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Abstract. Let
∑
β∈Nd Fβx

β be a multivariate power series. For example
∑
Fβx

β could
be a generating function for a combinatorial class. Assume that in a neighbourhood
of the origin this series represents a nonentire function F = G/Hp where G and H
are holomorphic and p is a positive integer. Given a direction α ∈ Nd+ for which the
asymptotics are controlled by a smooth point of the singular variety H = 0, we compute
the asymptotics of Fnα as n → ∞. We do this via multivariate singularity analysis
and give an explicit formula for the full asymptotic expansion. This improves on earlier
work of R. Pemantle and the second author and allows for more accurate numerical
approximation, as demonstrated by our examples.

1. Introduction

Let
∑

β∈Nd Fβx
β be a multivariate power series. For example

∑
Fβx

β could be a gener-

ating function for a combinatorial class. In [PW02, PW04] Pemantle and Wilson derived
asymptotic expansions for the coefficients Fβ as β → ∞ for large classes of series that
arise often in applications. In this article we further their program of asymptotics of
coefficients of multivariate generating functions.

Assume that in a neighbourhood of the origin the power series
∑

β∈Nd Fβx
β is the

Maclaurin series of a nonentire function F = G/Hp where G and H are holomorphic and
p is a positive integer. For example F could be a rational function. Using multivariate
singularity analysis we derive the asymptotics of Fnα for α ∈ Nd

+ and n→∞ in the case
that these asymptotics are controlled by smooth points of the singular variety H = 0.

Our presentation is organized as follows. In Section 2 we set our notation and basic
definitions. In Section 3 we give two explicit formulas for all the terms in the asymptotic
expansion of Fnα. This improves upon [PW02] which gave formulas for the leading term
only and only for the case p = 1. Furthermore, we prove that the expansions for Fnα
are uniform in α as claimed in [PW02]. In Section 4 we go on to express our formulas in
terms of the original data G and H for easier use in calculation. In Section 5 we apply
our formulas to three combinatorial examples and demonstrate the greater numerical
accuracy of many-term asymptotic expansions over single-term expansions. Lastly, in
Section 6 we present the two theorems from analysis on Fourier-Laplace integrals that we
use in our proofs.

2. Notation and definitions

Let N+ and R+ denote the set of positive natural numbers and positive real numbers,

respectively. For r ∈ R and k ∈ N = N+ ∪ {0} set rk = r(r + 1) · · · (r + k − 1), the kth

rising factorial power of r, with the convention that r0 = 1. For m ∈ N+, x ∈ Cm, and
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i ≤ m let xi denote component i of x and x̂ = (x1, . . . , xm−1). For α ∈ Nm
+ , x ∈ Cm,

and n ∈ N+ define α + 1 = (α1 + 1, . . . , αm + 1), α! = α1! · · ·αm!, nα = (nα1, . . . , nαm),
xα = xα1

1 · · ·xαmm , and ∂α = ∂α1
1 · · · ∂αmm , where ∂j is partial differentiation with respect

to component j. For c ∈ Cm let D(c) = {x ∈ Cm : ∀j ≤ m |xj| < |cj|} and C(c) =
{x ∈ Cm : ∀j ≤ m |xj| = |cj|}, the polydisc and polycircle centred at the origin with
polyradius (|c1|, . . . , |cm|), respectively. Finally, all sum indices will begin at the zero
tuple unless indicated otherwise.

Fix d ∈ N+ and let G,H : D → C be holomorphic functions on a polydisc D ⊆ Cd.
Assume that G and H are relatively prime in the ring of holomorphic functions on D. Let
p ∈ N+ and define F = G/Hp. Then F is holomorphic on D \ V , where V is the analytic
variety {x ∈ D : H(x) = 0}. By [Sch05, Example 4.1.5,Corollary 4.2.2] the variety V has
dimension d− 1 and D \V is a domain, that is, a nonempty open connected set. Assume
0 ∈ D \ V and V 6= ∅. Let

∑
β∈Nd Fβx

β be the Maclaurin series of F , so ∂βF (0)/β! = Fβ
for all β ∈ Nd.

We will derive asymptotics for Fβ as β → ∞ along straight lines through the origin
and off the axes, that is, for Fnα with α ∈ Nd

+ and n→∞. For d = 2 and β →∞ along
more general paths see [Lla06].

First we recall some key definitions from [PW02]. Just as in the univariate case, the
asymptotics for the Maclaurin coefficients of F are determined by the location and type
of singularities of F , that is, by the geometry of V . Generally the singularities closest to
the origin are the most important. We define ‘closest to the origin’ in terms of polydiscs.

Definition 2.1. Let c ∈ V . We say that c is minimal if there is no point x ∈ V such
that |xj| < |cj| for all j ≤ d. We say that c is strictly minimal if there is a unique
x ∈ V such that |xj| ≤ |cj| for all j, namely x = c, and we say that c is finitely minimal
if there are finitely many such values of x.

The variety V always contains minimal points. To see this let c ∈ V and define
f : V ∩ D(c) → R by f(x) =

√
x2

1 + · · ·+ x2
d. Since f is a continuous function on a

compact space, it has a minimum, and that minimum is a minimal point of V .
We focus on the singularities of F with the simplest geometry, namely the regular or

smooth points of V . For a summary of what is known about non-smooth points see the
survey [PW].

Definition 2.2. A point c ∈ V is called smooth if V is a smooth complex manifold in
a neighbourhood of c.

Equivalently, a point c ∈ V is smooth iff ∂jH(c) 6= 0 for some j iff cj is a zero of order
one of z 7→ H(c1, . . . , cj−1, z, cj+1, . . . , cd) for some j. See [BK86, page 363] for a proof of
the first equivalence.

We will approximate Fnα with integrals and, in so doing, will need to consider the
singularities of F relevant to α. These singularities are called critical points. For a more
geometric explanation of their relevance and the stratified Morse theory behind it see
[PW].

Definition 2.3. Let α ∈ Nd
+ and c ∈ V be a smooth point. We say that c is critical

for α if it is a solution of the system of d− 1 equations

α−1
1 x1∂1H(x) = . . . = α−1

d xd∂dH(x).
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We say c is isolated for α if, in addition, it has a neighbourhood in which it is the only
critical point for α.

When H is a polynomial, the system of d equations in d unknowns given by H(x) = 0
and the critical point equations generally has a finite set of solutions.

Remark 2.4. At times it will be convenient to work in projective space. Recall that
CPd−1 is the set of equivalences classes of Cd \{0} under the equivalence relation ∼ given
by x ∼ x′ iff x = λx′ for some λ ∈ C \ {0}. Let ¯ : Cd \ {0} → CPd−1 be the natural map
which takes a point x to its equivalence class [x].

While the definition of Fnα only makes sense for α ∈ Nd, the definition of critical point
is well-defined for all α ∈ CPd−1 with at least one nonzero component.

3. The full asymptotic expansion

Pemantle and Wilson [PW02] showed that if α ∈ Nd
+ and c ∈ V is strictly minimal,

smooth, critical and isolated for α, and nondegenerate (which we will define shortly),
then there exist bk ∈ C such that for all N ∈ N+ one has the asymptotic expansion

Fnα = c−nα

[∑
k<N

bkn
−(d−1)/2−k +O

(
n−(d−1)/2−N)]

as n→∞. They also derived a similar expansion for degenerate points in the case d = 2
and gave an explicit formula for b0 for all d when p = 1.

In this section we derive explicit formulas for all bk and all p. To formulate our results
we employ the following functions.

Definition 3.1. Let c ∈ V be smooth, and assume without loss of generality that
∂dH(c) 6= 0. By the implicit function theorem there exists a bounded neighborhood W
of ĉ and a holomorphic function h on W such that (w, h(w)) ∈ V , ∂dH(w, h(w)) 6= 0 for
all w ∈ W , and h(ĉ) = cd. Suppose cd 6= 0, so that we may also assume that h is nonzero
on W .

For j < p define uj : W → C, E : [−1, 1]d−1 → Cd−1, and ũj, h̃ : E−1(W ∩ C(c)) → C
by

uj(w) = lim
y→h(w)

(−y)−p+j
∂j

∂yj

(
(y − h(w))pF (w, y)

)
,

E(t) = (c1eit1 , . . . , cd−1eitd−1),

ũj = uj ◦ E

h̃ = h ◦ E.

Furthermore, for c critical for α define g̃ : E−1(W )→ C by

g̃(t) = log

(
h̃(t)

h̃(0)

)
+ i

∑
1≤m<d

αm
αd
tm.

Then g̃ is well-defined for any α ∈ CPd−1 with αd 6= 0 since g̃ does not depend on the

magnitude of α and since h is nonzero on W . Moreover, ũj, h̃, and g̃ are all C∞ functions.
If det g̃′′(0) 6= 0, then c is called nondegenerate.

In the context of a single pair of appropriate c and α we will use the functions of
Definition 3.1 without further introduction.
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Now for the first theorem.

Theorem 3.2. Let d ≥ 2 and α ∈ Nd
+. If c ∈ V is strictly minimal, smooth with

cd∂dH(c) 6= 0, critical and isolated for α, and nondegenerate, then for all N ∈ N,

Fnα = c−nα

[(
(2παdn)d−1 det g̃′′(0)

)−1/2 ∑
j≤p−1

∑
k<N

(αdn+ 1)p−1−j

(p− 1− j)!j!
(αdn)−kLk(ũj, g̃)(♣)

+O
(
np−1−(d−1)/2−N) ]

as n→∞.
Here

Lk(ũj, g̃) =
∑
l≤2k

Hl+k(ũj g̃
l)(t0)

(−1)k2l+kl!(l + k)!
,

g̃(t) = g̃(t)−g̃(t0)−1
2
(t−t0)g̃′′(t)(t−t0)T ,H is the differential operator−

∑
r,s(g̃

′′(t0)−1)r,s∂r∂s,

and t0 = 0. In every term of Lk(ũj, g̃) the total number of derivatives of ũ and of g̃′′ is at
most 2k.

In the case d = 2 we can drop the nondegeneracy hypothesis.

Theorem 3.3. Let d = 2 and α ∈ Nd
+. If c ∈ V is strictly minimal, smooth with

cd∂dH(c) 6= 0, critical and isolated for α, and v ≥ 2 is least such that g̃(v)(0) 6= 0, then
for all N ∈ N,

Fnα =c−nα

[
(aαdn)−1/v

πv

∑
j<p

∑
k<N

(αdn+ 1)p−1−j

(p− 1− j)!j!
(αdn)−2k/vLeven

k (ũj, g̃)(♠0)

+O
(
np−1−(2N+1)/v

) ]
,

as n→∞ for v even and

Fnα =c−nα

[
(|a|αdn)−1/v

2πv

∑
j<p

∑
k<N

(αdn+ 1)p−1−j

(p− 1− j)!j!
(αdn)−k/vLodd

k (ũj, g̃)(♠1)

+O
(
np−1−(N+1)/v

) ]
,

as n→∞ for v odd.
Here

Leven
k (ũj, g̃) =

∑
l≤2k

(−1)lΓ(2k+vl+1
v

)

l!(2k + vl)!

(
a−1/v d

dt

)2k+vl

(ũj g̃
l)(t0),

Lodd
k (ũj, g̃) =

∑
l≤k

(−1)lΓ(k+vl+1
v

)

l!(k + vl)!

(
ζk+vl+1 + (−1)k+vlζ−(k+vl+1)

)
×
(
|a|−1/vi sgn a

d

dt

)k+vl

(ũj g̃
l)(t0),
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g̃(t) = g̃(t)− g̃(t0)− a(t− t0)v, a = g̃(v)(t0)/v!, ζ = eiπ/(2v), and t0 = 0. In every term of

Leven
k (u, g) the total number of derivatives of u and g(v) is at most 2k, and in Lodd

k (u, g)
at most k.

In the formulas above we take z−1/v = |z|−1/ve−i arg z/v for z ∈ C \ {0} with arg z ∈
[−π/2, π/2].

To prove Theorems 3.2 and 3.3 we follow the same general approach as in [PW02] and
summarized in the following steps: (1) use Cauchy’s integral formula and strict minimality
to express cnαFnα as a d-variate contour integral over a contour almost touching c; (2)
expand the contour across c and use Cauchy’s residue theorem along with the smoothness
of c to express the innermost integral as a residue; (3) calculate the residue explicitly, and
take the resulting (d− 1)-variate contour integral and change to real coordinates to get a
Fourier-Laplace integral; (4) use theorems from analysis (see Section 6) to approximate
the integral asymptotically.

Lemma 3.4 ([PW02, proof of Lemma 4.1], Steps 1 & 2). Let α ∈ Nd
+ and c ∈ V . If

c is strictly minimal and smooth with cd∂dH(c) 6= 0, then there exists ε ∈ (0, 1) and a
polydisc neighborhood D of ĉ such that

Fnα = (2πi)1−d
∫
X

−R(w)

wnα̂+1
dw +O (εn)

as n → ∞, where X = D ∩ C(ĉ) and R(w) is the residue of y 7→ F (w, y)y−αdn−1 at
h(w). �

Lemma 3.5 (Step 3). In the previous lemma,

R(w) = −
∑
j<p

(αdn+ 1)p−1−j

(p− 1− j)!j!
h(w)−αdnuj(w).

Thus

cnαFnα = (2π)1−d
∑
j<p

(αdn+ 1)p−1−j

(p− 1− j)!j!

∫
eX ũj(t)e

−αdneg(t)dt+O(εn),

as n→∞, where X̃ = E−1(X).

Proof. This is a straightforward calculation. Let w ∈ X. Since c is smooth, h(w) is a
simple zero of y 7→ H(w, y) and so a pole of order p of y 7→ F (w, y). Since h is nonzero
on W , h(w) is also a pole of order p of y 7→ F (w, y)y−αdn−1. Thus

R(w) = lim
y→h(w)

1

(p− 1)!

(
∂

∂y

)p−1 (
(y − h(w))pF (w, y)y−αdn−1

)
=− 1

(p− 1)!
lim

y→h(w)

∑
j<p

(
p− 1

j

)(
∂

∂y

)j (
(y − h(w))p F (w, y)

)
× (αdn+ 1)p−1−j(−1)p−jy−αdn−p+j

=−
∑
j≤p−1

(αdn+ 1)p−1−j

(p− 1− j)!j!
h(w)−αdn lim

y→h(w)
(−y)−p+j

(
∂

∂y

)j (
(y − h(w))p F (w, y)

)
,
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from which the first identity follows by definition of uj. Thus

cnα(2πi)1−d
∫
X

−R(w)

wnα̂+1
dw

=cnα(2πi)1−d
∫
X

1

wnbα+1

∑
j≤p−1

(αdn+ 1)p−1−j

(p− 1− j)!j!
h(w)−nαduj(w)dw

=(2πi)1−d
∑
j≤p−1

(αdn+ 1)p−1−j

(p− 1− j)!j!

∫
X

ĉnbα
wnbαuj(w)

(
h(w)

h(ĉ)

)−αdn dw∏
1≤m<dwm

=(2π)1−d
∑
j≤p−1

(αdn+ 1)p−1−j

(p− 1− j)!j!

∫
eX
∏

1≤m<d

e−iαmntmũj(t)

(
h̃(t)

h̃(0)

)−αdn
dt

(via the change of variables w = E(t))

=(2π)1−d
∑
j<p

(αdn+ 1)p−1−j

(p− 1− j)!j!

∫
eX ũj(t) e−αdneg(t)dt,

which with Lemma 3.4 proves the stated formula for cnαFnα. �

Remark 3.6. In the case d = 1 Lemma 3.5 simplifies: h, uj, and R become 0-ary
functions, that is, constants (h becomes c), and there is no integral. Thus we arrive at
the following known result.

If c ∈ V is strictly minimal and smooth, then there exists ε ∈ (0, 1) such that

Fn = c−n

[∑
j<p

(n+ 1)p−1−j

(p− 1− j)!j!
uj +O (εn)

]
,

as n→∞, where

uj = lim
x→c

(−x)−p+j
(
∂

∂x

)j (
(x− c)pF (x)

)
.

Moreover, if c ∈ V is finitely minimal and smooth and every point of V ∩C(c) is smooth,
then the asymptotic expansion of Fn is the sum of the expansions around each point of
V ∩ C(c).

Before proceeding to Step 4 we collect a few technical facts about g̃.

Lemma 3.7. Let α ∈ Nd
+ and c ∈ V . If c is strictly minimal, smooth with cd∂dH(c) 6= 0,

and critical and isolated for α, then for all t ∈ X̃ we have <g̃(t) ≥ 0 with equality only
at t = 0 and g̃′(t) = 0 iff t = 0.

Proof. Firstly, g̃(0) = 0 by definition. Secondly, <g̃(t) ≥ 0 with equality only at
0 since c is strictly minimal. Lastly, by the implicit function theorem, ∂mh(w) =

−∂mH(w, h(w))/∂dH(w, h(w)) for all m < d and w ∈ W . So for t ∈ X̃ we have

∂mg̃(t) = −icmeitm
1

h(E(t))

∂mH(E(t), h(E(t)))

∂dH(E(t), h(E(t)))
+ i

αm
αd
.

Therefore g̃′(t) = 0 iff

α−1
m cm ei tm ∂mH(E(t), h(E(t))) = α−1

d h(E(t)) ∂dH(E(t), h(E(t)))

for all m < d iff (E(t), h(E(t))) is critical for α iff t = 0 since c is isolated for α. �
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Proof of Theorem 3.2 (Step 4). By Lemmas 3.4 and 3.5 there exists ε ∈ (0, 1) and an

open bounded neighbourhood X̃ of 0 such that

cnαFnα = (2π)1−d
∑
j<p

(αdn+ 1)p−1−j

(p− 1− j)!j!
Ij,n +O (εn)

as n→∞, where Ij,n =
∫ eX ũj(t)e−αdneg(t)dt.

Choose κ ∈ C∞c (X̃) such that κ = 1 on a neighbourhood Y of 0. Then

Ij,n =

∫
eX κ(t)ũj(t)e

−αdneg(t)dt+

∫
eX(1− κ(t))ũj(t)e

−αdneg(t)dt.
The second integral decreases exponentially as n → ∞ since <g̃ is strictly positive on

the compact set X̃ \ Y by Lemma 3.7. By Lemma 3.7 again and our nondegeneracy
hypothesis, we we may apply Theorem 6.1 with t0 = 0 to the first integral. Noting
that Lk(κũj, g̃) = Lk(ũj, g̃) because the derivatives are evaluated at 0 and κ = 1 in a
neighbourhood of 0, this gives

Ij,n = e−nd eg(0)

(
det

(
αdn g̃

′′(0)

2π

))−1/2 ∑
k<N

(αdn)−kLk(ũj, g̃) +O((αdn)−(d−1)/2−N)

=
(αdn

2π

)−(d−1)/2

(det g̃′′(0))
−1/2

∑
k<N

(αdn)−kLk(ũj, g̃) +O(n−(d−1)/2−N)

as n→∞. Hence

cnαFnα =(2π)1−d
∑
j<p

(αdn+ 1)p−1−j

(p− 1− j)!j!
Ij,n +O (εn)

=
∑
j<p

∑
k<N

(αdn+ 1)p−1−j

(p− 1− j)!j!

(
(2παdn)d−1 det g̃′′(0)

)−1/2

(αdn)−kLk(ũj, g̃)

+O
(
np−1−(d−1)/2−N) ,

as n→∞, as desired. �

The proof of Theorem 3.3 is similar but uses Theorem 6.2 instead of Theorem 6.1.
In the case of finitely minimal points of V we simply take an open set W for each

finitely minimal point so that W contains no other finitely minimal points, repeat the
proofs above for each such W , and add the asymptotic expansions. Thus we have the
following.

Corollary 3.8. Let α ∈ Nd
+ and c ∈ V . If c is finitely minimal and every point

of V ∩ C(c) satisfies the hypotheses (excluding strict minimality) of Theorem 3.2 or
Theorem 3.3, then the asymptotic expansion of Fnα equals the sum of the expansions
around each point of V ∩ C(c). �

Finally, we show that the asymptotic formulas for Fnα are uniform in α. This was
claimed without proof in [PW02].

Proposition 3.9. Let d ≥ 2 and K ⊆ RPd−1 be compact. Suppose that for all α ∈ K
there exists a unique c ∈ V that is strictly minimal, smooth with cd∂dH(c) 6= 0, critical
and isolated for α, and nondegenerate. Suppose that all these points c lie in a bounded
open set V ⊂ V such that xd∂dH(x) 6= 0 for all x ∈ V . Then for each N ∈ N the big-oh
constant of (♣) stays bounded as α ∈ N+ varies and α stays in K.
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Proposition 3.10. Let d = 2 and K ⊆ RP1 be compact. Suppose there exists v ≥ 2
such that for all α ∈ K there exists a unique c ∈ V that is strictly minimal, smooth with
cd∂dH(c) 6= 0, critical and isolated for α, and v is the least integer greater than 2 such
that g(v)(0) 6= 0. Suppose that all these points c lie in a bounded open set V ⊂ V such
that xd∂dH(x) 6= 0 for all x ∈ V . Then for each N ∈ N the big-oh constant of (♠0) and
(♠1) stays bounded as α ∈ N+ varies and α stays in K.

Proof of Proposition 3.9. We take up where the proof of Theorem 3.2 left off. Recall that
g̃ depends on α. Let us emphasize this dependence by writing g̃α. By Theorem 6.1 it
suffices to show that for any fixed positive integer P there exists M > 0 such that for all
α ∈ K and all β ∈ Nd−1 with |β| ≤ P we have

(♥) ||∂β g̃α||∞ = sup{|∂β g̃α(t)| : t ∈ X̃} ≤M,

where X̃ ⊂ Rd−1 is a suitable neighborhood of 0.
To prove such a bound we first show that the correspondence between a direction in

K and its critical point is continuous. To this end it will be helpful to introduce the
logarithmic Gauss map γ : V → CPd−1 defined by x 7→ [x1∂1H(x), . . . , xd∂dH(x)]. Note
that γ is well-defined since (x1∂1H(x), . . . , xd∂dH(x)) 6= 0 on V by hypothesis. Note also
that α ∈ K is critical for c iff γ(c) = α.

Since H is holomorphic on V , each ∂jH is holomorphic on V , so that γ is continuous.
By hypothesis, for every α ∈ K the preimage γ−1({α}) contains exactly one element.
Thus γ−1 : K → V is well-defined. Moreover γ−1 is continuous since γ restricted to
γ−1(K) is a continuous bijection on a compact space into a Hausdorff space and therefore
a homeomorphism.

Each α ∈ K has associated to it a point γ−1(α) ∈ γ−1(K) which has has associated
to it the functions of Definition 3.1. We now show that finitely many such functions
will do to handle all points of γ−1(K). For each c ∈ γ−1(K) let D be the polydisc from
Lemma 3.4 containing ĉ and h the nonzero holomorphic function on D associated to c.
Let D′ be a polydisc such that D′ ⊂ D′ ⊂ D. The collection of all such D′ × h(D′)
forms an open cover for the compact space γ−1(K). So this cover has a finite subcover
D′1 × h1(D′1), . . . , D′l × hl(D

′
l). Let D1, . . . , Dl be the superpolydiscs corresponding to

D′1, . . . , D
′
l. To handle the various E of Definition 3.1, define e :

∏
j≤lD

′
j × [−1, 1]d−1 →

Cd−1 by (w, t) 7→ (w1eit1 , . . . , wd−1eitd−1). Then e is continuous, and for all j the open set
e−1(Dj) contains D′j × {0}. Since D′j is compact, by the tube lemma [Mun75, Lemma

5.8] there exists a neighborhood Yj of 0 in [−1, 1]d−1 such that e−1(Dj) ⊇ D′j × Yj. Set

Y =
⋂
j≤l Yj ⊂ [−1, 1]d−1, and let X̃ be a neighborhood of 0 with X̃ ⊂ X̃ ⊂ Y . Thus to

each α ∈ K are associated some c = γ−1(α), D′j, hj, h̃j, and log
( ehj(t)ehj(0)

)
+ i
∑

m<d
αm
αd
tm =

g̃α, where the last two functions are defined on Yj and so on Y .
With this setup we now show (♥). Since Aj : Y → R for j ≤ l and B : K × Y → R

defined by Aj(t) =
∣∣∣ log

( ehj(t)ehj(0)

) ∣∣∣ and B(α, t) =
∣∣∣∑m<d

αm
αd
tm

∣∣∣ are continuous and X̃

and K are compact, we have that MA :=
∑

j≤l max{Aj(t) : t ∈ X̃} < ∞, MB :=

max{B(α, t) : α ∈ K, t ∈ X̃} <∞, and

||g̃α||∞ ≤ sup
α∈K,t∈ eXAj(t) +B(α, t) (for some j ≤ l) ≤MA +MB,

a bound that is independent of α. Similarly, since each h̃j is C∞ over Y , each ||∂βgα||∞
for |β| ≤ P stays bounded as α varies within K, as desired. �
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The proof of Theorem 3.10 is similar but uses Theorem 6.2 instead of Theorem 6.1.

4. Rewriting the expansion in terms of the original data

To actually compute with the formulas in Theorems 3.2 and 3.3 it is helpful to rewrite
the quantities involved in terms of the original data G and H. The propositions below
give formulas for calculating g̃′′(0) and uj in terms of derivatives of G and H.

Proposition 4.1 ([RWa, Theorem 3.3]). Let α ∈ Nd
+ and c ∈ V . If c is smooth with

cd∂dH(c) 6= 0 and critical for α, then for all l,m < d with l 6= m we have

g̃′′(0)lm =
clcm

c2
d(∂dH)2

×
(
∂mH∂lH + cd(∂dH∂m∂lH − ∂mH∂d∂lH − ∂lH∂m∂dH +

∂lH∂mH

∂dH
∂2
dH)

) ∣∣∣∣∣
x=c

g̃′′(0)ll =
cl∂lH

cd∂dH
+

c2
l

c2
d(∂dH)2

(
(∂lH)2 + cd(∂dH∂2

l H − 2∂lH∂d∂lH +
(∂lH)2

∂dH
∂2
dH)

) ∣∣∣∣∣
x=c

.

�

In the presence of symmetry Proposition 4.1 simplifies greatly.

Proposition 4.2 ([RWa, Proposition 3.4]). Let α ∈ Nd
+ and c ∈ V . If x 7→ H(x) is

symmetric, α has all of its components equal, and c lies in the positive orthant, is strictly
minimal, smooth with cd∂dH(c) 6= 0, and critical for α, then c has all of its components
equal and for all l,m < d with l 6= m,

g̃′′(0)lm = q, g̃′′(0)ll = 2q, and det g̃′′(0) = dqd−1,

where q = 1 + c1
∂dH

(∂2
dH − ∂1∂dH)

∣∣∣
x=c

. �

Proposition 4.3. If c ∈ V is smooth with cd∂dH(c), then for all j < p and w ∈ W we
have

uj(w) = (−h(w))−p+j lim
y→h(w)

∂j

∂yj
G(w, y)

Q(w, y)p
,

where Q : ((W × C) ∩ D) \ V → C is given by Q(w, y) = H(w,y)
y−h(w)

. Moreover,

lim
y→h(w)

∂jdQ(w, y) =
1

k + 1
∂j+1
d H(w, h(w)).

In particular,

u0(w) =
G(x)(

− h(w)∂dH(w, h(w))
)p .

Proof. The first statement is just the definition of uj.
9



Let (w, y) ∈ ((W × C) ∩ D) \ V . Then H(w, h(w)) = 0 and

Q(w, y) =
H(w, y)

y − h(w)

=
H(w, y)

y − h(w)

∞∑
n=1

∂ndH(w, h(w))

n!
(y − h(w))n

=
∞∑
n=0

∂n+1
d H(w, h(w))

(n+ 1)!
(y − h(w))n.

Therefore Q extends to a holomorphic function on (W × C) ∩ D and

lim
y→h(w)

∂jdQ(w, y) = lim
y→h(w)

∑
n≥j

n(n− 1) · · · (n− j + 1)
∂n+1
d H(w, h(w))

(n+ 1)!
(y − h(w))n−j

=
1

j + 1
∂j+1
d H(w, h(w)).

�

5. Examples

Let us apply the results of Section 3 and 4 to several combinatorial examples. We used
Maple 11 to do the calculations, and our worksheets are available at http://www.cs.

auckland.ac.nz/~raichev/research.html.
First we mention two shortcuts to finding strictly minimal points.

Proposition 5.1 ([PW, Theorem 3.16]). If the coefficients of F are all nonnegative
and there is a critical point for α, then there is a minimal critical point for α in Rd

+. �

A d-variate power series
∑
aαx

α is called aperiodic if the Z-span of {α ∈ Nd : aα 6= 0}
equals Zd.

Proposition 5.2 ([PW, Proposition 3.17]). If 1−H is aperiodic and has nonnegative
coefficients, then every minimal point of V is strictly minimal and lies in Rd

+. �

Example 5.3 (d = 2, p = 1, N = 2). Consider the bivariate generating function

F (x1, x2) =
1

1− x1 − x2 − x1x2

whose coefficients Fβ1,β2 are called Delannoy numbers and count the number of lattice
paths from (0, 0) to (β1, β2) with allowable steps (1, 0), (0, 1) and (1, 1). We compute the
first two terms of the asymptotic expansion of Fnα as n→∞ for α = (3, 2).

The critical points of V are

(−2
3

+ 1
3

√
13,−3

2
+ 1

2

√
13) and (−2

3
− 1

3

√
13,−3

2
− 1

2

√
13).

Both points are smooth and the first point, which we denote by c, is strictly minimal by
Propositions 5.2 and 5.1.

Applying the results of Sections 3 and 4, we get

Fnα =
(
c−3

1 c−2
2

)n (
b0n
−1/2 + b1n

−3/2 +O
(
n−5/2

))
as n → ∞, where c−3

1 c−2
2 ≈ 71.16220050, b0 = 133/4

√
3

156
√
π

(5 +
√

13) ≈ 0.3690602772 and

b1 = − 5·133/4
√

3
1898208

√
π
(79
√

13 + 767) ≈ −0.01853610557.
10



Comparing this approximation with the actual values of Fnα for small n (using 10-digit
floating-point arithmetic), we get the following table.

n 1 2 4 8 16

Fnα 25 1289 4.673345·106 8.527550909·1013 3.978000114·1028

c−nα(b0n−1/2) 26.26314145 1321.542224 4.732218447·106 8.581184952·1013 3.990499094·1028

c−nα(b0n−1/2 + b1n−3/2) 24.94407138 1288.354900 4.672799360·106 8.527311037·1013 3.977972633·1028

one-term relative error -0.05052565800 -0.02524610085 -0.01259771042 -0.006289501355 -0.003142026054

two-term relative error 0.002237144800 0.0005004654771 0.0001167557713 0.00002812906104 0.000006908245151

For an arbitrary α, the two-term asymptotic expansion of Fnα is just as easy to compute
symbolically in α. The corresponding constants c1, c2, a1, a2 are square roots of rational
functions of α1, α2, and

√
α2

1 + α2
2. The exact formulas are somewhat long, so we omit

them.

Example 5.4 (d = 2, p = 1, N = 5). Fix q ∈ (0, 1) and consider the bivariate
generating function

F (x1, x2) =
1− qx1

1− qx1 + qx1x2 − x2
1x2

which arises in the context of quantum random walks. Motivated by an example from
[BP], we compute the asymptotics of Fnα as n→∞ for α = (2, 1− q).

There is one critical point of V for α, namely, c := (1, 1). This point is smooth.
Explicitly solving for x2 as a function of x1 in H(x1, x2) = 0 and applying the minimum
modulus theorem shows that c is minimal. However, c is not finitely minimal, because
for every p1 ∈ C(1) there exists p2 ∈ C(1) such that (p1, p2) ∈ V . By a modification of
Lemma 3.5 described in [BP, Theorem 3.2] we may still apply Theorem 3.3 to c. Doing
so, we get

Fnα = b0 n
−1/3 + b4 n

−5/3 +O
(
n−2
)

as n → ∞, where b0 = (1−q)2/3
32/3q1/3(1+q)1/3Γ(2/3)

and b4 = − 31/6(q4+22q2+1)Γ(2/3)

280q5/3(q+1)5/3(1−q)2/3π . The n−2/3,

n−1, and n−4/3 terms are zero.
Comparing this approximation with the actual values of Fnα for small n (using 10-digit

floating-point arithmetic), we get the following table for q = 1/2.

n 2 4 8 16 32

Fnα 0.1875000000 0.1523437500 0.1221771240 0.09739671811 0.07744253816

b0n−1/3 0.1953794677 0.1550727862 0.1230813520 0.09768973380 0.07753639314

b0n−1/3 + b4n−5/3 0.1855814246 0.1519865960 0.1221092630 0.09738354495 0.07743994970
one-term relative error -0.04202382773 -0.01791367352 -0.007400959937 -0.003008476011 -0.001211930578

two-term relative error 0.01023240213 0.002344395487 0.0005554313097 0.0001352526066 0.00003342426606

Example 5.5 (d = 3, p ≤ 3, N = 2). Consider the (d+ 1)-variate generating function

W (x1, . . . , xd, y) =
A(x)

1− y B(x)
,

where A(x) = 1/
(
1 −

∑d
j=1

xj
xj+1

)
, B(x) = 1 − (1 − e1(x))A(x), and e1(x) =

∑d
i=j xj.

Using the symbolic method (as presented in [FS, Chapter 1], say) it is not difficult to
show that W counts all words over a d-ary alphabet Λ, where xj marks occurrences of
letter j of Λ and y marks occurrences of snaps, non-overlapping pairs of duplicate letters
counted from left to right. Here A(x) counts snapless words over Λ, the so-called Smirnov
words. For more details see [RWb].
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The coefficient W(n,...,n,s) is then the number of words with n occurrences of each letter
and s snaps. For n ∈ N+ let ψn be the random variable taking a word over Λ with n
occurrences of each letter and returning the number of snaps in the word. We compute
the expectation and variance of ψn as n→∞. If α = (1, . . . , 1), then

E(ψn) =

(
∂W
∂y

(x, 1)
)
nα(

W (x, 1)
)
nα

=

(
A(x)−1B(x)(1− e1(x))−2

)
nα(

(1− e1(x))−1
)
nα

E(ψ2
n) =

(
∂2W
∂y2

(x, 1) + ∂W
∂y

(x, 1)
)
nα(

W (x, 1)
)
nα

=

(
A(x)−2B(x)(B(x) + 1)(1− e1(x))−3

)
nα(

(1− e1(x))−1
)
nα

V(ψn) = E(ψ2
n)− E(ψn)2.

Let H(x) = 1 − e1(x). Then the only critical point of V is c := (1/d, . . . , 1/d), and
it is strictly minimal by Propositions 5.1 and 5.2. Applying the results of Sections 3
and 4 to F1(x) := W (x, 1) (with p = 1), F2(x) := ∂W/∂y(x, 1) (with p = 2), and
F3(x) := ∂2W/∂y2(x, 1) + ∂W/∂y(x, 1) (with p = 3) with d = 3, we obtain

E(ψn) =
[(2πn)2d]−1/2

∑
j<2

∑
k<2

(n+1)1−j

(1−j)!j! n
−kLk(ũ2,j, g̃) +O (n−2)

[(2πn)2d)]−1/2
∑

j<1

∑
k<2

(n+1)−j

(−j)j! n
−kLk(ũ2,j, g̃) +O (n−3)

=
3
√

3
8π
− 61

√
3

192π
n−1 +O (n−2)

√
3

2π
n−1 −

√
3

9π
n−2 +O (n−3)

= 3
4
n− 15

32
+O

(
n−1
)
,

E(ψ2
n) =

[(2πn)2d]−1/2
∑

j<3

∑
k<2

(n+1)2−j

(2−j)!j! n
−kLk(ũ3,j, g̃) +O (n−1)

[(2πn)2d]−1/2
∑

j<1

∑
k<2

(n+1)−j

(−j)j! n
−kLk(ũ1,j, g̃) +O (n−3)

=
9
√

3
32π

n− 35
√

3
128π

+O (n−1)
√

3
2π
n−1 −

√
3

9π
n−2 +O (n−3)

= 9
16
n2 − 27

64
n+O(1), and

V(ψn) = 9
32
n+O(1).

Comparing these approximations with the actual values for small n (using 10-digit
floating-point arithmetic), we get the following table.
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n 2 4 8

E(ψn) 1.000000000 2.509090909 5.520560294
(3/4)n 1.500000000 3 6
(3/4)n− 15/32 1.031250000 2.531250000 5.531250000

one-term relative error 0.5000000000 0.1956521740 0.08684620409
two-term relative error 0.03125000000 0.008831521776 0.001936344398

E(ψ2
n) 1.800000000 7.496103896 32.79620569

(9/16)n2 2.250000000 9 36

(9/16)n2 − (27/64)n 1.406250000 7.312500000 32.62500000
one-term relative error 0.2500000000 0.2006237006 0.09768795635

two-term relative error 0.2187500000 0.02449324323 0.005220289555

V(ψn) 0.800000000 1.200566706 2.31961973
(9/32)n 0.5625000000 1.125000000 2.250000000
relative error 0.2968750000 0.06294253008 0.03001342380

6. Asymptotics of Fourier-Laplace integrals

We conclude with the main analytic results behind the proofs of Theorems 3.2 and
3.3. Pemantle and Wilson’s approach in [PW02] and our approach here to deriving
asymptotics for the Maclaurin coefficients of F requires an asymptotic expansion for
integrals of the form ∫

X

u(t) e−ωg(t)dt

as ω → ∞, where X ⊆ Rd−1 is open and u and g are complex valued functions on X.
Pemantle and Wilson used Watson’s lemma and Morse’s lemma to prove the existence
of a full asymptotic expansion for these Fourier-Laplace integrals as they are commonly
called but gave an explicit formula for the leading term only. In contrast we use the two
theorems below which give explicit formulas for all terms.

All function spaces mentioned are complex valued.
The first theorem deals with stationary and nondegenerate points, that is, points t0

such that g′(t0) = 0 and det(g′′(t0)) 6= 0, respectively.

Theorem 6.1 ([Hör83, Theorem 7.7.5]). Let X ⊂ Rd−1 be open, u ∈ C∞c (X), and
g ∈ C∞(X). If <g ≥ 0, <g(t0) = 0, g has a unique stationary point t0 ∈ suppu, and t0
in nondegenerate, then for every N ∈ N+ there exist M > 0 such that∫

X

u(t)e−ωg(t)dt = e−ωg(t0)

(
det

(
ωg′′(t0)

2π

))−1/2 ∑
k<N

ω−kLk(u, g) +O
(
ω−(d−1)/2−N)

for ω > 0. Here Lk is the function defined in Theorem 3.2 (but without the stipulation
t0 = 0). Moreover, the big-oh constant is bounded when the partial derivatives of g up
to order 3(N + d(d− 1)/2e) + 1 all stay bounded in supremum norm over X. �

The second theorem deals with degenerate stationary points for d = 2 and is proved
by adapting Hörmander’s approach.

Theorem 6.2 ([Els, Theorem 1]). Let X ⊂ R be open, u ∈ C∞c (X), and g ∈ C∞(X).
If <g ≥ 0, <g(t0) = 0, g has a unique stationary point t0 ∈ suppu, and v ≥ 2 is least
such that g̃(v)(t0) 6= 0, then for every N ∈ N+ there exists M > 0 such that∫

X

u(t)e−ωg(t)dt = e−ωg(t0) 2(aω)−1/v

v

∑
k<N

ω−2k/vLeven
k (u, g) +O

(
ω−(2N+1)/v

)
13



for ω > 0 and v even, and∫
X

u(t)e−ωg(t)dt = e−ωg(t0) (|a|ω)−1/v

v

∑
k<N

ω−k/vLodd
k (u, g) +O

(
ω−(N+1)/v

)
for ω > 0 and v odd. Here Leven

k and Lodd
k are the functions defined in Theorem 3.3 (but

without the stipulation t0 = 0). Moreover, the big-oh constants are bounded when the
derivatives of g up to order (v + 1)(N + 1) + 1 all stay bounded in supremum norm over
X. �
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