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1 Computability and randomness

A mainstay of my research is the interaction between the randomness and the com-
plexity aspects of sets of natural numbers (simply called sets below). The complexity
aspect of sets is studied in computability theory. To calibrate the absolute complexity
of a set, one introduces classes of similar complexity. Examples of such classes are the
computable sets and the low sets (where the halting problem relative to the set as an
oracle is as simple as possible). The complexity of a set relative to other sets is mea-
sured via reducibilities such as Turing reducibility. The randomness aspect of a set is
investigated via computable versions of tools from probability theory and statistics,
such as null classes, and tests. Thus, one uses computability theory to introduce a
mathematical notion corresponding to the intuitive concept of randomness.

There also is a converse interaction: concepts originating from randomness enrich
computability theory. This is the interaction I have stressed in my book [48] and
several other publications such as [42]. Also, I devoted to it two of my three invited
tutorials at the 2009 summer meeting of the Association for Symbolic Logic in Sofia.
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Applying randomness-related notions in computability is the subject of current
intense research. In the focus is the now-famous class of K-trivial sets. K-triviality, a
property already introduced in 1976 by Chaitin [7], indicates that the set is far from
being random. Working with Chaitin, Solovay [52] built a non-computable K-trivial
set. Thereafter, the subject lay dormant for over two decades, till it was reconsidered,
starting from Solovay’s notes, by Calude, Downey, Hirschfeldt and myself from 1999
on.

In the paper [42], I proved the coincidence of K-triviality with several lowness
properties (classes of similar complexity that express in some way that a set of natural
numbers is close to being computable). For instance, a set A is K-trivial if and only
if it is low for Martin-Löf randomness; that is, any random set still appears random
when queries to A can be used as an external computational device (oracle) in the
effective test notion. This often-cited paper, along with related work carried out with
co-workers such as Downey and Hirschfeldt [9, 17], has started a whole new direction
of research focusing on the interaction from randomness to computability. The paper
also set the template for coincidences of classes. Many further surprising coincidences
followed. Classes based on Kolmogorov complexity were shown to coincide with 2-
randomness [44, 31]. Lowness properties based on randomness were shown to be
equivalent to strong jump traceability [13].

1.1 Studying randomness notions

1.1.1 Martin-Löf ’s randomness notion

Let 2ω be the space of infinite binary sequences, and let λ denote the uniform measure
on 2ω where 0,1 both have the probability 1/2. Note that the class C ⊆ 2ω is null if
and only if C ⊆

⋂
Gm for some sequence (Gm)m∈N of open sets such that λGm → 0.

We obtain a type of effective null class (or test) by adding effectivity restrictions
to this condition characterizing null classes. In [29], Martin-Löf introduced a central
notion of tests based on computably enumerable objects.

Definition 1.1 A Martin-Löf test (or ML-test) is a uniformly computably enumer-
able sequence (Gm)m∈N of open sets in 2ω such that λGm ≤ 2−m for each m.

A set Z is Martin-Löf random if Z passes each ML-test, in the sense that Z is
not in all of the Gm.

Given a set Z and n ∈ N, let Z �n denote the initial segment Z(0) . . . Z(n − 1).
Schnorr’s Theorem says that Z is ML-random if and only if each initial segment is
incompressible with respect to the prefix-free Kolmogorov complexity K.

Theorem 1.2 (Schnorr) Z is ML-random ⇔
there is b ∈ N such that ∀nK(Z �n) ≥ n− b.

A further attractive feature of this notion is that the test concept can be modified
in many ways. Its variants lead to a hierarchy of randomness notions. Each one of
them formalizes some aspect of our intuition on randomness. For formal definitions
and more background on these notions see [48].

1.1.2 Notions weaker than ML-randomness

Schnorr criticized that Martin-Löf-randomness is too strong to be considered algo-
rithmic. He proposed a restricted test notion where we know more about the tests.
A Schnorr test is a ML-test (Gm)m∈N such that the measure λGm is a computable
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real uniformly in m. A set Z is Schnorr random if Z 6∈
⋂

mGm for each Schnorr test
(Gm)m∈N.

Unlike Martin-Löf random sets, Schnorr random sets exist in each high degree by
a result with Stephan and Terwijn [44].

Theorem 1.3 For each set A with A′ ≥T ∅′′, there is a Schnorr random set Z such
that Z ≡T A. If A is computably enumerable then Z can be chosen left-computably
enumerable.

A randomness enhancement result has the following form: a weaker randomness
notion together with a low complexity property implies a stronger randomness notion.
Intuitively speaking, if Z is random in the weaker sense, then being computationally
less complex implies being more random. In [44], with Stephan and Terwijn, I
obtained two examples of this for Schnorr randomness.

Theorem 1.4 (a) Let Z be Schnorr random and not high. Then Z is already ML-
random.
(b) Let Z be Schnorr random and computably dominated. Then Z is already weakly
2-random.

A somewhat mysterious notion implied by Martin-Löf-randomness is Kolmogorov-
Loveland (KL) randomness. A main open question in this area is whether the notion
actually coincides with ML-randomness. This would defeat Schnorr’s critique because
KL-randomness is defined using a computable test concept.

Computable randomness is defined by requiring that no computable betting strate-
gies succeeds. Such a strategy places a bet on the next bit position in the usual
ascending fashion. We say that Z is KL random if no computable betting strategy
succeeds even if it is allowed to always choose a next bit position to place a bet. The
implications are

Martin-Löf random ⇒ KL-random ⇒ computably random ⇒ Schnorr random.

All implications except the leftmost one are known to be strict.
In [30] we obtained various results showing that KL-randomness is, at the very

least, much closer to Martin-Löf-randomness than the other notions. The first result
says that the restriction of a KL-random set to the even bit positions is already ML-
random. For sets A0, A1 let A0⊕A1 denote the set {2n : n ∈ A0}∪{2n+1: n ∈ A1}.

Theorem 1.5 If A = A0 ⊕ A1 is KL-random, then at least one of A0 and A1 is
Martin-Löf random. If A is ∆0

2 then in fact both are ML-random.

Of course this works also for splittings using a very thick co-infinite computable set
in place of the even numbers. This shows that the computable dimension of a KL-
random set is 1. The main result of the paper extends this to the weaker notion of
KL-stochastic sets. Instead of betting on the selected sequence, a test can now only
see whether the law of large numbers fails for this sequence.

1.1.3 A notion stronger than ML-randomness

We say that a set Z is 2-random if Z is Martin-Löf random relative to the halting
problem. In [44] we obtained a further randomness enhancement result: a ML-random
set is 2-random iff Chaitin’s Ω is random relative to it. Further, as a main result
we gave a characterization of 2-randomness via plain Kolmogorov complexity C, in
the spirit of Schnorr’s Theorem. The important difference is that even though one
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requires incompressibility only for infinitely many initial segments of the set, the
incompressibility is taken in the stronger sense of C. One direction was also obtained
by Miller [31].

Theorem 1.6 Z is 2-random ⇔
there is b ∈ N such that C(Z �n) ≥ n− b for infinitely many n.

As a corollary, we obtained a simple new proof of Kurtz’s result [24] that each 2-
random set is of hyper-immune degree.

1.2 Lowness

A lowness property of a set states that the set is close to being computable. In my
book [48], I introduced two paradigms for lowness properties of a set A. In my tutorial
at ASL summer meeting, Sofia, 2009, I introduced a third one for ∆0

2 sets.
Paradigm 1: The set A is not very useful as an oracle. For a formal lowness property
of this type, one specifies a sense in which A fails to be useful. Examples are the usual
lowness A′ ≤T ∅′, superlowness A′ ≤tt ∅′, and lowness for randomness (each random
set is already random relative to A). Strong jump-traceability is also introduced via
this paradigm.
Paradigm 2: the set A is computed by many oracles. For a formal lowness property
of this type, one specifies a sense in which the class SA of oracles computing A is large
(even though SA is necessarily a null class for noncomputable A).
Paradigm 3: there is a computable approximation of the set with few changes. The
intuition is that the fewer changes one needs in an approximation, the closer the set
is to being computable. We will consider this in more detail in Subsection 1.2.3.

Much of my research uses randomness to understand lowness properties. To clas-
sify them it is useful to have these paradigms in mind.

1.2.1 Coincidence of three classes

We discuss properties that were introduced independently by various research groups:
the low for K sets, the sets that are low for ML-randomness, and the bases for ML-
randomness. The first two are examples of Paradigm 1, while the third is Paradigm 2.
Later on in Theorem 1.11, we will see that K-triviality can be understood as a lowness
property according to Paradigm 3.
(1) In general, adding an oracle A to the computational power of the universal machine
decreases K(y). A is low for K if this is not so. In other words, ∀y K(y) ≤+ KA(y).
It is not hard to see that such a set is GL1, namely, A′ ≤T A⊕ ∅′.
(2) Zambella [53] defined a set A to be low for ML-randomness if each ML-random
set is already ML-random relative to A. Kučera and Terwijn proved that some non-
computable c.e. set is low for ML-randomness [23].
(3) Kučera [22] introduced a further concept expressing computational weakness. We
say that A is a base for ML-randomness if A ≤T Z for some Z ∈ MLRA. He showed
that some non-computable c.e. set is a base for ML-randomness.

Using Schnorr’s Theorem and the Kučera-Gacs Theorem, one can easily show
that (1)⇒(2) and (2)⇒(3). The following Theorem with Hirschfeldt and Stephan [17]
closes the cycle by showing (3)⇒(1).

Theorem 1.7 Each base for ML-randomness is low for K.
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In the earlier work [42] I showed directly that each set that is low for ML-
randomness is low for K. In fact I proved a stronger result. Let CRA denote the
class of computably random sets relative to A. Let MLR denote the ML-random sets.

Theorem 1.8 If MLR ⊆ CRA then A is low for K.

This also implies that each set that is low for KL-randomness is low for K. As
a further consequence of this theorem and a result in [4], I obtained the following
surprising result in [42]:

Theorem 1.9 Any set that is low for computable randomness is already computable.

This answers Question 4.8 in Ambos-Spies and Kucera [1] in the negative.

1.2.2 Coincidence with K-triviality

For a string y of length n, up to constants we have K(0n) ≤ K(y), because one can
compute n from y. Following Chaitin [7], we say that a set A is K-trivial if, for some
b ∈ N, we also have the converse inequalities: for each n,

K(A�n) ≤ K(0n) + b.

That is, the K complexity of all initial segments is minimal up to a constant. This
notion is opposite to ML-randomness by Schnorr’s Theorem. Thus, K triviality by
itself is not a lowness property but rather expresses being far from random. Chaitin
[7] proved that each K-trivial set is ∆0

2. Solovay [52] showed the existence of a
noncomputable K-trivial set. In [9] we found a much simpler injury-free construction
of such a set. In fact, we built a c.e. example. To do so, we introduced the cost
function construction. We also showed that each K-trivial set is Turing incomplete,
using a new method nowadays called the decanter method for of a visualization I
introduced (see [10, 48]).

The implication Low for K ⇒ K-trivial is easily proved. As a main result in [42],
with some input by Hirschfeldt, I proved the converse.

Theorem 1.10 Each K-trivial set is low for K.

The proof method is now known as the golden run method. It extends the decanter
method. It is necessarily non-uniform [42]: the constant for being low for K cannot
be computed from an index for the given (say, c.e.) set together with the constant
for being K-trivial. A golden run is a node in a tree of possible runs of procedures
which shows that the set is low for K via a specific constant.

The following diagram summarizes the implications discussed:

Low for K

Low for ML

Base for ML

easy

easy

very hard;
non-uniform

 K-trivial

easyharder
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1.2.3 Cost functions

The theory of cost functions began in [9, 42, 48]. Cost functions can be used to
analyse subclasses of the K-trivial sets.

A cost function is a computable function that maps a pair of natural numbers x, s
to a nonnegative rational c(x, s). When building a ∆0

2 set A, the number c(x, s) is
interpreted as the cost of changing the computable approximation to the bit A(x) at
stage s. We say that A obeys the cost function if for some computable approximation;
the sum of the cost of changes is finite. This constitutes the third lowness paradigm:
A is close to computable because the total of changes, measured by a cost function,
can be made small.

Many cost functions are introduced via randomness-related concepts. For instance,
the so-called standard cost function cK is based on the prefix-free Kolmogorov com-
plexity K(w) of a string w, which may be viewed as the binary representation of a
number:

cK(x, s) =
∑s

w=x+1 2−Ks(w),

where Ks(w) is the value of K(w) obtained by stage s. In [42], using the golden run
method, I characterized the K-trivial sets with a single cost function.

Theorem 1.11 A set A obeys the standard cost function if and only if A is K-trivial.

As a corollary, I showed that K-triviality is essentially a property of c.e. Turing
degrees.

Theorem 1.12 Each K-trivial set A is Turing below a computably enumerable K-
trivial set D.

To prove this one thinks of N as partitioned into infinitely many columns: The column
for x is {〈x, i〉 : i ∈ N} with the standard pairing function 〈·, ·〉. The set D is simply
the “change set” for a computably approximation of A. Each time A(x) changes, one
enumerates the next element in the column for x into A. Clearly A ≤T D. Since A
obeys the standard cost function, it is not hard to see that D obeys the standard cost
function as well, and hence is K-trivial.

1.2.4 Strong jump traceability

The strongly jump traceable (SJT) sets were introduced in [12]. They have been
in the focus of intense research in the past few years. For instance, the Advances
in Maths paper [8]) shows that the c.e. strongly jump traceable sets form a proper
subclass of the c.e. K-trivials.

Strong jump traceability is a lowness property according to Paradigm 1. The
intuition is that the universal A-partial computable functional JA has only very few
possible values. For the formal definition, a c.e. trace for a partial function ψ is a
uniformly c.e. sequence (Tx)x∈N such that for all x ∈ dom(ψ) we have ψ(x) ∈ Tx.
An order function is a computable, nondecreasing, and unbounded function h : N →
N\{0}. A c.e. trace (Tx)x∈N is bounded by an order function h if for all x, |Tx| ≤ h(x).
A set A is strongly jump traceable if for every order function h, JA has a c.e. trace
that is bounded by h.

Since the order function h is arbitrary, this is an extreme lowness property.
Nonetheless, in [12] we show that there is some non-computable c.e. set in this class.
Further, we give a characterization in terms of relativized plain Kolmogorov com-
plexity. Similar to the property of being low for K, the characterization states that
adding A as an oracle does not reduce the complexity of a string by much.
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Theorem 1.13 A is strongly jump traceable iff for each order function g, we have
∀x [C(x) ≤ CA(x) + g(CA(x)) +O(1)].

We say that A is strongly superlow if for each order function h, one can com-
putably approximate its jump A′ with the number of changes bounded by h. Using
the foregoing theorem, we showed that each strongly superlow set is strongly jump
traceable.

A result of Greenberg and Nies [14] analogous to Theorem 1.11 characterizes strong
jump traceability in terms of obeying all members in a family of well-behaved cost
functions c (called benign): the number of disjoint intervals [x, s) such that c(x, s) ≥
1/n is bounded by a computable function g(n). This shows that cost functions can
enable us to carry out an analytical treatment of lowness properties inside the ∆0

2

sets.

2 Structures from computability theory

A main goal of computability theory is to understand the computational complexity
of sets of natural numbers. The relative complexity of a set is given by comparing
it to other sets via a reducibility ≤r. Such reducibilities specify a way in which the
oracle B can be accessed in a relative computation of A. Important examples are
Turing reducibility A ≤T B, where full access to the oracle is granted, weak truth-
table reducibility A ≤wtt B, where the largest oracle question is computably bounded
in the input, and many-one reducibiltiy A ≤m B, where from the input x a single
oracle question f(x) is computed, and the output is simply B(f(x)).

A reducibility ≤r is a pre-ordering ≤r on the power set of N, and thus induces a
partial ordering on equivalence classes, called the degree structure given by ≤r. In this
way, one abstracts from the particular features of a set A, and only studies its relative
complexity as given by ≤r. The degree structures form uppersemilattices where the
supremum of the degrees of sets A,B is the degree of A⊕B.

A somewhat purer view of the computably enumerable sets is given by E, the
distributive lattice of computably enumerable sets under inclusion. Surprisingly, the
behaviour of a set within E can tell us a lot about its computational complexity. For
instance, by a result of Martin [28], maximal sets are high, and each high computably
enumerable degree contains a maximal set.

2.1 Coding and definability

The study of structures from computability via coding with first-order formulas was
in the focus my research during the 1990s. A simple example of a such a coding is
to represent a symmetric graph (V,E) in a suitable partial order. The vertices in V
correspond to the minimal elements. Whenever there is an edge between vertices v
and w, there is an element r above v and w. Thus, the domain is defined by the
formula saying that an element is minimal, and the edge relation E by the formula
φ(v, w) ≡ ∃r[v ≤ r & w ≤ r].

If one codes a finite graph, say, in a given degree structure, one has to find a coding
scheme, consisting of a pair of formulas to define the relations corresponding to V and
E. These formulas will involve parameters, that is, constants taken from the degree
structure. Methods specific to the degree structure in question (for instance, the
priority method explained below) will then be used to construct the right parameters.

The set representing the domain V usually becomes a parameter definable an-
tichain in the degree structure. Often the degree structure is dense, so one cannot
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take minimal elements; more complex coding schemes become necessary.
In my habilitation thesis [46], a fair part of my research in this direction is summa-

rized and put into a wider context. The thesis also stresses the application of coding
methods to structures from computational complexity theory, such as the polynomial
time many-one degrees of exponential time sets.

2.1.1 The Turing degrees of c.e. sets

The analysis via coding and definability was highly successful in the case of a central
structure: the structure RT of Turing degrees of computably enumerable sets. This
analysis began with the result of Harrington and Shelah [16] that the first-order theory
Th(RT ) is undecidable. Extending the coding methods used there, Harrington and
Slaman (unpublished) gave an interpretation in Th(RT ) of Th(N,+,×), also called
true arithmetic. (An interpretation is a many-one-reduction of theories based on a
computable map defined in some natural way on sentences.) With Shore and Slaman
[43], I used codings of standard models of arithmetic in order to prove the definability
in RT of important degree classes.

Theorem 2.1 ([43]) The classes Low2 and High1 are first-order definable without
parameters in RT .

We also coded (N,+,×) into RT using no parameters at all.
A main open question is whether RT has a non-trivial automorphism. We showed

in the same paper [43] that no automorphism of RT can change the second jump of
a degree. In [34] I used coding methods to show a further restricting result: each
automorphism of RT is arithmetical (in fact Σ0

7) on each proper final segment. To
do so I gave a definable mapping from a coded standard model onto any such final
segment. This also shows that the ideal generated by a parameterless-definable set is
itself parameterless-definable.

In order to strengthen an undecidability result for the theory of a structure, be-
sides interpreting true arithmetic one can look at the level of quantifier alternations
where the theory becomes undecidable. To lower this level, codings with very simple
formulas are needed. In this direction, with Lempp and Slaman I proved the following.

Theorem 2.2 ([26]) The ∀∃∀-theory of RT (as a partial order) is undecidable.

We combined the Harrington-Shelah type of coding with algebraic tricks to reduce the
quantifier alternations: the coding merely uses Σ1 formulas with parameters. Later
on, with Miller and Shore [32], I strengthened this by showing that the Π2 theory of
(RT ,∨,∧) is undecidable (where ∧ is denotes some total extension of the partial meet
operator). We coded with quantifier free formulas in this language.

All these results combine coding via first-order formulas with the priority method.
Originating independently in work of Friedberg and Muchnik in the 1950s, the pri-
ority method was almost synonymous with computability theory in the 1980s and
1990s. In somewhat modified form, it persists in the more recent investigations where
randomness and computability interact.

The priority method makes it possible to simultaneously pursue strategies for
different requirements, even if they have conflicting goals. For this reason, the method
can be seen as an abstract version of computing with many processors. Complicated
control devices, such as trees of strategies, were developed to resolve the conflicts
between strategies. The above-mentioned results [43, 26, 32] rely on sophisticated
applications of the priority method at the ∅′′ and even ∅′′′ levels. For instance, an
antichain in the computably enumerable Turing degrees can be defined by taking the
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minimal degrees g ≤ r such that q ≤ p ∨ g. A priority construction is necessary
to build parameters p,q, r so that one obtains an infinite antichain. This defined
antichain can then serve as the domain of a coded standard model of arithmetic.

2.1.2 Distributive structures

We say that an upper semilattice (U,≤,∨) is distributive if for x, y, z ∈ U , if z ≤ x∨y
then z splits into components zx ≤ x and zy ≤ y, namely, z = zx∨zy. For lattices, this
coincides with the usual concept of distributivity. Important examples of distributive
upper semilattices are the degree structures Rwtt and Rm of weak truth-table and of
many-one degrees on computably enumerable sets, respectively.

Much of my earlier work focuses on coding into distributive structures from com-
putability theory. This property of well-behavedness restricts the availability of coding
schemes. For instance, the scheme mentioned above to define antichains in RT will
not work in distributive structures.

In an early paper [35], I proved the following.

Theorem 2.3 True arithmetic can be interpreted in the theory of Rm. In fact, Rm

allows a parameter-free coding of (N,+,×).

This paved the way for the solution by Harrington and Nies [15] of a long-standing
problem posed, for instance, in [51].

Theorem 2.4 True arithmetic can be interpreted in the theory of E, the distributive
lattice of computably enumerable sets.

The idea taken from [35] was to use recursion on k in order to give first-order def-
initions with parameters of relations with a Σ0

k index set. One starts with simple
relations (usually when k = 3) and then works ones way up to more complicated
relations by recursion to the simpler case.

The coding into E is very indirect. To this day, the lowest level where the theory is
known to become undecidable it Π6, and in fact this only holds for the closely related
lattice E∗ which is the quotient of E by finite differences of sets. This result was
obtained in [46]. Further, no infinite linear order can be interpreted in any structure
of the form A×A by a result of Hodges and Nies [20]. Since E is isomorphic to E×E,
the analog of the second part of Theorem 2.3 fails.

A computably enumerable Boolean algebra B is called effectively dense if from
(an index for) a nonzero element one can compute a nonzero element that is strictly
below it. For instance, the Lindenbaum algebra of sentences modulo Peano arithmetic
is effectively dense. Let I(B) be the lattice of computably enumerable ideals of B.
I transferred the results and methods on coding in E to the lattices I(B) for an
effectively dense Boolean algebra B. I first showed undecidability of its theory [37].
Thereafter, I proceeded to an interpretation of true arithmetic [38].

The point is that structures I(B) can often be interpreted without much effort
in other distributive structures. In the same paper with Downey [11], I applied this
method to structures that are studied in computational complexity theory, a branch
of theoretical computer science.

Theorem 2.5 The polynomial time many-one and Turing degrees of exponential time
sets have an undecidable theory.

A well-known open problem was solved in my paper [2], with my advisor Ambos-
Spies and Shore: the theory of Rwtt, the weak truth table degrees of c.e. sets, is
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undecidable. Strengthening this, in [39] true arithmetic was interpreted in the theory
of Rwtt.

Turning to the computably enumerable many-one degrees Rm [36] , I obtained Π3

as a level where the theory of the partial order becomes undecidable. This relied on
my general method for showing undecidability of fragments, embodied by the transfer
lemma [36]. First I showed hereditary undecidability of the Π3 theory of the class of
finite distributive lattices in the language of partial orders. This undecidability result
can then be transferred to the Π3 theory of Rm by a theorem of Lachlan that each
finite distributive lattice is isomorphic to an initial segment of Rm.

Lempp and Nies [25] applied the transfer lemma from [36] in order to show unde-
cidability of the Π4-theory of Rwtt as a partial order. Unlike Rm, the degree structure
Rwtt is dense, which explains the increase by one quantifier alternation.

2.2 Recent investigations of structures

Prompted in part by considerations related to randomness, I have recently worked
again on structures from computability theory.

In [27], with Lewis and Sorbi I prove:

Theorem 2.6 The first-order theory of both the Medvedev and the Muchnik lattices
are equivalent in complexity to third-order arithmetic.

In [3], Barmpalias and I show the following.

Theorem 2.7 Each proper Σ0
3 ideal of the computably enumerable Turing degrees is

bounded by a low2 c.e. degree. Each proper Σ0
4 ideal of the computably enumerable

Turing degrees is bounded by an incomplete c.e. degree.

The first result gives a low2 upper bound in RT for the K-trivial degrees. The second
answered a question of Calhoun [6] by showing that no proper prime ideal of RT is Σ0

4.

3 Algebra and effectively presented structures

My paper “Describing groups” [47] surveys two directions of research related to alge-
bra, which I developed in several research papers.

3.1 Automatic structures

Automata are used to represent algebraic structures. For instance, the integers with
addition can be represented in that way. Such representations are of interest in
theoretical computer science because algebraic structures can be viewed as an abstract
model for data structures, and a representation by automata is extremely efficient.

This line of research yielded the publications [21, 18] with various co-authors
at the 2004 and 2008 LICS conferences. One main result in [21] is the following
theorem, which shows that despite the apparently very strong restriction due to the
representability by finite automata, these structures form in general a very rich class.

Theorem 3.1 Isomorphism between presentations of automatic graphs is undecid-
able, and in fact Σ1

1 complete.

We also give in [21] a complete characterization of the finite automata presentable
Boolean algebras. In this case, the class is indeed very restricted. Let B be the
Boolean algebra of finite or cofinite subsets of N. Clearly B is finite automata pre-
sentable.
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Theorem 3.2 An infinite Boolean algebra is finite automata presentable if and only
if it is isomorphic to a finite power of B.

With Thomas, I proved strong restrictions on finite automata presentable groups.

Theorem 3.3 ([45]) Let G be a finite automata presentable infinite group. Then
each finitely generated subgroup H of G is abelian-by-finite.

Via some matrix theory, the preceding theorem also leads to a strong restriction
on finite automata presentable rings.

Theorem 3.4 ([45]) Let R be a finite automata presentable ring (possibly non-com-
mutative). Then R is locally finite.

This implies that the only finite automata presentable rings (commutative or not)
without zero divisors are the finite fields.

In [18] we consider structures of size the continuum that can be represented via
Büchi automata. We refute a claim made in [5], by showing that there is a Büchi
presentable structure without an injective Büchi presentation. We derive this from a
stronger result obtained with methods from descriptive set theory.

Theorem 3.5 There a is Büchi presentable structure without an injective Borel pre-
sentation.

The theory of Borel structures has been further developed in a recent paper with
Hjorth [19]. Its main result shows that the completeness theorem has no effective
version for uncountable structures, when effectivity for uncountable structures is in-
terpreted by being Borel.

Theorem 3.6 There is a complete Borel theory without a Borel model.

3.2 Connecting algebra and first-order logic

The second direction surveyed in [47] combines algebra and first-order logic. It began
with my paper “Separating classes of groups by first order sentences” [41]. Logicians
at Univ. Paris 7 (Sabbagh, Oger and others) have been interested in the topic over the
past few years. This resulted in two papers in the Journal of Group Theory [50, 49].
Further, the model theorists Scanlon (UC Berkeley) and Aschenbrenner (UCLA) have
worked in this direction.

The main goal is to understand how expressive first-order logic is within the con-
text of groups. In [41] several important classes of groups are separated via the
first-order theory. For instance:

Theorem 3.7 There is a sentence that holds in all finitely presented groups, but fails
in some finitely generated group.

To prove such theorems I introduced the following very fruitful concept. A finitely gen-
erated group G is called quasi-finitely axiomatizable if it satisfies a certain first order
sentence, and each finitely generated group also satisfying that sentence is isomorphic
to G. Thus, G can be axiomatized by a single sentence within the class of finitely
generated groups. I gave several examples, such as the Heisenberg group UT3

3(Z).
Oger [49] showed that some groups originating from number theory are quasi-finitely
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axiomatizable. Oger and Sabbagh [50, 49] gave an algebraic characterization of being
quasi-finitely axiomatizable for nilpotent groups.

The property of being quasi-finitely axiomatizable is conceptually very close to
being a prime model. Howevery, there is an important difference. Clearly there are
only countably many quasi-finitely axiomatizable groups. On the other hand, in [33]
I showed:

Theorem 3.8 There are uncountably many non-isomorphic finitely generated groups
that are prime models of their theories.

Thus, not each prime finitely generated group is quasi-finitely axiomatizable. It re-
mains open whether each quasi-finitely axiomatizable group is prime.

My paper [40] contains further results connecting algebra and first-order logic. Let
F2 be the free group of rank 2. I show that F2 is ω-homogeneous. In fact:

Theorem 3.9 Any two tuples of the same length in F2 satisfying the same existential
formulas are automorphic.

I also show that the theory of F2 has no prime model.
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