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This extended abstract describes and analyses a near-optimal probabilistic algorithm, HYPERLOGLOG, dedicated to
estimating the number of distinct elements (the cardinality) of very large data ensembles. Using an auxiliary memory
of m units (typically, “short bytes”), HYPERLOGLOG performs a single pass over the data and produces an estimate
of the cardinality such that the relative accuracy (the standard error) is typically about 1.04/

√
m. This improves on

the best previously known cardinality estimator, LOGLOG, whose accuracy can be matched by consuming only 64%
of the original memory. For instance, the new algorithm makes it possible to estimate cardinalities well beyond 109

with a typical accuracy of 2% while using a memory of only 1.5 kilobytes. The algorithm parallelizes optimally and
adapts to the sliding window model.
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Introduction
The purpose of this note is to present and analyse an efficient algorithm for estimating the number of
distinct elements, known as the cardinality, of large data ensembles, which are referred to here as multisets
and are usually massive streams (read-once sequences). This problem has received a great deal of attention
over the past two decades, finding an ever growing number of applications in networking and traffic
monitoring, such as the detection of worm propagation, of network attacks (e.g., by Denial of Service),
and of link-based spam on the web [3]. For instance, a data stream over a network consists of a sequence
of packets, each packet having a header, which contains a pair (source–destination) of addresses, followed
by a body of specific data; the number of distinct header pairs (the cardinality of the multiset) in various
time slices is an important indication for detecting attacks and monitoring traffic, as it records the number
of distinct active flows. Indeed, worms and viruses typically propagate by opening a large number of
different connections, and though they may well pass unnoticed amongst a huge traffic, their activity
becomes exposed once cardinalities are measured (see the lucid exposition by Estan and Varghese in [11]).
Other applications of cardinality estimators include data mining of massive data sets of sorts—natural
language texts [4, 5], biological data [17, 18], very large structured databases, or the internet graph, where
the authors of [22] report computational gains by a factor of 500+ attained by probabilistic cardinality
estimators.

Clearly, the cardinality of a multiset can be exactly determined with a storage complexity essentially
proportional to its number of elements. However, in most applications, the multiset to be treated is far too
large to be kept in core memory. A crucial idea is then to relax the constraint of computing the value n of
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the cardinality exactly, and to develop probabilistic algorithms dedicated to estimating n approximately.
(In many practical applications, a tolerance of a few percents on the result is acceptable.) A whole range
of algorithms have been developed that only require a sublinear memory [2, 6, 10, 11, 15, 16], or, at worst
a linear memory, but with a small implied constant [24].

All known efficient cardinality estimators rely on randomization, which is ensured by the use of hash
functions. The elements to be counted belonging to a certain data domain D , we assume given a hash
function, h : D → {0,1}∞; that is, we assimilate hashed values to infinite binary strings of {0,1}∞, or
equivalently to real numbers of the unit interval. (In practice, hashing on 32 bits will suffice to estimate
cardinalities in excess of 109; see Section 4 for a discussion.) We postulate that the hash function has been
designed in such a way that the hashed values closely resemble a uniform model of randomness, namely,
bits of hashed values are assumed to be independent and to have each probability 1

2 of occurring—
practical methods are known [20], which vindicate this assumption, based on cyclic redundancy codes
(CRC), modular arithmetics, or a simplified cryptographic use of boolean algebra (e.g., sha1).

The best known cardinality estimators rely on making suitable, concise enough, observations on the
hashed values h(M ) of the input multiset M , then inferring a plausible estimate of the unknown cardi-
nality n. Define an observable of a multiset S ≡ h(M ) of {0,1}∞ strings (or, equivalently, of real [0,1]
numbers) to be a function that only depends on the set underlying S, that is, a quantity independent of
replications. Then two broad categories of cardinality observables have been studied.

— Bit-pattern observables: these are based on certain patterns of bits occurring at the beginning of
the (binary) S-values. For instance, observing in the stream S at the beginning of a string a bit-
pattern 0ρ−11 is more or less a likely indication that the cardinality n of S is at least 2ρ. The
algorithms known as Probabilistic Counting, due to Flajolet-Martin [15], together with the more
recent LOGLOG of Durand-Flajolet [10] belong to this category.

— Order statistics observables: these are based on order statistics, like the smallest (real) values, that
appear in S. For instance, if X = min(S), we may legitimately hope that n is roughly of the order
of 1/X , since, as regards expectations, one has E(X) = 1/(n+1). The algorithms of Bar-Yossef et
al. [2] and Giroire’s MINCOUNT [16, 18] are of this type.

The observables just described can be maintained with just one or a few registers. However, as such,
they only provide a rough indication of the sought cardinality n, via log2 n or 1/n. One difficulty is due
to a rather high variability, so that one observation, corresponding to the maintenance of a single variable,
cannot suffice to obtain accurate predictions. An immediate idea is then to perform several experiments
in parallel: if each of a collection of m random variables has standard deviation σ, then their arithmetic
mean has standard deviation σ/

√
m, which can be made as small as we please by increasing m. That

simplistic strategy has however two major drawbacks: it is costly in terms of computation time (we would
need to compute m hashed values per element scanned), and, worse, it would necessitate a large set of
independent hashing functions, for which no construction is known [1].

The solution introduced in [15] under the name of stochastic averaging, consists in emulating the
effect of m experiments with a single hash function. Roughly speaking, we divide the input stream h(M )
into m substreams, corresponding to a partition of the unit interval of hashed values into [0, 1

m [, [ 1
m , 2

m [, . . . ,
[m−1

m ,1]. Then, one maintains the m observables O1, . . . ,Om corresponding to each of the m substreams. A
suitable average of the {O j} is then expected to produce an estimate of cardinalities whose quality should
improve, due to averaging effects, in proportion to 1/

√
m, as m increases. The benefit of this approach
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Algorithm Cost (units) Accuracy
Hit Counting [24] 1

10 N bits ≈2%
Adaptive Sampling [12] m words (≈32 bits) 1.20/

√
m

Probabilistic Counting [15] m words (≤32 bits) 0.78/
√

m
MINCOUNT [2, 6, 16, 18] m words (≤32 bits) 1.00/

√
m

LOGLOG [10] m bytes (≤5 bits) 1.30/
√

m
HYPERLOGLOG m bytes (≤5 bits) 1.04/

√
m

Fig. 1: A comparison of major cardinality estimators for cardinalities ≤ N: (i) algorithms; (ii) memory complexity
and units (for N ≤ 109); (iii) relative accuracy.

is that it requires only a constant number of elementary operations per element of the multiset M (as
opposed to a quantity proportional to m), while only one hash function is now needed.

The performances of several algorithms are compared in Figure 1; see also [13] for a review. HYPER-
LOGLOG, described in detail in the next section, is based on the same observable as LOGLOG, namely
the largest ρ value obtained, where ρ(x) is the position of the leftmost 1-bit in binary string x. Stochastic
averaging in the sense above is employed. However, our algorithm differs from standard LOGLOG by its
evaluation function: its is based on harmonic means, while the standard algorithm uses what amounts to
a geometric mean1. The idea of using harmonic means originally drew its inspiration from an insight-
ful note of Chassaing and Gérin [6]: such means have the effect of taming probability distributions with
slow-decaying right tails, and here they operate as a variance reduction device, thereby appreciably in-
creasing the quality of estimates. Theorem 1 below summarizes our main conclusions to the effect that
the relative accuracy (technically, the standard error) of HYPERLOGLOG is numerically close to β∞/

√
m,

where β∞ =
√

3log2−1 .= 1.03896. The algorithm needs to maintain a collection of registers, each of
which is at most log2 log2 N +O(1) bits, when cardinalities ≤ N need to be estimated. In particular, HY-
PERLOGLOG achieves an accuracy matching that of standard LOGLOG by consuming only 64% of the
corresponding memory. As a consequence, using m = 2048, hashing on 32 bits, and short bytes of 5 bit
length each: cardinalities till values over N = 109 can be estimated with a typical accuracy of 2% using
1.5kB (kilobyte) of storage.

The proofs base themselves in part on techniques that are now standard in analysis of algorithms,
like poissonization, Mellin transforms, and saddle-point depoissonization. Some nonstandard problems
however present themselves due to the special nonlinear character of harmonic means, so that several
ingredients of the analysis are not completely routine.

1 The HYPERLOGLOG algorithm
The HYPERLOGLOG algorithm is fully specified in Figure 2, the corresponding program being discussed
later, in Section 4. The input is a multiset M of data items, that is, a stream whose elements are read
sequentially. The output is an estimate of the cardinality, defined as the number of distinct elements
in M . A suitable hash function h has been fixed. The algorithm relies on a specific bit-pattern observable
in conjunction with stochastic averaging. Given a string s ∈ {0,1}∞, let ρ(s) represent the position of
the leftmost 1 (equivalently one plus the length of the initial run of 0’s). The stream M is split into

1 The paper [10] also introduces a variant called SUPERLOGLOG, which attempts to achieve variance reduction by censoring
extreme data. It has however the disadvantage of not being readily amenable to analysis, as regards bias and standard error.
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Let h : D → [0,1]≡ {0,1}∞ hash data from domain D to the binary domain.
Let ρ(s), for s ∈ {0,1}∞, be the position of the leftmost 1-bit (ρ(0001 · · ·) = 4).

Algorithm HYPERLOGLOG (input M : multiset of items from domain D).
assume m = 2b with b ∈ Z>0;
initialize a collection of m registers, M[1], . . . ,M[m], to −∞;

for v ∈M do
set x := h(v);
set j = 1+ 〈x1x2 · · ·xb〉2; {the binary address determined by the first b bits of x}
set w := xb+1xb+2 · · · ; set M[ j] := max(M[ j],ρ(w));

compute Z :=

(
m

∑
j=1

2−M[ j]

)−1

; {the “indicator” function}

return E := αmm2Z with αm as given by Equation (3).

Fig. 2: The HYPERLOGLOG Algorithm.

substreams M1, . . .Mm, based on the first b bits of hashed values2 of items, where m = 2b, and each
substream is processed independently. For N ≡ M j such a substream (regarded as composed of hashed
values stripped of their initial b bits), the corresponding observable is then

Max(N ) := max
x∈N

ρ(x), (1)

with the convention that Max( /0) = −∞. The algorithm gathers on the fly (in registers M[ j]) the values
M( j) of Max(M j) for j = 1 . . . ,m. Once all the elements have been scanned, the algorithm computes the
indicator,

Z :=

(
m

∑
j=1

2−M( j)

)−1

. (2)

It then returns a normalized version of the harmonic mean of the 2M( j)
in the form,

E :=
αmm2

∑
m
j=1 2−M( j) , with αm :=

(
m

Z
∞

0

(
log2

(
2+u
1+u

))m

du
)−1

. (3)

Here is the intuition underlying the algorithm. Let n be the unknown cardinality of M . Each substream
will comprise approximately n/m elements. Then, its Max-parameter should be close to log2(n/m). The
harmonic mean (mZ in our notations) of the quantities 2Max is then likely to be of the order of n/m.
Thus, m2Z should be of the order of n. The constant αm, provided by our subsequent analysis, is finally
introduced so as to correct a systematic multiplicative bias present in m2Z.

Our main statement, Theorem 1 below, deals with the situation of ideal multisets:

Definition 1 An ideal multiset of cardinality n is a sequence obtained by arbitrary replications and per-
mutations applied to n uniform identically distributed random variables over the real interval [0,1].

2 The algorithm can be adapted to cope with any integral value of m≥ 3, at the expense of a few additional arithmetic operations.
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In the analytical part of our paper (Sections 2 and 3), we postulate that the collection of hashed values
h(M ), which the algorithm processes constitutes an ideal multiset. This assumption is a natural way to
model the outcome of well designed hash functions. Note that the number of distinct elements of such an
ideal multiset equals n with probability 1. We henceforth let En and Vn be the expectation and variance
operators under this model.

Theorem 1 Let the algorithm HYPERLOGLOG of Figure 2 be applied to an ideal multiset of (unknown)
cardinality n, using m≥ 3 registers, and let E be the resulting cardinality estimate.

(i) The estimate E is asymptotically almost unbiased in the sense that

1
n

En(E) =
n→∞

1+δ1(n)+o(1), where |δ1(n)|< 5 ·10−5 as soon as m≥ 16.

(ii) The standard error defined as 1
n

√
Vn(E) satisfies as n→ ∞,

1
n

√
Vn(E) =

n→∞

βm√
m

+δ2(n)+o(1), where |δ2(n)|< 5 ·10−4 as soon as m≥ 16,

the constants βm being bounded, with β16
.= 1.106, β32

.= 1.070, β64
.= 1.054, β128

.= 1.046, and β∞ =√
3log(2)−1 .= 1.03896.

The standard error measures in relative terms the typical error to be observed (in a mean quadratic
sense). The functions δ1(n),δ2(n) represent oscillating functions of a tiny amplitude, which are com-
putable, and whose effect could in theory be at least partly compensated—they can anyhow be safely
neglected for all practical purposes.

Plan of the paper. The bulk of the paper is devoted to the proof of Theorem 1. We determine the
asymptotic behaviour of En(Z) and Vn(Z), where Z is the indicator 1/∑2−M( j)

. The value of αm in
Equation (3), which makes E an asymptotically almost unbiased estimator, is derived from this analysis,
as is the value of the standard error. The mean value analysis forms the subject of Section 2. In fact, the
exact expression of En(Z) being hard to manage, we first “poissonize” the problem and examine EP (λ)(Z),
which represents the expected value of the indicator Z when the total number of elements is not fixed, but
rather obeys a Poisson law of parameter λ. We then prove that, asymptotically, the behaviours of En(Z)
and EP (λ)(Z) are close, when one chooses λ := n: this is the depoissonization step. The variance analysis
of the indicator Z, hence of the standard error, is sketched in Section 3 and is entirely parallel to the mean
value analysis. Finally, Section 4 examines how to implement the HYPERLOGLOG algorithm in real-life
contexts, presents simulations, and discusses optimality issues.

2 Mean value analysis
Our starting point is the random variable Z (the “indicator”) defined in (2). We recall that En refers to
expectations under the ideal multiset model, when the (unknown) cardinality n is fixed. The analysis
starts from the exact expression of En(Z) in Proposition 1, continues with an asymptotic analysis of the
corresponding Poisson expectation summarized by Proposition 2, and concludes with the depoissonization
argument of Proposition 3.
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2.1 Exact expressions
Let N be an ideal multiset of cardinality ν. The quantity Max(N ) = maxx∈N ρ(x) is the maximum of ν

independent random variables, namely, the values ρ(x). Each random variable, call it Y , is geometrically
distributed according to P(Y ≥ k) = 21−k, for k ≥ 1. Thus, the maximum M of ν such random variables

satisfies P(M = k) =
(

1− 1
2k

)ν

−
(

1− 1
2k−1

)ν

, for ν≥ 1. Let now an ideal multiset of fixed cardinality n

be split into m “submultisets” of respective (random) cardinalities N(1), . . . ,N(m). The joint law of the N( j)

is a multinomial. The combination of the previous two observations then provides:

Proposition 1 The expectation of the indicator Z resulting from an ideal multiset of fixed cardinality n
satisfies

En(Z)= ∑
k1,...,km≥1

1

∑
m
j=1 2−k j ∑

n1+...+nm=n

(
n

n1, . . . ,nm

)
1

mn

m

∏
j=1

γn j ,k j , where γν,k =(1− 1
2k )ν−(1− 1

2k−1 )ν,

(4)
for ν,k ≥ 1 and γ0,k = 0.

Note that, under the convention that registers M( j) are initialized to −∞, we have Z = 0 as soon as any of
the registers has remained untouched—this explains the fact that summation in (4) only needs to be taken
over register values k j ≥ 1.

The rather formidable looking expression of (4) is to be analysed. For this purpose, we introduce
the Poisson model, where an ideal multiset is produced with a random size N distributed according to a
Poisson law of parameter λ: P(N = n) = e−λλn/n!. Then, as shown by a simple calculation, we have:
Under the Poisson model of rate λ, the expectation of the indicator Z satisfies,

EP (λ)(Z) = ∑
k1,...,km≥1

1

∑
m
j=1 2−k j

m

∏
j=1

g
(

λ

m2k j

)
, where g(x) = e−x− e−2x. (5)

The verification is based on the relation,

EP (λ)(Z) = ∑
n≥0

En(Z)e−λ λn

n!
,

and series rearrangements. (Equivalently, independence properties of Poisson flows may be used.)

2.2 Asymptotic analysis under the Poisson model
The purpose of this subsection is to determine the asymptotic behaviour of the Poisson expectation,
EP (λ)(Z), as given by Equation (5). Our main result in this subsection is summarized in the following
proposition:

Proposition 2 With αm as in (3), the Poisson expectation EP (λ)(Z) satisfies

EP (λ)(Z) =
λ→∞

λ

m

(
1

mαm
+ εm

(
λ

m

)
+o(1)

)
, where |εm(t)|< 5 ·10−5/m as soon as m≥ 16. (6)

The proof of Proposition 2 consists of three steps: (i) the Poisson expectation is first expressed in
integral form (Equation (9)); (ii) the integrand is next analysed by means of the Mellin transform (Lemma
1); (iii) the outcome of the local Mellin analysis is finally used to estimate the Poisson expectation.
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The integral representation. The asymptotic analysis of the Poisson expectation departs from the usual
paradigm of analysis exemplified by [10, 14, 23] because of the coupling introduced by the harmonic
mean, namely, the factor (∑2−k j)−1. This is remedied by a use of the simple identity

1
a

=
Z

∞

0
e−at dt, (7)

which then leads to a crucial separation of variables,

EP (mx)(Z) = ∑
k1,...,km≥1

1

∑
m
j=1 2−k j

m

∏
j=1

g
(

x
2k j

)
= ∑

k1,...,km≥1

Z
∞

0

m

∏
j=1

g(2−k j x)e−t ∑
m
j=1 2−k j

dt =
Z

∞

0
G(x, t)m dt,

where we have set
G(x, t) := ∑

k≥1
g
( x

2k

)
e−t/2k

. (8)

Then the further change of variables t = xu leads to the following useful form: The Poisson expectation
satisfies, with G(x, t) defined by (8):

EP (x)(Z) = H
( x

m

)
, where H(x) := x

Z +∞

0
G(x,xu)m du. (9)

Analysis of the integrand. Our goal is now to analyse the integral representation (9) of Poisson averages.
We make use of the Mellin transform, which to a function f (t) defined on R>0, associates the complex
function

f ?(s) :=
Z +∞

0
f (t)ts−1 dt. (10)

One fundamental property is that the transform of a harmonic sum, F(x) = ∑k λk f (µkx), factorizes, as
F?(s) =

(
∑k λkµ−s

k

)
f ?(s). Another fundamental property (devolving from the inversion formula and a

residue calculation) is that the asymptotic behaviour of the original function, f , can be read off from the
singularities of its transform f ?; see [14] for a survey. We prove:

Lemma 1 For each fixed u > 0, the function x 7→ G(x,xu) has the following asymptotic behaviour as
x →+∞,

G(x,xu) =
{

f (u)
(
1+O(x−1)

)
+uε(x,u) if u≤ 1

f (u)(1+2ε̃(x,u)+O(x−1)) if u > 1.
, (11)

where f (u) = log2
( 2+u

1+u

)
, the O error terms are uniform in u > 0, and |ε|, |̃ε| ≤ ε0 ' 7 ·10−6 for x ≥ 0.

Proof. Write hu(x) := G(x,xu). This function is a harmonic sum,

hu(x) =
+∞

∑
k=1

g(2−kx)e−2−kxu =
+∞

∑
k=1

q(x2−k), with q(x) := g(x)e−xu,
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so that its Mellin transform factorizes, in the fundamental strip 〈−1,0〉, as

h?
u(s) =

(
+∞

∑
k=1

2ks

)
q?(s) =

2sΓ(s)
1−2s

(
(1+u)−s− (2+u)−s) , (12)

where Γ(s) is the Euler Gamma function. The asymptotic behaviour of hu(x) as x → +∞ is then deter-
mined by the poles of h?

u(s) that lie on the right of the fundamental strip. The poles of h?
u(s) are at Z<0

(because of the Γ factor) and at the complex values {ηk := 2ikπ/ log(2), k ∈ Z}, where the denominator
1−2s vanishes. The Mellin inversion formula,

hu(x) =
1

2iπ

Z −1/2+i∞

−1/2−i∞
h?

u(s)x
−s ds,

when combined with the residue theorem, implies

hu(x) =−∑
k∈Z

Res(h?
u(s)x

−s,ηk)+
1

2iπ

Z 1+i∞

1−i∞
h?

u(s)x
−s ds. (13)

Some care is to be exerted in estimations since uniformity with respect to the parameter u is required.
The residues are given by

Res(h?
u(s)x

−s,ηk) =
1

log2
x−ηk Γ(ηk)

(
(1+u)−ηk − (2+u)−ηk

)
(k ∈ Z6=0)

Res(h?
u(s)x

−s,0) =
1

log2
log
(

2+u
1+u

)
(k = 0).

As regards their sum in (13), we note the inequality, valid for ℜ(s)≥ 0,

|(1+u)−s− (2+u)−s|= |e−s log(1+u)− e−s log(2+u)| ≤ |s|
∣∣∣∣log

(
2+u
1+u

)∣∣∣∣ (14)

(verified by writing the difference as the integral of its derivative, then bounding the derivative), and its
companion, valid for s = ηk (to be used for u close to 0)∣∣((1+u)−s− (2+u)−s)∣∣≤ 1

2
|s|u, (15)

verified by the strict decrease of u 7→ |(1 + u)−s − (2 + u)−s|/u. As a consequence, one obtains the two
simultaneously valid bounds

∣∣∣∣∣∑k∈Z
Res(h?

u(s)x
−s,ηk)− log2

(
2+u
1+u

)∣∣∣∣∣≤


π

(log2)2 u ∑
k∈Z,k 6=0

|kΓ(ηk)|

2π

(log2)2 log
(

2+u
1+u

)
∑

k∈Z,k 6=0
|kΓ(ηk)| ,

out of which one extracts, with ε0 ' 7 ·10−6:∣∣∣∣∣∑k∈Z
Res(h?

u(s)x
−s,ηk)− log2

(
2+u
1+u

)∣∣∣∣∣≤
 ε0u if u≤ 1

2ε0 log
(

2+u
1+u

)
if u > 1. (16)
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Next, we turn to the integral remainder in (13). By the inequality of (14), one has uniformly∣∣∣∣Z 1+i∞

1−i∞
h?

u(s)x
−sds

∣∣∣∣≤ 1
x

log
(

2+u
1+u

)Z 1+i∞

1−i∞
|sΓ(s)|d|s|= O

(
1
x

)
log
(

2+u
1+u

)
. (17)

The two bounds (16) and (17) then justify the statement. �

Final asymptotics of the Poisson averages. There now remains to estimate the function H(x) of (9),
with Lemma 1 providing precise information on the integrand. Accordingly, we decompose the domain
of the integral expressing H(x),

1
x

H(x) =
Z 1

0
( f (u)+uε(x,u))m du+

Z
∞

1
f (u)m(1+2ε̃(x,u))m du+o(1)≡ A+B+o(1),

with A =
R 1

0 and B =
R

∞

1 . Here, like before, we have set f (u) := log2
( 2+u

1+u

)
.

We first estimate A by means of the inequality f (u)≤ 1−2u/5, for u ∈ [0,1]:∣∣∣∣A−Z 1

0
f (u)m du

∣∣∣∣ ≤
m

∑
k=1

(
m
k

)Z 1

0
(1−2u/5)m−k(uε0)kdu

=
Z 1

0
(1−2u/5+uε0)m− (1−2u/5)mdu

=
1

m+1
(a(ε0)−a(0)) , where a(v) =

1− (3/5+ v)m+1

2/5− v
.

Thus, upon bounding a′(v) near 0, one finds:∣∣∣∣A−Z 1

0
( f (u))m du

∣∣∣∣≤ 6.26ε0

m+1
. (18)

As regards the estimation of B, it suffices to note that, for u≥ 1, one has f (u)≤ 1/((1+u) log2) in order
to get directly: ∣∣∣∣B−Z

∞

1
f (u)m du

∣∣∣∣≤ 2
m−1

(
(1+2ε0)m−1
(2log(2))m

)
. (19)

The combination of (18) and (19) finally give us

H(x) = x
(Z

∞

0
f (u)m du+ εm(x)+o(1)

)
, (20)

where |εm(x)| < 5 · 10−5/m (for m ≥ 16). This last estimate applied to the expression (9) of Poisson
averages then concludes the proof of Proposition 2.

2.3 Analysis under the fixed-size model (depoissonization)
We can now conclude the average-case analysis of the main indicator Z by showing that the asymptotic
approximation derived for the Poisson model (Proposition 2) applies to the fixed size model, up to negli-
gible error terms. To this aim, we appeal to a technique known as “analytic depoissonization”, pioneered
by Jacquet and Szpankowski (see [19] and [23, p. 456]) and based on the saddle point method. To wit:
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Theorem (Analytic depoissonization). Let f (z) = e−z
∑ fkzk/k! be the Poisson generating function of a

sequence ( fk). Assume f (z) to be entire. Assume also that there exists a cone Sθ = {z/z = reiφ, |φ| ≤ θ}
for some θ < π

2 and a real number α < 1 such that the following two conditions are satisfied, as |z| → ∞:

C1: for z ∈ Sθ, one has | f (z)|= O(|z|),

C2: for z /∈ Sθ, one has | f (z)ez|= O(eα|z|).

Then fn = f (n)+O(1).
The use of this theorem amounts to estimating Poisson averages (the quantity f (z)), when the Poisson

rate λ≡ z is allowed to vary in the complex plane, in which case it provides a way to return asymptotically
to fixed-size estimates (the sequence fn). The Mellin technology turns out to be robust enough to allow
for such a method to be used.

Proposition 3 The expectation of the mean value of the HYPERLOGLOG indicator Z applied to a multiset
of fixed cardinality n satisfies asymptotically as n→ ∞

En(Z) = EP (n)(Z)+O(1).

Proof. We apply analytic depoissonization to the integral expression (9), which we repeat here:

EP (x)(Z) = H
( x

m

)
, where H(x) :=

Z
∞

0
G(x, t)m dt = x

Z +∞

0
G(x,xu)m du. (21)

We shall check the conditions C1,C2 of analytic depoissonization, for f (z) := H(z/m), choosing the
half-angle of the cone to be θ = π/3 and α = 3/5.

Inside the cone (Condition C1). It is sufficient to establish that H(z) = O(|z|). The bounds are obtained
via the second integral form of (21) by suitably revisiting the Mellin analysis of Subsection 2.2. Start from
Equation (13), which expresses the Poisson expectation as a sum of residues, plus a remainder integral.
When x is assigned a complex value z = reiφ, the quantity z−s satisfies, for s = σ+ iτ:

z−s =
(
r−σeτφ

)
·
(
r−iτe−iφσ

)
.

There, the second factor has modulus equal to 1, while the first remains O(r−σeπ|τ|/3) within the cone.
Then, given the fast decay of Γ(s) towards ±i∞, the series of residues in (13) is still bounded and the
remainder integral is itself O(1). Thus the main estimate stated in Lemma 1 and relative to hu(x) ≡
G(x,xu) remains valid for x = z within the cone, and the argument can be extended to show that the
asymptotic form of H(x) also holds (only the numerical bounds on the amplitude of the fluctuations need
to be weakened). As a consequence, one has H(z) = O(|z|), hence H(z/m) = O(|z|) within the cone.

Outside the cone (Condition C2). Start from the first integral in (21). We subdivide the domain accord-
ing to ℜ(z) < 0 and ℜ(z) ≥ 0. For the case ℜ(z) < 0, we set L := blog2(|z|/m)c. The definition of G
in (8) gives

G
( z

m
, t
)

= ∑
k≤L

g
( z

m2k

)
e−t/2k

+ ∑
k>L

g
( z

m2k

)
e−t/2k

,

so that ∣∣∣G( z
m

, t
)∣∣∣ ≤ ∑

k≤L
2
∣∣∣e−z/m

∣∣∣e−t/2L
+C ∑

k>L

∣∣∣ z
m2k

∣∣∣e−t/2k
,
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for some C > 0. Hence, raising to the mth power, we get

∣∣∣G( z
m

, t
)∣∣∣m ≤ 4mL

∣∣∣e−ze−m2t/|z|
∣∣∣+2mCm |z|m

mm

(
∑
k≥1

1
2k e−t/2k

)
,

where use has been made of the inequality (X +Y )m ≤ 2mXm +2mY m, valid for arbitrary X ,Y ≥ 0. Now,
since the integral

Γm :=
Z

∞

0

(
∑
k≥1

1
2k e−t/2k

)m

dt (22)

converges, we obtain, upon integrating,∣∣∣H ( z
m

)∣∣∣≤ Z +∞

0

∣∣∣G( z
m

, t
)∣∣∣m dt ≤ A

∣∣e−zz log2 |z|m
∣∣+B |zm| ,

where A and B are constants (depending on m). Consequently, for ℜ(z) < 0, we have |ezH (z/m) | =
O(eα|z|) for any α > 0, and in particular we may adopt α = 3

5 .
For the case ℜ(z)≥ 0, it suffices to note that∣∣∣G( z

m
, t
)∣∣∣≤ |z|∑

k

1
2k e−t/2k

.

Raising to the mth power and integrating, we get∣∣∣H ( z
m

)∣∣∣≤ Z
∞

0

∣∣∣G( z
m

, t
)∣∣∣m dt ≤ |z|mΓm,

with Γm as in (22), so that ∣∣∣ezH
( z

m

)∣∣∣= O(|ezzm|) = O(e|z|/2zm) = O(e3|z|/5),

since we have ℜ(z) < 1
2 |z| outside the cone. This last inequality completes the proof of the statement. �

The proof of the unbiased character of HYPERLOGLOG, corresponding to Part (i) of our main The-
orem 1, is thus essentially complete: it suffices to combine Propositions 2 and 3 giving the asymptotic
estimation of the expectation En(Z) of the indicator, in order to get the expected value of the estimator
En(E)≈ n via a simple normalization by the constant factor m2αm.

3 Variance and other stories
3.1 Variance analysis
The estimation of the variance of the indicator, namely Vn(Z) = En(Z2)−E2

n(Z), serves to justify Part (ii)
of our main Theorem 1, and hence characterizes the accuracy of HYPERLOGLOG. Since the analysis
develops along lines that are entirely parallel to those of Section 2, we content ourselves with a brief
indication of the main steps of the proof.
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The starting point is an expression of the moment of order 2 of the indicator Z under the Poisson model,

EP (λ)(Z
2) = ∑

k1,...,km≥1

(
1

∑
m
j=1 2−k j

)2 m

∏
j=1

g
(

λ

m2k j

)
, (23)

which is the analogue of (5). Then, the use of the identity

1
a2 =

Z
∞

0
te−atdt

leads to the integral form (compare with (9))

EP (λ)(Z
2) = K

(
λ

m

)
, where K(x) := x2

Z +∞

0
uG(x,xu)m du. (24)

The integral being very close to the one that represents EP (λ)(Z), the analysis of the integrand available
from Lemma 1 can be entirely recycled. We then find

K(x) = x2
(Z

∞

0
u f (u)m du+ ε

′
m(x)+o(1)

)
, (25)

where ε′(x) is a small oscillating function, implying

VP (λ)(Z) = λ
2

(Z
∞

0
u f (u)m du−

(Z
∞

0
f (u)m du

)2

+ ε
′′(λ)+o(1)

)
(26)

(with ε′′ small), which constitutes the analogue of Proposition 2.
The last estimate (26) can then be subjected to depoissonization (with a proof similar to that of Propo-

sition 3), to the effect that
Vn(Z) = VP (n)(Z)+O(n). (27)

This shows that the standard error, measured by 1
n

√
Vn(E), is, for each fixed m, asymptotic to a constant

as n → ∞, neglecting as we may tiny fluctuations. The stronger property that this constant is of the form
βm/

√
m (with βm bounded) is established in the next subsection.

3.2 Constants
There only remains to discuss the proportionality constants that determine the shapes of the bias-correction
constant αm specified in (3) and of the standard-error constant βm of the statement of Theorem 1. Define
the special integrals

Js(m) =
Z

∞

0
us f (u)m du.

We have from Equations (3) and (26)

αm =
1

mJ0(m)
, βm =

√
m

√
J1(m)
J0(m)2 −1.
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The integrals Js(m) are routinely amenable to the Laplace method [8]:
J0(m) =

2log2
m

(
1+

1
m

(3log2−1)+O(m−2)
)

J1(m) =
(2log2)2

m2

(
1+

3
m

(3log2−1)+O(m−2)
)

.
(28)

Thus the bias correction αm and the variance constant βm satisfy

αm ∼
1

2log2
.= 0.72134, βm ∼

√
3log2−1 .= 1.03896 (m→+∞), (29)

which turn out to provide good numerical approximations, even for relatively low values of m. These esti-
mates imply in particular that βm remains bounded for all m≥ 3, which concludes the proof of Theorem 1.

Additionally, we observe that the constants αm,βm belong to an interesting arithmetic class: the inte-
grals J0(m),J1(m) are expressible as rational combinations of L = log2, values of the Riemann zeta func-
tion at the integers, and polylogarithms evaluated at 1

2 . For instance: J0(2) = π2

6L2 −2, J0(3) = 3ζ(3)
4L3 −2,

and

J0(4) =
1
L4

(
4

15
π

4−π
2L2−3L4−21Lζ(3)−24Li4(

1
2
)
)

, where Lir(z) := ∑
n≥1

zn

nr .

They can thereby be computed to great accuracy.

4 Discussion
We offer here final reflections concerning an implementation of the HYPERLOGLOG algorithm (Figures 3,
4, and 5) as well as some surrounding complexity considerations.

The HYPERLOGLOG program. A program meant to cope with most practical usage conditions is de-
scribed in Figure 3. In comparison to the algorithm of Figure 2, one modification regarding initialization
and two final corrections to the estimates are introduced.

(i) Initialization of registers. In the algorithm of Figure 2, registers are initialized at −∞. This has
the advantage of leading to expressions of the average-case that are comparatively simple: see
Equations (4) and (5). However, a consequence is that the estimate E returned by the algorithm
assumes the value 0 as soon as one of the registers has been left untouched, that is, as soon as
one of the m substreams is empty. Given known fact regarding the coupon collector problem, this
means that we should expect E = 0 when n � m logm, so that the algorithm errs badly for small
cardinalities. In the program of Figure 3, we have changed the initialization of registers to 0. The
conclusions of Theorem 1, regarding the asymptotically unbiased character of the estimate, are still
applicable to the program, since all substreams are nonempty with an overwhelming probability, as
soon as n�m logm. The advantage of the modification is that we can now get usable estimates even
when n is a small multiple of m (this fact can be furthermore confirmed by Poisson approximations).
The estimates provided by the program for very small values of n (say, n a constant or n = m) can
then be effectively corrected, as we explain next.
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Let h : D →{0,1}32 hash data from D to binary 32–bit words.
Let ρ(s) be the position of the leftmost 1-bit of s: e.g., ρ(1 · · ·) = 1, ρ(0001 · · ·) = 4, ρ(0K) = K +1.
define α16 = 0.673; α32 = 0.697; α64 = 0.709; αm = 0.7213/(1+1.079/m) for m≥ 128;

Program HYPERLOGLOG (input M : multiset of items from domain D).
assume m = 2b with b ∈ [4 . .16].
initialize a collection of m registers, M[1], . . . ,M[m], to 0;

for v ∈M do
set x := h(v);
set j = 1+ 〈x1x2 · · ·xb〉2; {the binary address determined by the first b bits of x}
set w := xb+1xb+2 · · · ;
set M[ j] := max(M[ j],ρ(w));

compute E := αmm2 ·
( m

∑
j=1

2−M[ j]
)−1

; {the “raw” HyperLogLog estimate}

if E ≤ 5
2 m then

let V be the number of registers equal to 0;
if V 6= 0 then set E? := m log(m/V ) else set E? := E; {small range correction}

if E ≤ 1
30 232 then

set E? := E; {intermediate range—no correction}
if E > 1

30 232 then
set E? :=−232 log(1−E/232); {large range correction}

return cardinality estimate E? with typical relative error ±1.04/
√

m.

Fig. 3: The HYPERLOGLOG Program dimensioned for maximal cardinalities in the range [0 . .109] and for common
“practical” values m = 24, . . . ,216.

(ii) Small range corrections. For the HYPERLOGLOG program (including the modification of (i) above,
regarding register initialization), extensive simulations demonstrate that the asymptotic regime is
practically attained (without essentially affecting the nominal error of 1.04/

√
m and without de-

tectable bias) at the cardinality value n = 5
2 m, when m ≥ 16. In contrast, for n < 5

2 m, nonlinear
distortions start appearing—on the extreme side, the raw algorithm with registers initialized to 0
will invariably return the estimate αmm .= 0.7m when n = 0 (!). Thus, corrections must be brought
to the estimate, when E (i.e., n) is comparatively small with respect to m.

The solution comes from probabilistic properties of random allocations, as already exploited by the
HIT COUNTING algorithm of Whang et al. [24], whose analysis is discussed in [9, Sec. 4.3]. Say
n balls are thrown at random into m bins. Then, as it is well-known, the number of empty bins
is about me−µ, where µ := n/m. Thus, upon observing V empty bins amongst a total of m, one
may legitimately expect µ to be close to log(m/V ), that is, n must be close to m log(m/V ). (The
quality of this estimate can be precisely analysed, since exact and asymptotic forms are known for
the mean, variance, and distribution of V ; see, e.g., [21].) Here the bins are the ones associated
to the m “submultisets”, and one knows that a bin j is empty from the fact that its corresponding
register M[ j] has preserved its initial value 0. This correction is incorporated in the program of
Figure 3.

(iii) Large range corrections. For cardinalities in the range 1 . .N, with N of the order of 109, hashing
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• Traces of four typical executions showing the evolution over ideal multisets of the relative error of the estimate
produced by the HYPERLOGLOG program as a function of cardinality n, for n ≤ N and for various values of 〈N,m〉:
(top left) 〈104,256〉; (top right) 〈107,1024〉; (bottom left) 〈108,1024〉; (bottom right) 〈107,65536〉. Values of n are
plotted on a logarithmic scale.
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(The top and botton horizontal lines represent the predicted standard error, namely, ±7% for m = 256, ±3% for m = 1024, and
±0.5% for m = 65536.)

• The empirical histogram of the estimates produced by the algorithm (based on 500 and 250 simulations, respectively) and an
approximate fit by a Gaussian curve for (n,m) = (104,256), left, or (n,m) = (106,1024), right.
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Fig. 4: Simulations of the behaviour of the HYPERLOGLOG program, including the low cardinality correction, on
ideal multisets (random uniform data).
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over at least L = 32 bits should be used (232 .= 4 ·109). However, when the cardinality n approaches
(or perhaps even exceeds) 2L, then hashing collisions become more and more likely. For a randomly
chosen hash function, this effect can be modelled by a balls and bins model of the type described
in the previous paragraph, with now 2L replacing m. In other words, the quantity E of HYPER-
LOGLOG estimates the number of different hashed values, which is with high probability, about
2L(1−e−Λ), where Λ = n/2L. The inversion of that relation then gives us the approximate equation
n =−2L log(1−E/2L), which is the one used in the program.

Regarding registers, their values a priori range in the interval 0 . .L + 1− log2 m. With hashed values
of 32 bits, this means that 5 bits (“short bytes”) are sufficient to store registers (of course, standard 8–bit
bytes can also be used in some implementations). Regarding the quality of results returned, we expect
the values of the estimate returned to be approximately Gaussian, due to an averaging effect and the
Central Limit Theorem: this property is indeed well supported by the simulations of Figure 4 (bottom).
Accordingly:

Let σ ≈ 1.04/
√

m represent the standard error; the estimates provided by HYPERLOGLOG
are expected to be within σ, 2σ, 3σ of the exact count in respectively 65%, 95%, 99% of all
the cases.

In practice, the HYPERLOGLOG program is quite efficient: like the standard LOGLOG of [10] or
MINCOUNT of [16], its running time is dominated by the computation of the hash function, so that it is
only three to four times slower than a plain scan of the data (e.g., by the Unix command “wc -l”, which
merely counts end-of-lines).

Optimality considerations. The near-optimality expressed by our title results from the combination of
two facts.

(i) Clearly, maintaining ε-approximate counts till a range of N necessitates Ω(log logN) bits. Indeed,
the cardinalities should be located in an exponential scale,

1, (1+ ε), (1+ ε)2, · · · , (1+ ε)L = N,

which comprises log(1+ε) N intervals, necessitating at least log2 log(1+ε) N bits of information to be
represented.

(ii) For a wide class of algorithms based on order statistics, Chassaing and Gérin [6] have shown that
the best achievable accuracy is bounded from below by a quantity close to 1/

√
m. Our algorithm,

which can be viewed as maintaining approximate order statistics3 is, on the basis of this result only
about 4% off the information-theoretic optimum of the Chassaing-Gérin class, while using memory
units that are typically 3 to 5 times shorter.

As a final summary, the algorithm proves to be easy to code and efficient, being even nearly optimal
under certain criteria. On “real-life” data, it appears to be in excellent agreement with the theoretical
analysis, as a fact recently verified by extensive tests (see Figure 5 for a sample) conducted by Pranav
Kashyap, whose contribution is here gratefully acknowledged. The program can be applied to very diverse

3 In effect, for a multiset S of [0,1]–numbers, the quantity 2−maxS(ρ(x)) is an approximation to min(S) up to a factor at most 2.
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Fig. 5: Empirical histogram of the quality of the estimates measured by the relative errors observed, as provided
by HyperLogLog on “real-life” files. The parameter is m = 2048, corresponding to a standard error of ±2%; the
experiment has been conducted on 458 chunks of about 40,000 lines each, obtained from octal dumps of the postcript
source of a forthcoming book (Analytic Combinatorics by Flajolet and Sedgewick).

collections of data (only a “good” hash function is needed), and, once duly equipped with corrections,
it can smoothly cope with a wide range of cardinalities–from very small to very large. In addition, it
parallelizes or distributes4 optimally and can be adapted to the “sliding window” usage [7].

All in all, HYPERLOGLOG is highly practical, versatile, and it conforms well to what analysis predicts.
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