ is defined and and belongs to W_{x}. Finally, put $\psi(x)=\theta\left(0^{p(x)} 1\right)$ and notice that
$$
|\psi(x)|=\left|\theta\left(0^{p(x)} 1\right)\right| \leq\left|0^{p(x)} 1\right|+c^{\prime}=p(x)+c .
$$

Next define the function

$$
F(y)=\min \left\{x \in \Sigma^{*} \mid H(x)>p(y)+c\right\},
$$

where the minimum is taken according to the quasi-lexicographical order and c comes from (3). In view of (1) it follows that

$$
F(y)=\min \left\{x \in \Sigma^{*}|H(x)>p(y)+c,|x| \leq p(y)+c\} .\right.
$$

The function F is total, H-recursive and $U(\psi(y)) \neq F(y)$ whenever $W_{y} \neq \emptyset$. Indeed, if $W_{y} \neq \emptyset$ and $U(\psi(y))=F(y)$, then $\psi(y)$ is defined, so $U(\psi(y)) \in W_{y}$ and $|\psi(y)| \leq$ $p(y)+c$. But, in view of the construction of $F, H(F(y))>p(y)+c$, an inequality which contradicts (3): $H(F(y)) \leq|\psi(y)| \leq p(y)+c$.

Let f be an H-recursive function satisfying $W_{f(y)}=\{F(y)\}$. To compute $f(y)$ in terms of $F(y)$ we need to perform the test $H(x)>p(y)+c$ only for those strings x satisfying the inequality $|x| \leq p(y)+c$, so the function f is wtt-reducible to \mathcal{H}.

We conclude by proving that for every $y \in \Sigma^{*}, W_{f(y)} \neq W_{y}$. If $W_{f(y)}=W_{y}$, then $W_{y}=\{F(y)\}$, so by $(3), U(\psi(y)) \in W_{y}$, that is $U(\psi(y))=F(y)$. Consequently, by (2) $H(F(y)) \leq|\psi(y)| \leq p(y)+c$, which contradicts the construction of F.

Theorem 2.2 The set \mathcal{H} is wtt-reducible to Ω.
Proof. Let $g: \mathbf{N} \rightarrow \Sigma^{*}$ be a recursive, one-to-one function which enumerates the domain of U and put $\omega_{m}=\sum_{i=0}^{m} 2^{-|g(i)|}$. Given x and $n>0$ we compute the smallest $t \geq 0$ such that

$$
\omega_{t} \geq 0 . \Omega_{0} \Omega_{1} \cdots \Omega_{n} .
$$

From the relations

$$
0 . \Omega_{0} \Omega_{1} \cdots \Omega_{n} \leq \omega_{t}<\omega_{t}+\sum_{s=t+1}^{\infty} 2^{-|g(s)|}=\Omega<0 . \Omega_{0} \Omega_{1} \cdots \Omega_{n}+2^{-n}
$$

we deduce that $|g(s)|>n$, for every $s \geq t+1$. Consequently, if x is not produced by an element in the set $\{g(0), g(1), \ldots, g(t)\}$, then $H(x)>n$ as $H(x)=|g(s)|$, for some $s \geq t+1$; conversely, if $H(x) \leq n$, then x must be produced via U by one of the elements of the set $\{g(0), g(1), \ldots, g(t)\}$.

Since the result in Juedes, Lathrop, and Lutz [9] is obtained in a rather indirect way, we conclude the paper by proving directly that $K \not \mathbb{Z}_{t t} \mathbf{x}$, for every random sequence \mathbf{x}.

Theorem 2.3 If $K \leq_{t t} \mathbf{x}$, then \mathbf{x} is not random.
Proof. Assume \mathbf{x} is random and $K \leq_{t t} \mathbf{x}$, that is there exists a recursive sequence of Boolean functions $\left\{F_{u}\right\}_{u \in \Sigma^{*}}, F_{u}: \Sigma^{r_{u}+1} \rightarrow \Sigma$, such that for all $w \in \Sigma^{*}$, we have $\chi_{A}(w)=$ $F_{w}\left(x_{0} x_{1} \cdots x_{r_{w}}\right)$. We will construct a Martin-Löf test V such that $\mathbf{x} \in \bigcap_{n \geq 0} V_{n} \Sigma^{\omega}$, which will contradict the randomness of \mathbf{x}.

For every string z let

$$
M(z)=\left\{u \in \Sigma^{r_{z}+1} \mid F_{z}(u)=0\right\} .
$$

Consider the set

$$
\left\{z \in \Sigma^{*} \left\lvert\, \mu\left(M(z) \Sigma^{\omega}\right) \geq \frac{1}{2}\right.\right\}
$$

of inputs to the tt-reduction of K to \mathbf{x} where at least half of the possible oracle strings give the output 0 . This set is r.e., so let $W_{z_{0}}$ be a name for it. From the construction it follows that

$$
z_{0} \in K \Leftrightarrow F_{z_{0}}\left(x_{0} x_{1} \cdots x_{r_{z_{0}}}\right)=1,
$$

hence if we put $r=r_{z_{0}}+1$ and

$$
V_{0}=\left\{u \in \Sigma^{r} \left\lvert\, \mu\left(M\left(z_{0}\right) \Sigma^{\omega}\right) \geq \frac{1}{2} \Leftrightarrow F_{z_{0}}(u)=1\right.\right\}
$$

we ensure that V is r.e. and $\mu\left(V_{0} \Sigma^{\omega}\right) \leq \frac{1}{2}$. Moreover $\mathbf{x} \in V_{0} \Sigma^{\omega}$, because if $u=\mathbf{x} \mid r$, then

$$
\mu\left(M\left(z_{0}\right) \Sigma^{\omega}\right) \geq \frac{1}{2} \Leftrightarrow z_{0} \in K \Leftrightarrow F_{z_{0}}(u)=1 .
$$

Assume now that z_{n}, V_{n} have been constructed such that $\mathbf{x} \in V_{n} \Sigma^{\omega}$ and $\mu\left(V_{n} \Sigma^{\omega}\right) \leq$ 2^{-n-1}. Let $z_{n+1} \notin\left\{z_{0}, z_{1}, \ldots, z_{n}\right\}$ be such that

$$
W_{z_{n+1}}=\left\{u \in \Sigma^{*} \left\lvert\, \mu\left(M(u) \Sigma^{\omega} \cap V_{n} \Sigma^{\omega}\right) \geq \frac{1}{2} \cdot \mu\left(V_{n} \Sigma^{\omega}\right)\right.\right\} .
$$

Then

$$
z_{n+1} \in K \Leftrightarrow \mu\left(M(u) \Sigma^{\omega} \cap V_{n} \Sigma^{\omega}\right) \geq \frac{1}{2} \cdot \mu\left(V_{n} \Sigma^{\omega}\right)
$$

Finally put $r=r_{z_{n+1}+1}$ and
$V_{n+1}=\left\{u \in \Sigma^{r}|u| r_{z_{n}} \in V_{n} \wedge\left(\mu\left(M\left(z_{n+1}\right) \Sigma^{\omega} \cap V_{n} \Sigma^{\omega}\right) \geq \frac{1}{2} \cdot \mu\left(V_{n} \Sigma^{\omega}\right) \Leftrightarrow F_{z_{n+1}}(u)=1\right)\right\}$
and note that V_{n+1} is r.e., $\mathbf{x} \in V_{n+1}$ and

$$
\mu\left(V_{n+1} \Sigma^{\omega}\right) \leq \frac{1}{2} \cdot \mu\left(V_{n} \Sigma^{\omega}\right) \leq 2^{-n-2}
$$

Consequently, $\left(V_{n}\right)_{n}$ is a Martin-Löf test with $\mathbf{x} \in \bigcap_{n \geq 0} V_{n} \Sigma^{\omega}$.

References

[1] C. H. Bennett. Logical depth and physical complexity, in R. Herken (ed.). The Universal Turing Machine. A Half-Century Survey, Oxford University Press, Oxford, 1988, 227-258.
[2] C. Calude. Information and Randomness. An Algorithmic Perspective. SpringerVerlag, Berlin, 1994.
[3] C. S. Calude, P. H. Hertling, B. Khoussainov, Y. Wang. Recursively enumerable reals and Chaitin Ω numbers, CDMTCS Research Report 055, 1997, 22 pp.
[4] G. J. Chaitin. Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987. (2nd ed., 1990)
[5] G. J. Chaitin. On the number of N-bit strings with maximum complexity, Applied Mathematics and Computation 59(1993), 97-100.
[6] G. J. Chaitin. The Limits of Mathematics, Springer-Verlag, Singapore, 1997.
[7] G. J. Chaitin, A. Arslanov, C. Calude. Program-size complexity computes the halting problem, EATCS Bull. 57 (1995), 198-200.
[8] A. Kučera. Measure, Π_{1}^{0}-classes and complete extensions of PA, In: H. D. Ebbinghaus and G. H. Müller (eds.) Recursion Theory Week (Oberwolfach, 1984), Lecture Notes in Math., 1141, Springer-Verlag, Berlin, 1985, 245-259.
[9] D. Juedes, J. Lathrop, and J. Lutz. Computational depth and reducibility, Theoret. Comput. Sci. 132 (1994), 37-70.
[10] A. H. Lachlan. wtt-complete sets are not necessarily tt-complete, Proc. Amer. Math. Soc. 48 (1975), 429-434.
[11] P. Odifreddi. Classical Recursion Theory, North-Holland, Amsterdam, Vol.1, 1989.
[12] R. I. Soare. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, 1987.

[^0]: *The first has been partially supported by AURC A18/XXXXX/62090/F3414056, 1996. The second author was partially supported by NSF Grant DMS-9500983.
 ${ }^{\dagger}$ Department of Computer Science, University of Auckland, Private Bag 92019, New Zealand. Email: cristian@cs.auckland.ac.nz.
 ${ }^{\ddagger}$ Department of Mathematics, University of Chicago, Chicago IL., USA. Email: nies@math. uchicago.edu.
 ${ }^{1}$ An r.e. X is Turing equivalent to the halting problem iff there is a Turing computable in X function f without fixed-points, i.e. $W_{x} \neq W_{f(x)}$, for all x; see Soare [12], p. 88.
 ${ }^{2}$ To keep the paper self-contained, a direct simple proof for Bennett result will be included.

[^1]: ${ }^{3}$ In fact, c can be effectively obtained from U and C.
 ${ }^{4}$ Actually, the choice of base is irrelevant, cf. Theorem 6.111 in Calude [2].

[^2]: ${ }^{5}$ Note that in contrast with tt-reductions, a wtt-reduction may diverge.
 ${ }^{6}$ This set is essential in deriving Chaitin's information-theoretical version of incompleteness, [4].

