PRIMENESS OF THE ENVELOPING ALGEBRA
OF HAMILTONIAN SUPERALGEBRAS

MARK C. WILSON

ABSTRACT. In 1990 Allen Bell presented a sufficient condition for
the primeness of the universal enveloping algebra of a Lie superal-
gebra. Let @ be a nonsingular bilinear form on a finite-dimensional
vector space over a field of characteristic zero. In this paper we
show that Bell’s criterion applies to the Hamiltonian Cartan type
superalgebras determined by @), and hence obtain some new prime
noetherian rings.

1. INTRODUCTION

Let L = L, + L_ be a finite-dimensional Lie superalgebra over a
field of characteristic zero, and let U(L) be its universal associative
enveloping (super)algebra. In [Bel90] Bell gave the following simple
criterion for primeness of U(L). Let {fi,..., f,} be a basis for the odd
part L_ of L. Form the product matriz M = ([fi, f;]), considered as a
matrix over the symmetric algebra S(Ly). If det M # 0 then U(L) is
prime.

The primeness question for enveloping algebras of the classical simple
Lie superalgebras has been settled completely in [Bel90] and [KIK96].
An investigation into the applicability of Bell’s criterion to the Cartan
type Lie superalgebras was begun in [Wil96], continued in [WPW] and
is concluded in this paper and [WP].

Here it is shown that the Hamiltonian algebras H(Q) and H(Q)
satisfy Bell’s criterion. This immediately gives

Theorem. Let K be a field of characteristic zero, let n > 4 and let
Q be a nonsingular bilinear form on a K-vector space of dimension n.

Then U(H(Q)) and U(H(Q)) are prime. O
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As a consequence of the results of the above-mentioned papers we
have the following theorem.

Theorem. Let L be a finite-dimensional simple Lie superalgebra over
an algebraically closed field of characteristic zero. Then L satisfies
Bell’s criterion, and hence U(L) is prime, unless L is of one of the
types: b(n) for n > 3; W(n) for odd n > 5; S(n) for odd n > 3. O

2. THE HAMILTONIAN SUPERALGEBRAS

Good references for basic facts about Lie superalgebras are [KacT77]
and [Sch79].

Let K be a field of characteristic zero, n a positive integer and V" an n-
dimensional K-vector space. Let A = A(V) be the Grassmann algebra
of V. Recall that A is an associative Z-graded superalgebra. Fix a basis
{v1,...,v,} for V. For each ordered subset I = {iy,iy,...,i,} of N =
{1,2,...,n} with iy < iy < -+ < i,, let v; be the product vy, v, -+ -v;, .
The set of all such v; forms a basis for A, where we interpret 1 = vy
as the empty product, and the homogeneous component A, is spanned
by the vy with |I| = r. The anticommutativity of multiplication in A
implies that

(1)

:tU[UJ 1fIﬂJ:@,
vvy =
7o it 1N #0.

The algebra W = W (V) is the Z-graded Lie superalgebra consisting
of all superderivations of A. Every element of W maps V into A and
since it is a superderivation it is completely determined by its action
on the generating subspace V. It follows that W can be identified with
A @ V* and we shall henceforth do so.

Under this identification the map 9; = 9/9,, corresponds to the dual
of v; which we shall also denote 0;. The set of all v; ® 9; is then a
homogeneous basis for W, the degree of such an element being equal
to [I] — 1.

For each symmetric bilinear form @ on V' there are subalgebras of W
denoted by H(Q) and H(Q). Their (rather complicated) definition can
be found in [Sch79, page 194] or [Kac77, section 3.3.2. If we extend K
to its algebraic closure then all such algebras become isomorphic to the
algebra H(n) (respectively H(n)) defined below. Since Bell’s criterion
holds over a given field if and only if it holds over the algebraic closure
of that field, it is sufficient to verify the criterion for the algebras H(n)
and H(n).
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We now recall some basic facts about the Hamiltonian superalgebras.
The subspace of W spanned by all superderivations of the form
Dy= Y di(\) @ a;,
iEN
where A € A, is a Lie superalgebra called H = H(n). H inherits a
natural Z-grading from W and we have

n—2
H= & H,.
r=—1
The subalgebra H = H(n) = @"-, H, = [H, H| is a simple Lie
superalgebra of Cartan type.
The homogeneous component H, is isomorphic as a vector space (in
fact as an Hy-module) to A, 5 via Dy — A. Thus the superderivations
x; = D,,, where § # I C N, form a basis for H, and dim H, = (T$2).

3. COMPUTATION

It is known that the multiplication in H satisfies
[D)" D/},] = j:D{)‘Hu‘}

where {\, u} = 3, 9;(N\)9;(1). Note that this differs slightly from the
notation in [Kac77], and that the exact multiplication formula is not
needed for our purposes.

It follows from (1) that 9;(v;)0;(vs) = 0 unless I N J = {i}, whence

:i:ZL'[AJ 1f|]ﬂJ|:1,
[301730J] = .
0 otherwise

(2)

where A denotes the symmetric difference (Boolean sum). Since A is
the addition in the usual Boolean ring structure on the power set of
N, this implies that for a given A, C N, the equation [z, x;] = +x4
has at most one solution for J. This solution exists precisely when
AAI # 0, that is when I A and A € I. Furthermore if || is odd
and |A| even then |J| = |A|+|I|—2|INA] is necessarily odd. Thus every
even x4 appears (perhaps with a minus sign) in the product matrix,
and each such x4 appears at most once in each row or column.

3.1. n even.

Theorem 3.1. Let n > 4 be an even integer. Then H(n) and H(n)
satisfy Bell’s criterion.
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Proof. Write n = 2m. The highest odd degree occurring in H and H
is n — 3. It follows that if we group the basis elements x; by increasing
degree, then the product matrices for both H and H are the same and
that this common matrix has the block reverse triangular structure

H,L,l Hfl,l N e H,Ln,?,
Hy Hyy ... Hins 0
H, 34 0 - 0 0

where H, , is the block formed by the products of elements of degree r
with those of degree s. Furthermore each block on the reverse diagonal
is square, since if r+s = n—4 then dim H, = (Ti2> = (312) = dim H,.
The product matrix is nonsingular if and only if each of these blocks
is nonsingular.

Fix such a reverse diagonal block H, ; corresponding to products of
elements of degree r by those of degree s = n —4 — r. Using the
identification of H,,_4 with A,_, we can index the basis elements of
H,_4 by their (ordered) 2-element complements, for example y;3 =
Tan\{1,3)- We now make the specialization which sends y;; to 0 unless
j—1 =m, and call the m remaining variables z; = y11, ..., Zm = Y-
For each i let i' =i+ m (mod n). Note that (i) =i and 2; = zy. The
image B of the block H,, under this specialization is a matrix whose
only possibilities for nonzero entries are £z; for some i.

We shall obtain a further block decomposition of B. Replacing all
nonzero elements of B by 1’s we obtain a (0,1) matrix which is the
adjacency matrix of a unique graph G = G(B). In other words, G
has vertices the x; and an edge joining x; and x; if and only if the
product [x, ;] remains nonzero under our specialization above. If for
simplicity we label the vertex corresponding to x; by I, there is an edge
in G joining I to J if and only if [x7,x;] = £2; for some i. We shall
say that in this case I and .J are joined by an edge of colour i.

Finding a block decomposition of B is equivalent to decomposing
G into disjoint subgraphs, which we now proceed to do. Fix ¢ € N.
We determine exact conditions on I and .J for there to exist an edge
of colour i joining them. It follows from (2) that this occurs if and
only if either I NJ = {i} and TUJ = N\ {i'}, or INJ = {i'} and
I'uJ = N\ {i}. Thus there is an edge of colour i joining I and .J if
and only if ||+ |J| = n, one of i or i’ belongs to both I and J and the
other belongs to neither. Furthermore, for a given I # N, there is at
most one edge of a given colour at the vertex I. Also there is at least
one edge of some colour at the vertex I: since I # N, for some 7 we
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must have i € [ and i’ & I.

We now obtain a further block decomposition of B by showing that
the set of colours occurring at a given vertex of G(B) is constant on
each component. To this end, we first show that vertices distance 2
apart have the same colours. Suppose that I and J are linked by an
edge of colour i. Then without loss of generality I N .J = {i} and
TuJ = N\{i'}. Let K be linked to J. If J and K are linked by
an edge of colour j then either {i,7'} = {j, '}, in which case K = I,
or {i,i'} N {j,7'} = 0. In the latter case we can assume J N K = {j}
and JUK = N\ {j'}. Thus ¢/ € K since i’ € JUK but ¢ ¢ J. Let
X =JU{d,j}\{4,j}. Then | X|=|J|, KnX = {i'}, KUX = N\{i}
and so K and X are linked by an edge of colour 7. Thus every colour
occurring at [ also occurs at /', and by symmetry / and K have the
same colours.

It follows that if I and J are joined by an edge then they have the
same colours, since if an edge of some colour 7 joins I and L, then .J and
L have the same colours by above and so the colour ¢ occurs at J. By
induction on the length of a path joining two vertices, the set of colours
occurring at a vertex is constant on components. This decomposes
G(B) into a union of disjoint subgraphs, each corresponding to a given
set of colours. Hence B decomposes as a direct sum of smaller blocks,
each of which is parametrized by some nonempty subset of the set of
colours.

Now fix such a block corresponding to a given set of colours. This
matrix is such that in every row and column, each variable which is
present occurs exactly once, perhaps with a minus sign. Then spe-
cializing all but one of these variables to zero we obtain a nonsingular
monomial matrix. This shows that the original product matrix for
H(n) and H(n) is nonsingular. O

The fact that the noetherian rings R = U(H) and S = U(H) are
simultaneously prime is not a surprise. The component H,_5 is 1-
dimensional, spanned by x say. Since [x, H] C [ff, ff] = H, adz
stabilizes R. When n is even then ad x is an ordinary derivation and so
S is the differential polynomial ring R[z;ad x]. It is a well-known fact
(see for example [Row88, Proposition 8.3.32]) that in this situation R
is prime if and only if S is.

3.2. n odd. This case reduces rather easily to the previous one.

Theorem 3.2. Let n > 5 be odd. Then H(n) and H(n) satisfy Bell’s
criterion.
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Proof. Let M, M be the product matrices for H(n), H(n) respectively.
The top degree n — 2 occurring in H(n) is odd, and dim H,_, = 1.
Thus M is obtained from M by adding another row and column. Since
this procedure either leaves the rank unchanged or increases the rank
by 1, it suffices to show that M is nonsingular.

We decompose M into 4 blocks as follows. Group the rows indexed
by those I for which n € I together and follow them by the rows for
which n ¢ I. Do the same for the columns. This gives an obvious 2 x 2
block structure. Make the specialization which sets all even x; with
n € I to zero. Then M specializes to a matrix of the form (¥ ). It
suffices to show that X and Y are nonsingular.

The matrix Y has entries which are the pairwise products of the x;
with I C {1,...,n—1} and hence is just a product matrix for H(n—1).
Thus Y is nonsingular by Theorem 3.1.

Now choose I with n € I. Since I # N, both I € N \ {n} and
N\ {n} € I hold and so there is precisely one J with n € J for which
[xr, x5 = +TN\{n}. Thus in X every row and column has precisely one
occurrence of £y (,}, s0 specializing to zero all variables except this
one yields a nonsingular monomial matrix. O

It is not as obvious a priori that the rings R = U(H) and S = U(H)
should be simultaneously prime. Let  span H,_5. Then [z, 2] = 22% =
0 and so S = R|x;6|/I, where 6 is the skew derivation ad x and I is
the ideal generated by z%. Obviously S prime implies R prime but
the converse for extensions of this type requires some hypothesis on 0,
usually that it be outer in some way. By arguments similar to those in
[BM86], assuming that § is outer on the symmetric Martindale quotient
ring of R should suffice. However it is not clear how to easily verify
this property.
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