
ar
X

iv
:c

s.
D

S
/0

40
70

03
 v

1
 1

 J
ul

 2
00

4

INSERTION SORT is O(n log n) ∗

Michael A. Bender† Martı́n Farach-Colton‡ Miguel Mosteiro§

July 2, 2004

Abstract

Traditional INSERTION SORT runs inO(n2) time because each insertion takesO(n) time. When
people run INSERTION SORT in the physical world, they leave gaps between items to accelerate inser-
tions. Gaps help in computers as well. This paper shows that GAPPED INSERTION SORT has insertion
times ofO(log n) with high probability, yielding a total running time ofO(n log n) with high probability.

Keywords

Sorting, Library Sort, Insertion Sort, Gapped Insertion Sort. ACM-class: F.2.2, E.5. arXiv: cs.DS/0407003.
CoRR Subj-class: DS-Data Structures and Algorithms.

1 Introduction

Success has its problems. While many technology companies are hemorrhaging money and employees,
Google is flush with money and hiring vigorously. Google employees are cheerful and optimistic, with the
exception of G—.

G— maintains the mailboxes at Google. The mailbox technology consist of trays arranged in linear
order and bolted to the wall. The names on the mailboxes are alphabetized. G— is grumpy after each new
hire because, to make room for thenth new employee, the names onO(n) mailboxes need to be shifted by
one.

University graduate programs in the US have also been growing vigorously, accepting as students those
talented employees downsized from high-tech companies.

At Stony Brook S— implements the mailbox protocol. Each timea new student arrives, S— makes room
for the new student’s mailbox using the same technique as G—.However, S— only needs to shift names
by one until a gap is reached, where the empty mailbox belonged to a student who graduated previously.
Because the names have more or less random rank, S— does not need to shift many names before reaching
a gap.

Both S— and G— are implementing INSERTION SORT. However, while S— is blissfully unaware that
INSERTION SORT is anO(n2) algorithm, G— continually hopes that each new hire will be named Zhang,
Zizmor, or Zyxt.

∗To appear in Proceedings of the Third International Conference on Fun With Algorithms, FUN 2004.
†Department of Computer Science, SUNY Stony Brook, Stony Brook, NY 11794-4400, USA;bender@cs.sunysb.edu.
‡Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA;farach@cs.rutgers.edu.
§Department of Computer Science, Rutgers University, Piscataway, NJ 08854, USA;mosteiro@cs.rutgers.edu.

1

R—, the librarian at Rutgers, is astonished by all the fuss over insertions. R— inserts new books into the
stacks1 every day. R— plans for the future by leaving gaps on every shelf. Periodically, R— adds stacks to
accommodate the growing collection. Although spreading the books onto the new stacks is laborious, these
rearrangements happens so infrequently that R— has plenty of time to send overdue notices to hard-working
students and professors.

This paper shows that GAPPED INSERTION SORT, or LIBRARY SORT, has insertion times ofO(log n)
with high probability, yielding a total running time ofO(n log n) with high probability.

Standard INSERTION SORT

In standard INSERTION SORT we maintain an array of elements in sorted order. When we insert a new
element, we find its target location and slide each element after this location ahead by one array position to
make room for the new insertion. Theith insertion takes timeO(i), for a total ofO(n2). Finding the target
position of theith element takes timeO(log i) using binary search, though this cost is dominated by the
insertion cost.

LIBRARY SORT

We achieveO(log n)-time insertions with high probability by keeping gaps evenly distributed between the
inserted elements and randomly permuting the input. Then weonly need to move a small number of elements
ahead by one position until we reach a gap. The more gaps we leave, the fewer elements we move on
insertions. However, we can tolerate a small-constant-space overhead.

The remainder of this paper is organized as follows. We present the details of the algorithm in Section 2
and show in Section 3 that the algorithm runs inO(n log n) time with high probability. In Section 4 we
conclude with a few comments and some related work.

2 LIBRARY SORT: Algorithm and Terminology

Let A be ann-element array to be sorted. These elements are inserted oneat a time in random order into a
sorting arrayS of size(1 + ε)n. The insertions proceed inlog n roundsas follows. Each round doubles the
number of elements inserted intoS and doubles the prefix ofS where elements reside. Specifically, round
i ends when element2i is inserted and the elements arerebalanced. Before the rebalance, the2i elements
are in the first(1 + ε)2i positions. A rebalance moves them into the first(2 + 2ε)2i positions, spreading the
elements as evenly as possible. We call2 + 2ε thespreading factor.

During theith round, the2i−1 elements inS at the beginning of the round are calledsupport elements,
and their initial positions are calledsupport positions. The2i−1 elements inserted before the end-of-round
rebalance are calledintercalated elements.

The insertion of2i−1 intercalated elements within roundi is performed the brute force way: search for
the target position of the element to be inserted by binary search (amongst the2i−1 support positions inS),
and move elements of higher rank to make room for the new element. Not all elements of higher rank need
to be moved, only those in adjacent array positions until thenearest gap is found.

3 Analysis

For the sake of clarity, we divide the time complexity into four parts: the rebalance cost, the search cost,
the insertion cost for the first

√
n elements, and the insertion cost for the remaining elements. Let m be the

1Throughout, we meanlibrary stacks, an ordered set of stacks, rather than lifo stacks.

2

number of elements inserted at any time.

3.1 Insertion cost for m = O(
√

n), rebalance cost, and search cost

Lemma 1 The insertion time for the firstO(
√

n) insertions isO(n).

Proof. By the quadratic running time of INSERTION SORT.

Lemma 2 For a given input of sizen, the cost of all rebalances isO(n).

Proof. Since the number of elements doubles in each round and the spreading factor is constant, the cost
of spreadingm elements on each rebalance is amortized over the previousm/2 insertions, for an amortized
rebalance cost ofO(1) per insertion.

Lemma 3 The cost of finding the location to insert a new element in the sorting array isO(log m).

Proof. Binary search among theO(m) support positions takes timeO(log m). A final search between
two support positions takes timeO(1), since the spreading factor is constant.

3.2 Insertion cost for m = Ω(
√

n)

We now bound the number of elements moved per insertion whenm = Ω(
√

n) elements have already
been inserted. We show that with high probability, for sufficiently largec, all sets ofc log m contiguous
support elements have fewer than(1 + ε)c log m intercalated elements inserted among them by the end of
the round. Thec log m support elements are spread among(2 + 2ε)c log m sorting array positions at the
beginning of a round. Therefore, after(1+ε)c log m intercalated elements are added, there will still be gaps
— indeed, there will beεc log m empty array positions. Thus, each insertion takes timeO(log m) because
shifts propagate until the next gap, which appears withinO(log m) positions. This observation establishes
our result.

The direct approach

Let D be a set ofc log m contiguous support elements. We would like to compute the number of intercalated
elements that land among the elements ofD. Notice that if there arek elements in the sorting array, then the
k+1st intercalated element is equally likely to land between any of thosek elements. Thus, if an intercalated
element is inserted withinD, the probability of further insertions withinD increases, and conversely, if an
intercalated element is inserted outside ofD, the probability of further insertions withinD decreases.

We formalize the problem as follows. Consider two urns, urnA starting withc log m balls and urnB
starting withm − c log m balls. Throwm additional balls, one after another, into one of the two urnswith
probability proportional to the number of balls in each urn.Let random variableXi = 1 if ball i lands in
urnA and letXi = 0 if ball i lands in urnB. We now need to bound the tails of

∑

Xi.
Because theseXi are positively correlated, bounding the tail of their sum isawkward. We analyze a

simpler game below.

3

The arrival permutation

We first set up the problem. Consider2m elements to sort. Each of the(2m)! orders of insertion is equally
likely. We refer to each insertion order as anarrival permutation. The first half of the arrival permutation
consists of support elements, and the second half consists of intercalated elements. Thus, the probability of
being a support (resp. intercalated) element equals the probability of being in the first (resp. second) half of
the arrival permutation.

Our goal is to show that for sufficiently largec, with high probability in every set of(2 + ε)c log m
contiguous elements, there are at leastc log m support elements and at leastc log m intercalated elements at
the end of a round. Thus, with high probability there are alsoat most(1 + ε)c log m of each type in every
set of(2 + ε)c log m contiguous elements. Because the at leastc log m support elements are spread out in
a subarray of size(2 + 2ε)c log m, there is room to add the at most(1 + ε)c log m intercalated elements
while still leaving gaps. Therefore, with high probabilityno insertion will move more than(2 + ε)c log m
elements.

Theorem 4 In any setC of (2 + ε)c log m contiguous elements, there are at leastc log m support elements
and at leastc log m intercalated elements with high probability.

Proof. Consider choosing an arrival permutationP of length2m uniformly at random by placing the
elements one-by-one intoP, selecting an empty slot uniformly at each step. We place theelements of set
C into P before placing the elements ofC in P . We give an upper bound on the number of elements inC
that are support elements, that is, the number of elements that fall in the first half ofP . The argument for
intercalated elements is symmetric.

Let si be the number of elements already inserted into the first halfof P just before theith insertion.
The probabilitypi that theith insertion is in the first half ofP is then(m − si)/(2m − i + 1).

Let random variableXi = 1 if elementi is a support element, and letXi = 0 otherwise. Random
variablesX1, . . . ,X2m now depend on the remaining] blank spaces in the permutationand are negatively
correlated. Furthermore,|C| = (2 + ε)c log m is small compared tom, and soE[Xi] = pi is very close to
1/2 for the first|C| element. Given this bound, we can prove our theorem with a straightforward application
of Chernoff bounds.

Here we prove the theorem using elementary methods, as follows. The probability that a given element
in C is a support element is at most

m

2m − |C| + 1
=

m

2m − (2 + ε)c log m + 1

Let p be the probability that there are at mostc log m support elements in the setC. Then,

p ≤
c log m
∑

j=0

(|C|
j

)(

m

2m − |C| + 1

)j (m

2m − |C| + 1

)|C|−j

≤
(

m

2m − |C| + 1

)|C| c log m
∑

j=0

(|C|
j

)

.

Bounding the summation by the largest term, we obtain

p ≤
(

m

2m − |C| + 1

)|C|

c log m

(

(2 + ε)c log m

c log m

)

.

Using Stirling’s approximation, for some constantc′ we obtain

4

p ≤ c′
(

m

2m − |C| + 1

)|C|
√

c log m

(

(2 + ε)(2+ε)

(1 + ε)(1+ε)

)c log m

.

Manipulating on the first term, we obtain

p ≤ c′
(

1 +
|C|
m

)|C|(1

2

)|C|
√

c log m

(

(2 + ε)(2+ε)

(1 + ε)(1+ε)

)c log m

.

Since|C| ≪ m, we replace the first term by a constant less thane (indeed,1 + o(1)) and fold it, along
with c′, into c′′. We get

p ≤ c′′
(

1

2

)|C|
√

c log m

(

(2 + ε)(2+ε)

(1 + ε)(1+ε)

)c log m

.

Since|C| = (2 + ε)c log m, the previous equation simplifies to

p ≤ c′′
√

c log m

(

(2 + ε)(2+ε)

2(2+ε)(1 + ε)(1+ε)

)c log m

.

This last factor is 1 whenε = 0, and decreases with increasingε. Thus, for any constantε > 0, the
probabilityp is polynomially small whenm is Ω(

√
n). The same result can be symmetrically obtained for

intercalated elements; thus, we have at leastc log m elements of each, with high probability.

Note that sinceC is split evenly in expectation, the expected insertion costis constant.

Corollary 5 There are at leastc log m support elements and at leastc log m intercalated elements in each
set of(2 + ε)c log m contiguous elements with high probability.

Proof. We are interested only in nonoverlapping sets of contiguouselements and there arem/(2 +
ε)c log m such sets. By Theorem 4 and the union bound, the claim holds.

3.3 Summary

We summarize our results as follows: The overall cost of rebalancing isO(n) by Lemma 2. By Lemma 3,
the cost of searching for the position of theith element isO(log i), and then the overall searching cost is
O(n log n). We proved in Lemma 1 that the insertion cost of the firstO(

√
n) elements isO(n) in the worst

case. Finally, Theorem 4 shows that for sufficiently largec, no contiguousc log m elements in the support
have(1+ε)c log m intercalated elements inserted among them at the end of any round, with high probability.
Thus, there is a gap within any segment of(2 + ε)c log m elements with high probability. Therefore, the
insertion cost per element form = Ω(

√
n) is O(log m) with high probability. The overall cost of LIBRARY

SORT is O(n log n) with high probability.

4 Conclusions and related work

We have shown that LIBRARY SORT outperforms traditional INSERTIONSORT. There is a trade-off between
the extra space used and the insertion time given by the relation betweenc andε. The lower the desired
insertion cost, the bigger the required gap between elements at rebalance.

5

L IBRARY SORT is based on the priority queue presented in Itai, Konheim, and Rodeh [5]. Our analysis
is a simplification of theirs. Moreover, we give high probability and expectation bounds for the insertion
cost, whereas they only give expectation bounds.

An algorithm similar to LIBRARY SORT was presented by Melville and Gries in [6]. This algorithm has
a 1/3 space overhead as compared with theε space overhead of LIBRARY SORT. They point out that their
running time analysis was too complicated to be included in the journal version. To quote the authors:“We
hope others may develop more satisfactory proofs.”.

The idea of leaving gaps for insertions in a data structure isused by Itai, Konheim, and Rodeh [5]. This
idea has found recent application in external memory and cache-oblivious algorithms in thepacked memory
structureof Bender, Demaine and Farach-Colton [1] and later used in [2–4].

Acknowledgments

We would like to thank Erik Demaine and Ian Munro for helpful discussions. MAB was supported in part
by the Sandia National Laboratories and NSF Grants ACI-032497, CCR-0208670, and EIA-0112849. MFC
was supported in part by CCR-9820879.

References

[1] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. InProc. 41st IEEE Ann. Symp.
on Foundations of Computer Science, pages 399–409, 2000.

[2] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious dynamic dictionary. InProc.
13th ACM-SIAM Ann. Symp. on Discrete Algorithms, pages 29–38, 2002.

[3] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache-oblivious search trees via binary trees of small height. InProc.
13th ACM-SIAM Ann. Symp. on Discrete Algorithms, pages 39–48, 2002.

[4] G. Franceschini. An in-place sorting algorithm performing O(n log n) comparisons andO(n) data moves. In
Proc. 44th IEEE Ann. Symp. on Foundations of Computer Science, pages 242–250, 2003.

[5] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table implementation of priority queues. InProc. 8th EATCS
Int. Colloquium on Automata, Languages and Programming, pages 417–431, 1981.

[6] R. Melville, D. Gries. Controlled density sorting. InInformation Processing Letters, 10:4, pages 169–172, 1980.

6

