
98 January 2007/Vol. 50, No. 1 COMMUNICATIONS OF THE ACM COMMUNICATIONS OF THE ACM January 2007/Vol. 50, No. 1 73

By Sami Surakka

A small survey of Finnish IT professionals,
academics, and students has important implications for

computer science degree programs.

A

What Subjects

ccording to Cohen, Manion, and Morrison,1 triangulation is defined
in its original and literal sense as:

... a technique of physical measurement: maritime navigators, mili-
tary strategists and surveyors, for example use (or used to use) several
location markers in their endeavors to pinpoint a single spot or
objective. By analogy, triangular techniques in the social sciences
attempt to map out, or explain more fully, the richness and com-
plexity of human behavior by studying it from more than one
standpoint...

The basic idea of triangulation in navigation is presented
in the figure. A navigator uses a compass to measure

Important for
Software Developers?

and Skills are

1
Research Methods in Education, 5th Edition. L. Cohen, L. Manion, and K. Morrison. RoutledgeFarmer, London, 2000.

bridge’s results are already nine
years old.

In addition, the small (n = 24)
sample of master’s students
answered a similar survey in 2004.
The students were in the process
of graduating from the specializa-
tion in software systems at the
Helsinki University of Technol-
ogy. Obviously, the opinions of
the students are not as reliable or
convincing as the opinions of the
software developers, and the pro-
fessors and lecturers because the
students have less work experi-
ence. However, these results are
also included because this part of
the research is easy to repeat by
other institutions that use gradu-
ate exit surveys.

The main contribution of this
work is the updating of Leth-
bridge’s results. Most results of this
study are as expected. For exam-
ple, it is obvious that Web-related
subjects and skills are now evalu-
ated as being more important than
in 1998. Such changes are interest-
ing but it is also useful to know
whether certain subjects or skills
have become more or less impor-
tant, and to notice that basic sub-
jects and skills are still evaluated
as being important even though
various new technologies have
been launched during the last 10
years. The results here are useful
for training departments of com-
panies, training institutes, and
curriculum designers in universities—in particular for
those professors responsible for the specialization in
software systems in computer science programs. Stu-
dents can use the results when they are selecting elec-
tive CS courses, especially in industry-oriented
master’s programs. Finally, software developers might
want to compare their skills to the results.

The 42 items used in the questionnaires (see the
table) were selected using group work and previous
literature. Three members of the group had a doctoral
degree in CS and worked as professors or lecturers at
the Helsinki University of Technology. The purpose
was to select subjects and skills that were commonly
required in computer science programs or might be
important for software developers.

The software developers were selected using rec-
ommendations; the goal was to find 10 to 20 espe-
cially good software developers. In all, 59 people were
recommended; 40 were not invited, for several differ-
ent reasons (for example, the person had graduated
less than five years ago). Thus, 19 people were asked
to participate. From these, 11 promised to participate.
Their mean age was 37.1 years. The positions were
distributed into the following groups: senior software
engineers and developers, 45%; researchers, 27%; and
managers or directors, 27%.

For the sake of brevity, the selection and the demo-
graphics of the professors and lecturers and the demo-
graphics of the students are not presented here, but
can be found in [11].

The results are presented in the table and are
divided into the four categories used in the three ques-
tionnaires. Within each category, the rows are first
ordered according to the results from the software
developers, the second according to Lethbridge’s
results [4], and the third according to the results from
the professors and lecturers. Lethbridge’s scale of 0–5

COMMUNICATIONS OF THE ACM January 2007/Vol. 50, No. 1 7574 January 2007/Vol. 50, No. 1 COMMUNICATIONS OF THE ACM

directions called bearings
from different known loca-
tions called beacons. The
bearings are drawn as
dashed lines. Beacons can
be, for example, light-
houses, buoys, or smoke-
stacks. Two bearings are
enough to calculate the
location but a third bearing
can be used to make sure.

When triangulation is
used in educational
research, one tends to
accept or assume that a sin-
gle result is not so exact.
However, when the results from different sources are
combined, the combined results should be more
exact. In this article, the results of three different
groups—software developers, professors and lectur-
ers, and master’s students—will be presented.

Considering the wide range of IT professionals,
including consultants, database administrators, proj-
ect managers, and systems administrators, this article
has been targeted toward software developers, a term
that includes both programmers and software engi-
neers. According to Gallivan, Truex, and Kvasny [2],
“programmer” and “software engineer” were the most
common IT job titles in 2001 (proportions 21% and
16%, respectively). In particular, software developer
positions are important to education because they are
common entry-level positions. That is, graduates do
not typically start their careers as project managers or
consultants.

Eleven experienced Finnish software developers
and 19 Finnish professors or lecturers evaluated the
importance of various subjects and skills related to
software development. The research for the software
developers was conducted between November 2003
and January 2004, and for the professors and lectur-
ers in January and February 2005. Both research

efforts were Delphi stud-
ies. The Delphi technique
was originally used to
forecast the future; the
name originates from “the
oracles of Delphi,” refer-
ring to an ancient Greek
island. In a Delphi study,
the respondent group is
typically small but is com-
prised of leading experts
in the field of study. It is
assumed that the quality

of the respondents is more important than the num-
ber of respondents; that is, evaluation from a small
group of leading experts should be reliable. In the
conventional Delphi technique, several questionnaire
rounds are conducted. In this article, only some
results from the first questionnaire round are
reported. The second questionnaire round was lim-
ited to a different topic and was excluded from this
article for purposes of brevity.

The respondents evaluated the importance of 42
different subjects and skills such as discrete mathe-
matics, object-oriented programming, and project
management. The questionnaire was targeted more at
the area of software systems than in the previous sur-
veys because one purpose of this research was to col-
lect data that could be used in planning for the
specialization in software systems at the Helsinki Uni-
versity of Technology. The results were compared
against the results of Lethbridge’s survey [4–6], this
being the most relevant previous research. He ques-
tioned 186 respondents about 75 educational topics.
According to his results, the five most important top-
ics were data structures, specific programming lan-
guages, software design and patterns, requirement
gathering and analysis, and software architecture.
Topics that were taught relatively more than their
importance might warrant were physics, chemistry,
and different areas of mathematics. However, Leth-

Surakka fig 1 (1/07) - 19.5 picas

Surakka fig 1 (1/07) - 15 picas

Surakka table (1/07)

Subject or skill Software
developers

Lethbridge's
respondents

Professors
and lecturers

Master's
students

Mathematics, physics and theoretical computer
 science:
Other areas of theoretical computer science (automata) 3.3 2.3 2.9 2.1
Logic (in particular, propositional and predicate logic) 2.8 2.3 2.9 1.7
Discrete mathematics 2.6 1.9 3.1 1.7
Mathematics for continuous systems 2.0 1.7 1.7 1.3
Physics 1.6 2.0 1.5 1.1

More technical or part of the operational system:
Data structures and algorithms 3.8 3.1 3.9 3.6
Procedural programming 3.8 - 3.7 3.2
Object-oriented programming 3.6 3.0 3.9 3.8
Software architectures 3.5 3.1 3.6 3.5
Internet protocols 3.4 2.9 2.3 3.2
Script programming 3.4 - 2.8 3.1
Operating systems 3.3 3.0 3.7 3.0
Systems programming 3.2 2.8 2.9 2.6
Computer/data security 3.2 2.3 3.0 3.0
Distributed systems 3.1 2.4 3.5 2.6
Compilers 3.1 2.4 3.1 2.3
Concurrent programming 3.1 - 3.5 3.1
Computer architecture 3.0 2.6 3.2 2.5
Database management systems 2.7 3.0 3.3 3.1
Implementing techniques of user interfaces 2.7 3.0 3.1 3.0
Implementing techniques of WWW systems 2.7 - 2.8 2.8
Extensible Markup Language (XML) techniques 2.7 - 2.5 3.2
Functional programming 2.6 - 2.9 2.3
Real-time systems 2.6 2.6 2.7 2.0
Embedded systems 2.5 - 2.7 2.0
Logic programming 2.3 - 2.6 1.7
Other telecommunications techniques than Internet
 protocols 2.0 2.5 2.0 2.5
Computer graphics 1.9 2.2 2.3 1.5
Artificial intelligence and knowledge engineering 1.6 1.8 2.5 1.7

Software engineering (different phases of life cycle):
Design 3.7 3.1 3.8 3.9
Implementation 3.7 - 3.9 3.7
Requirements 3.6 3.1 3.4 3.3
Test 3.5 3.0 3.8 3.3
Concept exploration 3.0 - 3.4 3.0
Approval 2.6 - 2.9 2.5
Operation and maintenance 2.5 2.7 2.9 2.4
Installation and checkout 2.3 - 2.8 2.3
Packaging and delivery 1.9 - 2.3 1.8
Retirement 1.8 - 2.3 1.7

Software engineering (possible in several phases):
Version and configuration management 3.6 3.0 3.6 3.5
Project management 3.2 3.0 3.6 3.1
Documenting 3.0 3.1 3.4 3.2

Triangulation in navigation.

The importance of
various subjects and

skills. Means from four
research projects.

Scale: 1 = Not at all
important to 4 = Very

important.

When triangulation is used in educational research,
ONE TENDS TO ACCEPT OR ASSUME THAT A
SINGLE RESULT IS NOT SO EXACT. However, when
the results from different sources are combined,
the combined results should be more exact.

bridge’s results are already nine
years old.

In addition, the small (n = 24)
sample of master’s students
answered a similar survey in 2004.
The students were in the process
of graduating from the specializa-
tion in software systems at the
Helsinki University of Technol-
ogy. Obviously, the opinions of
the students are not as reliable or
convincing as the opinions of the
software developers, and the pro-
fessors and lecturers because the
students have less work experi-
ence. However, these results are
also included because this part of
the research is easy to repeat by
other institutions that use gradu-
ate exit surveys.

The main contribution of this
work is the updating of Leth-
bridge’s results. Most results of this
study are as expected. For exam-
ple, it is obvious that Web-related
subjects and skills are now evalu-
ated as being more important than
in 1998. Such changes are interest-
ing but it is also useful to know
whether certain subjects or skills
have become more or less impor-
tant, and to notice that basic sub-
jects and skills are still evaluated
as being important even though
various new technologies have
been launched during the last 10
years. The results here are useful
for training departments of com-
panies, training institutes, and
curriculum designers in universities—in particular for
those professors responsible for the specialization in
software systems in computer science programs. Stu-
dents can use the results when they are selecting elec-
tive CS courses, especially in industry-oriented
master’s programs. Finally, software developers might
want to compare their skills to the results.

The 42 items used in the questionnaires (see the
table) were selected using group work and previous
literature. Three members of the group had a doctoral
degree in CS and worked as professors or lecturers at
the Helsinki University of Technology. The purpose
was to select subjects and skills that were commonly
required in computer science programs or might be
important for software developers.

The software developers were selected using rec-
ommendations; the goal was to find 10 to 20 espe-
cially good software developers. In all, 59 people were
recommended; 40 were not invited, for several differ-
ent reasons (for example, the person had graduated
less than five years ago). Thus, 19 people were asked
to participate. From these, 11 promised to participate.
Their mean age was 37.1 years. The positions were
distributed into the following groups: senior software
engineers and developers, 45%; researchers, 27%; and
managers or directors, 27%.

For the sake of brevity, the selection and the demo-
graphics of the professors and lecturers and the demo-
graphics of the students are not presented here, but
can be found in [11].

The results are presented in the table and are
divided into the four categories used in the three ques-
tionnaires. Within each category, the rows are first
ordered according to the results from the software
developers, the second according to Lethbridge’s
results [4], and the third according to the results from
the professors and lecturers. Lethbridge’s scale of 0–5

COMMUNICATIONS OF THE ACM January 2007/Vol. 50, No. 1 7574 January 2007/Vol. 50, No. 1 COMMUNICATIONS OF THE ACM

directions called bearings
from different known loca-
tions called beacons. The
bearings are drawn as
dashed lines. Beacons can
be, for example, light-
houses, buoys, or smoke-
stacks. Two bearings are
enough to calculate the
location but a third bearing
can be used to make sure.

When triangulation is
used in educational
research, one tends to
accept or assume that a sin-
gle result is not so exact.
However, when the results from different sources are
combined, the combined results should be more
exact. In this article, the results of three different
groups—software developers, professors and lectur-
ers, and master’s students—will be presented.

Considering the wide range of IT professionals,
including consultants, database administrators, proj-
ect managers, and systems administrators, this article
has been targeted toward software developers, a term
that includes both programmers and software engi-
neers. According to Gallivan, Truex, and Kvasny [2],
“programmer” and “software engineer” were the most
common IT job titles in 2001 (proportions 21% and
16%, respectively). In particular, software developer
positions are important to education because they are
common entry-level positions. That is, graduates do
not typically start their careers as project managers or
consultants.

Eleven experienced Finnish software developers
and 19 Finnish professors or lecturers evaluated the
importance of various subjects and skills related to
software development. The research for the software
developers was conducted between November 2003
and January 2004, and for the professors and lectur-
ers in January and February 2005. Both research

efforts were Delphi stud-
ies. The Delphi technique
was originally used to
forecast the future; the
name originates from “the
oracles of Delphi,” refer-
ring to an ancient Greek
island. In a Delphi study,
the respondent group is
typically small but is com-
prised of leading experts
in the field of study. It is
assumed that the quality

of the respondents is more important than the num-
ber of respondents; that is, evaluation from a small
group of leading experts should be reliable. In the
conventional Delphi technique, several questionnaire
rounds are conducted. In this article, only some
results from the first questionnaire round are
reported. The second questionnaire round was lim-
ited to a different topic and was excluded from this
article for purposes of brevity.

The respondents evaluated the importance of 42
different subjects and skills such as discrete mathe-
matics, object-oriented programming, and project
management. The questionnaire was targeted more at
the area of software systems than in the previous sur-
veys because one purpose of this research was to col-
lect data that could be used in planning for the
specialization in software systems at the Helsinki Uni-
versity of Technology. The results were compared
against the results of Lethbridge’s survey [4–6], this
being the most relevant previous research. He ques-
tioned 186 respondents about 75 educational topics.
According to his results, the five most important top-
ics were data structures, specific programming lan-
guages, software design and patterns, requirement
gathering and analysis, and software architecture.
Topics that were taught relatively more than their
importance might warrant were physics, chemistry,
and different areas of mathematics. However, Leth-

Surakka fig 1 (1/07) - 19.5 picas

Surakka fig 1 (1/07) - 15 picas

Surakka table (1/07)

Subject or skill Software
developers

Lethbridge's
respondents

Professors
and lecturers

Master's
students

Mathematics, physics and theoretical computer
 science:
Other areas of theoretical computer science (automata) 3.3 2.3 2.9 2.1
Logic (in particular, propositional and predicate logic) 2.8 2.3 2.9 1.7
Discrete mathematics 2.6 1.9 3.1 1.7
Mathematics for continuous systems 2.0 1.7 1.7 1.3
Physics 1.6 2.0 1.5 1.1

More technical or part of the operational system:
Data structures and algorithms 3.8 3.1 3.9 3.6
Procedural programming 3.8 - 3.7 3.2
Object-oriented programming 3.6 3.0 3.9 3.8
Software architectures 3.5 3.1 3.6 3.5
Internet protocols 3.4 2.9 2.3 3.2
Script programming 3.4 - 2.8 3.1
Operating systems 3.3 3.0 3.7 3.0
Systems programming 3.2 2.8 2.9 2.6
Computer/data security 3.2 2.3 3.0 3.0
Distributed systems 3.1 2.4 3.5 2.6
Compilers 3.1 2.4 3.1 2.3
Concurrent programming 3.1 - 3.5 3.1
Computer architecture 3.0 2.6 3.2 2.5
Database management systems 2.7 3.0 3.3 3.1
Implementing techniques of user interfaces 2.7 3.0 3.1 3.0
Implementing techniques of WWW systems 2.7 - 2.8 2.8
Extensible Markup Language (XML) techniques 2.7 - 2.5 3.2
Functional programming 2.6 - 2.9 2.3
Real-time systems 2.6 2.6 2.7 2.0
Embedded systems 2.5 - 2.7 2.0
Logic programming 2.3 - 2.6 1.7
Other telecommunications techniques than Internet
 protocols 2.0 2.5 2.0 2.5
Computer graphics 1.9 2.2 2.3 1.5
Artificial intelligence and knowledge engineering 1.6 1.8 2.5 1.7

Software engineering (different phases of life cycle):
Design 3.7 3.1 3.8 3.9
Implementation 3.7 - 3.9 3.7
Requirements 3.6 3.1 3.4 3.3
Test 3.5 3.0 3.8 3.3
Concept exploration 3.0 - 3.4 3.0
Approval 2.6 - 2.9 2.5
Operation and maintenance 2.5 2.7 2.9 2.4
Installation and checkout 2.3 - 2.8 2.3
Packaging and delivery 1.9 - 2.3 1.8
Retirement 1.8 - 2.3 1.7

Software engineering (possible in several phases):
Version and configuration management 3.6 3.0 3.6 3.5
Project management 3.2 3.0 3.6 3.1
Documenting 3.0 3.1 3.4 3.2

Triangulation in navigation.

The importance of
various subjects and

skills. Means from four
research projects.

Scale: 1 = Not at all
important to 4 = Very

important.

When triangulation is used in educational research,
ONE TENDS TO ACCEPT OR ASSUME THAT A
SINGLE RESULT IS NOT SO EXACT. However, when
the results from different sources are combined,
the combined results should be more exact.

tent analysis of job advertisements (for example,
Litecky and Arnett’s research [7]), object-oriented
programming was already very or at least relatively
important five years ago. The following are probably
explanations for the increased importance of object-
oriented programming: the complexity of modern
software systems; the evolution of object-oriented lan-
guages and tools; and the growth of the Web and use
of Java in Web applications.

I analyzed the students’, the professors and lectur-
ers,’ and software developers’ results against each other
because these three groups answered similar question-
naires during approximately the same time period and
all three groups worked in Finland. In the following
three items, the students evaluated them as being less
important and the differences were statistically signif-
icant between the students and the other two groups:
“Discrete mathematics,” “Logic (in particular, propo-
sitional and predicate logic),” and “Other areas of the-
oretical computer science (for example, automata).”
All these items refer to more mathematical subjects. A
probable explanation is the students who selected the
specialization in software systems like mathematics
less than the students who selected mathematically
more demanding specializations such as “Theoretical
Computer Science” or “Neural Networks and Signal
Processing.” The professors and lecturers evaluated
the item “Internet protocols” as being less important
than the two other groups and the differences were
statistically significant. A probable explanation is that
45% of the software developers and 20% of the stu-
dents worked for telecommunications companies. In
addition, the professors and lecturers evaluated the
item “Artificial Intelligence and Knowledge Engineer-
ing” as being more important than the two other
groups and the differences were statistically signifi-
cant. A possible explanation is that some professors
and lecturers just considered the subject to be (acade-
mically) interesting.

IMPLICATIONS FOR CS DEGREE PROGRAMS

In this article, I consider the implications of the
results only for university-level education, further
limiting the focus to the typical requirements of
accredited CS programs in the U.S., because there
are no statistics from other countries similar to the
McCauley and Manaris survey [8]. Their survey is
already four or five years old but apparently, a more
recent survey has not been conducted.2 The article
by Parnas [10] concerned the differences between
CS and software engineering (SE) programs. He
wrote “In the SE program, the priority will be use-

fulness and applicability; for the CS program it is
important to give priority to intellectual interest, to
future developments in the field, and to teaching the
scientific methods that are used in studying comput-
ers and software development.” Obviously, Leth-
bridge’s results and the present results are more
relevant to SE programs. However, I write about CS
programs and software systems specializations
because the number of SE programs is so small. As
Parnas notes, “Computer Science departments have
tried to fill the gap by including so-called ‘Systems’
or ‘Applied Computer Science’ courses in their offer-
ings.” From the different topics, I limited (for
brevity) inclusion to continuous mathematics,
physics, theoretical computer science, programming
paradigms, and the relationship between technical
and software engineering subjects and skills.

Lethbridge [5] wrote: “Because of the low impor-
tance and high forgetability of continuous mathemat-
ics and basic science, universities and colleges should
either place less emphasis on these topics or they
should teach them in a way that makes them more rel-
evant to software engineering students.” I agree with
this recommendation. The role of mathematics in
computer science education is a controversial subject
that was covered in the September 2003 issue of Com-
munications. One working group is “dedicated to pro-
moting mathematics as an important tool for
problem-solving and conceptual understanding in
computing,” [3] whether similar groups or articles
about physics exist is uncertain. However, if physics is
removed, an institution should take care that any
requirements for scientific methods are not removed
as an indirect consequence because according to
Computing Curricula 2001 (CC2001) [1], scientific
methods should be required. Still, CC2001 does not
make physics or any other natural science compulsory
because scientific methods can be taught, for example,
using laboratory experiments about the performance
of algorithms.

Based on these results, theoretical computer science
should be compulsory. McCauley and Manaris [8]
reported that in ABET/CAC accredited bachelor pro-
grams during the academic year 2001–2002, 49%
required a course on the theory of computation.
However, these results only concerned various upper-
level courses. Some institutions require theoretical
computer science on lower-level courses; that is, dur-
ing the first or second year. Based on the report, the
McCauley and Manaris survey did not ask about this
area. According to CC2001, basic logic is included in
the core topics but, for example, automata theory is
not. Based on these results, some other areas of theo-
retical computer science might be more important

COMMUNICATIONS OF THE ACM January 2007/Vol. 50, No. 1 77

was converted to a scale of 1–4 to enable comparison
of the results. Lethbridge’s items were pooled in some
cases where 2–4 of Lethbridge’s items corresponded
to one item in my questionnaires. A dash (-) indicates
that Lethbridge’s survey did not include a corre-
sponding item.

While I calculated the differences inside each
group and between the groups that were statistically
significant (p < 0.01, see [11] for details of statistical
analysis), here I focus solely on the differences
between the groups. First I discuss the differences
between the software developers and Lethbridge’s
results, since these findings are most relevant to Com-
munications readers. This discussion is followed by a
brief analysis of the differences between the software
developers, the professors and lecturers, and the stu-
dents.

Perhaps the most important recommendation in
Lethbridge’s article concerned science and continuous
mathematics. The respondents of the current study
also evaluated the importance of physics and contin-
uous mathematics as being very or quite low. The dif-
ferences between the two groups were not statistically
significant. Thus, the present research confirms Leth-
bridge’s results in this respect.

In general, Lethbridge’s respondents’ means were a
little lower than the current study respondents’ means
across the range of items (Lethbridge’s 2.6 and my
2.9). A probable explanation is that the current ques-
tionnaire asked “How important do you think the
following subjects and skills are for demanding pro-
gramming tasks?” whereas Lethbridge asked about
the usefulness of specific material during the entirety
of a respondent’s career.

Questionnaire variations could also explain the sta-
tistically significant differences between the following
items: “Data structures and algorithms,” “Design,”
“Other areas of theoretical computer science (for
example, automata),” “Requirements,” and “Version
and configuration management.” In all these items
my respondents evaluated them as being clearly more

important than Lethbridge’s respondents. It is likely
that respondents to the current questionnaire evalu-
ated theoretical computer science as being more
important because they believed theoretical tasks are
often also more demanding—or vice versa. The
importance of the items “Design,” “Requirements,”
and “Version and configuration management” is
probably greater in larger or more demanding proj-
ects. I do not have a clear explanation for the differ-
ence in the item “Data structures and algorithms.”
However, my assumption is that in more demanding
projects it is important on the one hand to be aware
of several different data structures and algorithms,
and on the other hand understand the trade-offs aris-
ing from efficiency.

Lethbridge’s survey was conducted in 1998. Since
then, the use of the Web has increased dramatically.
The number of Web sites was approximately three
million in 1998 and nine million in 2002 [9]. The
statistically significant differences in the items “Com-
puter/data security” and “Distributed systems” are
probably related to the increased use of the Web. In
these two items, Lethbridge’s respondents’ means
were smaller than the current respondents’ means.
One could argue the greater importance of “Com-
puter/data security” is partly a consequence of the ter-
rorist attacks on Sept.11, 2001. This could be a
possible explanation in the U.S., but in Finland the
most likely explanation is the increased use of the
Web. Another explanation for the difference in the
item “distributed systems” is that in Finland, telecom-
munications companies are such large employers in
the IT area that this likely had an effect on the
answers. Forty-five percent of the respondents worked
for telecommunications companies when in Leth-
bridge’s survey the proportion was 14%.

In addition, the current respondents evaluated the
item “object-oriented programming” as being more
important than Lethbridge’s respondents did. How-
ever, this difference was statistically almost significant
(p < 0.05). Based on Lethbridge’s results and the con-

76 January 2007/Vol. 50, No. 1 COMMUNICATIONS OF THE ACM

2
Personal communications with R. McCauley, Sept. 9, 2005.

Professors in charge of software systems specialization
should make sure that TECHNICAL TOPICS SUCH AS
COMPILERS AND DISTRIBUTED SYSTEMS are studied
as well as software engineering topics.

tent analysis of job advertisements (for example,
Litecky and Arnett’s research [7]), object-oriented
programming was already very or at least relatively
important five years ago. The following are probably
explanations for the increased importance of object-
oriented programming: the complexity of modern
software systems; the evolution of object-oriented lan-
guages and tools; and the growth of the Web and use
of Java in Web applications.

I analyzed the students’, the professors and lectur-
ers,’ and software developers’ results against each other
because these three groups answered similar question-
naires during approximately the same time period and
all three groups worked in Finland. In the following
three items, the students evaluated them as being less
important and the differences were statistically signif-
icant between the students and the other two groups:
“Discrete mathematics,” “Logic (in particular, propo-
sitional and predicate logic),” and “Other areas of the-
oretical computer science (for example, automata).”
All these items refer to more mathematical subjects. A
probable explanation is the students who selected the
specialization in software systems like mathematics
less than the students who selected mathematically
more demanding specializations such as “Theoretical
Computer Science” or “Neural Networks and Signal
Processing.” The professors and lecturers evaluated
the item “Internet protocols” as being less important
than the two other groups and the differences were
statistically significant. A probable explanation is that
45% of the software developers and 20% of the stu-
dents worked for telecommunications companies. In
addition, the professors and lecturers evaluated the
item “Artificial Intelligence and Knowledge Engineer-
ing” as being more important than the two other
groups and the differences were statistically signifi-
cant. A possible explanation is that some professors
and lecturers just considered the subject to be (acade-
mically) interesting.

IMPLICATIONS FOR CS DEGREE PROGRAMS

In this article, I consider the implications of the
results only for university-level education, further
limiting the focus to the typical requirements of
accredited CS programs in the U.S., because there
are no statistics from other countries similar to the
McCauley and Manaris survey [8]. Their survey is
already four or five years old but apparently, a more
recent survey has not been conducted.2 The article
by Parnas [10] concerned the differences between
CS and software engineering (SE) programs. He
wrote “In the SE program, the priority will be use-

fulness and applicability; for the CS program it is
important to give priority to intellectual interest, to
future developments in the field, and to teaching the
scientific methods that are used in studying comput-
ers and software development.” Obviously, Leth-
bridge’s results and the present results are more
relevant to SE programs. However, I write about CS
programs and software systems specializations
because the number of SE programs is so small. As
Parnas notes, “Computer Science departments have
tried to fill the gap by including so-called ‘Systems’
or ‘Applied Computer Science’ courses in their offer-
ings.” From the different topics, I limited (for
brevity) inclusion to continuous mathematics,
physics, theoretical computer science, programming
paradigms, and the relationship between technical
and software engineering subjects and skills.

Lethbridge [5] wrote: “Because of the low impor-
tance and high forgetability of continuous mathemat-
ics and basic science, universities and colleges should
either place less emphasis on these topics or they
should teach them in a way that makes them more rel-
evant to software engineering students.” I agree with
this recommendation. The role of mathematics in
computer science education is a controversial subject
that was covered in the September 2003 issue of Com-
munications. One working group is “dedicated to pro-
moting mathematics as an important tool for
problem-solving and conceptual understanding in
computing,” [3] whether similar groups or articles
about physics exist is uncertain. However, if physics is
removed, an institution should take care that any
requirements for scientific methods are not removed
as an indirect consequence because according to
Computing Curricula 2001 (CC2001) [1], scientific
methods should be required. Still, CC2001 does not
make physics or any other natural science compulsory
because scientific methods can be taught, for example,
using laboratory experiments about the performance
of algorithms.

Based on these results, theoretical computer science
should be compulsory. McCauley and Manaris [8]
reported that in ABET/CAC accredited bachelor pro-
grams during the academic year 2001–2002, 49%
required a course on the theory of computation.
However, these results only concerned various upper-
level courses. Some institutions require theoretical
computer science on lower-level courses; that is, dur-
ing the first or second year. Based on the report, the
McCauley and Manaris survey did not ask about this
area. According to CC2001, basic logic is included in
the core topics but, for example, automata theory is
not. Based on these results, some other areas of theo-
retical computer science might be more important

COMMUNICATIONS OF THE ACM January 2007/Vol. 50, No. 1 77

was converted to a scale of 1–4 to enable comparison
of the results. Lethbridge’s items were pooled in some
cases where 2–4 of Lethbridge’s items corresponded
to one item in my questionnaires. A dash (-) indicates
that Lethbridge’s survey did not include a corre-
sponding item.

While I calculated the differences inside each
group and between the groups that were statistically
significant (p < 0.01, see [11] for details of statistical
analysis), here I focus solely on the differences
between the groups. First I discuss the differences
between the software developers and Lethbridge’s
results, since these findings are most relevant to Com-
munications readers. This discussion is followed by a
brief analysis of the differences between the software
developers, the professors and lecturers, and the stu-
dents.

Perhaps the most important recommendation in
Lethbridge’s article concerned science and continuous
mathematics. The respondents of the current study
also evaluated the importance of physics and contin-
uous mathematics as being very or quite low. The dif-
ferences between the two groups were not statistically
significant. Thus, the present research confirms Leth-
bridge’s results in this respect.

In general, Lethbridge’s respondents’ means were a
little lower than the current study respondents’ means
across the range of items (Lethbridge’s 2.6 and my
2.9). A probable explanation is that the current ques-
tionnaire asked “How important do you think the
following subjects and skills are for demanding pro-
gramming tasks?” whereas Lethbridge asked about
the usefulness of specific material during the entirety
of a respondent’s career.

Questionnaire variations could also explain the sta-
tistically significant differences between the following
items: “Data structures and algorithms,” “Design,”
“Other areas of theoretical computer science (for
example, automata),” “Requirements,” and “Version
and configuration management.” In all these items
my respondents evaluated them as being clearly more

important than Lethbridge’s respondents. It is likely
that respondents to the current questionnaire evalu-
ated theoretical computer science as being more
important because they believed theoretical tasks are
often also more demanding—or vice versa. The
importance of the items “Design,” “Requirements,”
and “Version and configuration management” is
probably greater in larger or more demanding proj-
ects. I do not have a clear explanation for the differ-
ence in the item “Data structures and algorithms.”
However, my assumption is that in more demanding
projects it is important on the one hand to be aware
of several different data structures and algorithms,
and on the other hand understand the trade-offs aris-
ing from efficiency.

Lethbridge’s survey was conducted in 1998. Since
then, the use of the Web has increased dramatically.
The number of Web sites was approximately three
million in 1998 and nine million in 2002 [9]. The
statistically significant differences in the items “Com-
puter/data security” and “Distributed systems” are
probably related to the increased use of the Web. In
these two items, Lethbridge’s respondents’ means
were smaller than the current respondents’ means.
One could argue the greater importance of “Com-
puter/data security” is partly a consequence of the ter-
rorist attacks on Sept.11, 2001. This could be a
possible explanation in the U.S., but in Finland the
most likely explanation is the increased use of the
Web. Another explanation for the difference in the
item “distributed systems” is that in Finland, telecom-
munications companies are such large employers in
the IT area that this likely had an effect on the
answers. Forty-five percent of the respondents worked
for telecommunications companies when in Leth-
bridge’s survey the proportion was 14%.

In addition, the current respondents evaluated the
item “object-oriented programming” as being more
important than Lethbridge’s respondents did. How-
ever, this difference was statistically almost significant
(p < 0.05). Based on Lethbridge’s results and the con-

76 January 2007/Vol. 50, No. 1 COMMUNICATIONS OF THE ACM

2
Personal communications with R. McCauley, Sept. 9, 2005.

Professors in charge of software systems specialization
should make sure that TECHNICAL TOPICS SUCH AS
COMPILERS AND DISTRIBUTED SYSTEMS are studied
as well as software engineering topics.

than logic. However, the questionnaires described
here were not detailed enough to conclude what kind
of theoretical computer science should be taught to
CS students. Valmari [12] has written about
CC2001: “In my opinion, the suggested content of
discrete structures is small and partly poorly chosen.
Instead of combinatorics and graphs there could be,
for example, the theory of structure of clauses, BNF,
constructing and analysis of definitions, or basic
mathematics for reactivity and concurrency.”

The five programming paradigms are imperative
programming, functional programming, object-ori-
ented programming, logic programming and con-
straint logic programming, and concurrent/
distributed computing. Based on the results of this
study, the order of importance for these five para-
digms is the following:

1. Imperative programming and object-oriented
programming (these two paradigms tied for first
place);

3. Concurrent/distributed computing;
4. Functional programming; and
5. Logic programming and constraint logic pro-

gramming.

McCauley and Manaris [8] reported that in
ABET/CAC accredited bachelor programs during
the academic year 2001–2002, 31% taught proce-
dure-oriented and 36% taught object-oriented para-
digm as the primary paradigm and the most
common primary programming languages used were
C++ (53%), Java (51%), and C (22%). The match
between the curricula and the results of this study is
good because the two most important paradigms
were well covered. In addition, they reported how
often various upper-level courses were required.
Here, only the results concerning concurrent/distrib-
uted computing are presented because based on the
results of this study, it is the third important para-
digm. Their report had no results related to distrib-
uted systems and concurrent programming courses.
However, 96% of the departments required an oper-
ating systems course. It is common that concurrency
is part of an operating systems course. Thus, it is pos-
sible but not certain that the situation is good for the
third important paradigm, too. I do not emphasize
requiring concurrent programming and distributed
systems in all CS bachelor programs, since not every
undergraduate student is aiming to get software
development positions. Based on the results of this
study, concurrent programming and distributed sys-
tems are suitable compulsory topics for a specializa-
tion in software systems in a master’s program.

Finally, professors in charge of software systems
specialization should make sure that technical topics
such as compilers and distributed systems are studied
as well as software engineering topics. Obviously,
technical topics should be emphasized more when
specializing in software systems. However, omitting
software engineering topics altogether might be a mis-
take because many software engineering topics were
evaluated as being important.

References
1. Engel, G., and Roberts, E., Eds. Computing curricula 2001. Computer

science. IEEE and ACM; www.acm.org/education/curric_vols/
cc2001.pdf (accessed Sept. 18, 2006).

2. Gallivan, M., Truex III, D.P., and Kvasny. L. An analysis of the chang-
ing demand patterns for information technology professionals. In Pro-
ceedings of SIGCRP’02 (Kristiansand, Norway, May 14–16, 2002).

3. Henderson, P.B., Baldwin, D., Dasigi, V., Dupras, M., Fritz, S.J.,
Ginat, D. Goelman, D., Hamer, J., Hitchner, L., Lloyd, W., Marion,
B. Jr., Riedesel, C., and Walker, H. Striving for Mathematical Think-
ing. SIGCSE Bulletin 33, 4 (2001), 114–124.

4. Lethbridge, T.C. The relevance of education to software practitioners:
Data from the 1998 survey. Technical Report TR-99-06 Rev. 2
(1999). University of Ottawa, Computer Science; www.site. uot-
tawa.ca/~tcl/edrel/EdrelTechReport.doc (accessed Nov. 8, 2002)

5. Lethbridge, T.C. What knowledge is important to a software profes-
sional? Computer (May 2000), 44–50.

6. Lethbridge, T.C. Priorities for the education and training of software
engineers. Journal of Systems and Software 53, 1 (2000), 53–71.

7. Litecky, C. and Arnett, K.P. An update on measurement of IT job
skills for managers and professionals. In Proceedings of the 7th Americas
Conference on Information Systems (Boston, MA, Aug. 2001),
1922–1924.

8. McCauley, R. and Manaris, B. Comprehensive report on the 2001 sur-
vey of departments offering CAC -accredited degree programs. Tech-
nical Report CoC/CS TR# 2002-9-1 (2002). Department of
Computer Science, College of Charleston; stono.cs.cofc.edu/
~mccauley/survey/report2001/CompRep2001.pdf (accessed Feb. 11,
2004).

9. OCLC Online Computer Library Center; wcp.oclc.org/stats/size.htm
(accessed June 4, 2004).

10. Parnas, D.L. Software engineering programs are not computer science
programs. IEEE Software (Nov.–Dec. 1999), 19–30.

11. Surakka, S. Needs assessment of Software Systems graduates. Doctoral
Dissertation. Helsinki University of Technology, Department of Com-
puter Science and Engineering, TKK-TKO-A43;
lib.tkk.fi/Diss/2005/isbn9512279517/.

12. Valmari, A. The need for mathematics in software development.
Arkhimedes 2 (2001), 18–22. (In Finnish.)

Sami Surakka (sami.surakka@hut.fi) is a lecturer in the
Department of Computer Science and Engineering at the Helsinki
University of Technology, Finland.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/0100 $5.00

78 January 2007/Vol. 50, No. 1 COMMUNICATIONS OF THE ACM

