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Abstract

We consider the problem of manipulation of elections using positional voting rules under
Impartial Culture voter behaviour. We consider both the logical possibility of coalitional
manipulation, and the number of voters that must be recruited to form a manipulating
coalition. It is shown that the manipulation problem may be well approximated by a very
simple linear program in two variables. This permits a comparative analysis of the asymp-
totic (large-population) manipulability of the various rules. It is seen that the manipulation
resistance of positional rules with 5 or 6 (or more) candidates is quite different from the
more commonly analyzed 3- and 4-candidate cases.

Key words and phrases: scoring rule, social choice, manipulation, Impartial Culture, Borda,
plurality, anti-plurality, asymptotic, probability, linear programming.

JEL Classification Numbers: D71, D72.

1 Introduction

In 1973–75 Gibbard and Satterthwaite published a fundamental impossibility theorem which
states that every non-dictatorial social choice function, whose range contains at least three al-
ternatives, at certain profiles can be manipulated by a single individual voter (Gibbard (1973),
Satterthwaite (1975)). After that, the natural question arose: if there are no perfect rules, which
ones are the best, i.e. least manipulable? To this question there can be no absolute answer –
it depends both on the behaviour of the voters, and on the measure used to quantify the term
“manipulability”.

Among models of voter behaviour, the following two have gained the most attention (Berg
and Lepelley (1994), Kelly (1993), Saari (1990)). The Impartial Culture (IC) model assumes that
voters are independent, and that each voter is equally likely to express any of the possible pref-
erence orders among the candidates. The Impartial Anonymous Culture (IAC) model assumes
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some degree of dependency among the voters. In the present paper, we consider the IC model.
This is a very challenging model for social choice rules: since no candidate is inherently favoured
by the culture, the voters’ collective expressed opinions will create (by chance alone) only slight
distinctions between candidates, and it is unlikely that there will be any clear winner. In par-
ticular, Condorcet’s Paradox occurs more frequently in IC electorates than in more realistically
distributed ones (Regenwetter et al (2006)). These features have led to criticism of the IC model
as somewhat unrealistic (see Regenwetter et al (2006)). However, the same features make IC a
useful setting in which to study manipulability, since manipulation becomes much easier when the
margin of victory is narrow, or when the victor is not a Condorcet winner. Thus, we choose IC
in order to focus on situations likely to be manipulable. A necessary caveat to this choice is that
the more manipulable parts of another distribution of profiles might not, themselves, resemble
the IC distribution.

A realistic study of manipulation would lead us into the theory of political coalitions as
canvassed in Riker (1962) and (even more qualitatively) Riker (1986). Such an approach soon
encompasses considerations (e.g. changing the nature of the issue being voted on) beyond the
reach of the mathematical simplicities of social choice theory. Instead, quantitative studies to
date have focused on rather stylized notions of manipulability. The most popular measure has
been the probability that the votes fall in such a way as to create the (coalitional or individual)
“logical possibility of manipulation”. This means that some coalition of voters (or individual
voter) with incentive to do so can change the election result by voting insincerely. Note in
particular that counterthreats are not considered – the manipulator(s) are not opposed by the
other, non-strategic voters – and so the existence of a possible manipulation does not imply its
presence in a Nash equilibrium in the game-theoretic sense. This model of manipulability has
been very widely studied (Baharad and Neeman (2002), Chamberlin (1985), Ju (2005), Kelly
(1993), Kim and Roush (1996), Lepelley and Mbih (1987, 1994), Maus et al (2007), Nitzan
(1985), Pritchard and Slinko (2006), Pritchard and Wilson (2007), Saari (1990)). For the case of
individual manipulation, some elaborations (the number of individuals who may manipulate, their
freedom to do so, and the benefit they derive therefrom) are studied in Aleskerov and Kurbanov
(1998) and Smith (1999). The positional (scoring) voting rules have been particular favourites,
and significant progress has been made in comparing them. In his seminal paper Saari (1990),
Saari showed that in his “geometric” model, Borda’s rule is the least manipulable for the three-
alternative case in relation to individual manipulation, but that this does not extend to the case
of four alternatives.

However, the mere possibility of manipulation sheds little light on the difficulty of carrying it
out. For example, how might voters come to discover who can be persuaded to vote insincerely
in order to effect a better outcome? Without going into detail concerning such a process, it is
clear that the size of the required coalition is of central importance. Intuitively, a situation is
more resistant to manipulation if many voters must be recruited to assemble the manipulating
coalition, and less resistant if only a few voters are required. In this paper, we consider the
probability that a coalition of at most k voters can manipulate (k = 1, 2, . . .). Equivalently, we
study the probability distribution of the size of the smallest manipulating coalition (a random
variable). Similar ideas are explored, in a more limited way, in Pritchard and Slinko (2006) and
Pritchard and Wilson (2007).

We use the following notation and assumptions throughout. An election is held to choose one
from among m candidates (m ≥ 3). There are n voters, who hold opinions according to the IC
model. That is, each voter is (independently) of one of the m! possible types (preference orders
on the candidates), each type being equally likely. The election uses the positional voting rule

2



with score vector w = (w1, . . . , wm), where 1 = w1 ≥ w2 ≥ · · · ≥ wm = 0. That is, a vote ranking
candidate α in ith place contributes wi to the score of α, and the candidate with the greatest
total score is declared the winner. The possibility of a tie for first place will not be considered
in this paper, as Proposition 3 makes it largely irrelevant; it is discussed in detail in Pritchard
and Wilson (2007). We aim to describe the limiting probability distribution of the minimum
manipulating coalition size as n →∞, and to use this as a criterion for comparing the rules.

The remainder of this paper is organized as follows. The next section records some basic
results regarding IC behaviour in large populations. Section 3 is the theoretical core of the paper:
it defines the manipulation problem as an integer linear program and then, through a series of
simplifications, shows how this may be replaced by a much simpler linear program. The lengthier
proofs in this section have been relegated to appendices; readers impatient to reach the main
results may wish to skip them at a first reading. The desired limiting probability distributions
are derived in section 4, and used in section 5 to compare the rules. Section 6 contains some
conclusions.

2 Asymptotic results for large electorates of IC voters

Let C be the set of candidates, and T the set of all voter types (i.e. all permutations of C). Let
N = (Nt)t∈T be the random vector giving the number of voters of each type (so

∑
t∈T Nt = n). This

vector is sometimes termed a “voting situation”. For IC voter behaviour, N has a multinomial
probability distribution with mean (n/m!)1. (Here and subsequently, the notation 1 is used to
denote a vector whose entries are all 1.) Under the asymptotic conditions of interest to us, this
may be approximated by a multivariate normal distribution.

Proposition 1.
N − np1√

n
→D N(0, Σ),

where p = 1/m!, and Σ is the m!-by-m! matrix with entries

Σst =
{

p(1− p), if s = t
−p2, if s 6= t .

Remark. Here and in the rest of this paper, the notation →D denotes convergence in distribution
(see Durrett (1996), Ch. 2). Note that the limiting multivariate normal distribution is degenerate
(Σ is a singular matrix).

Proof. Since IC voters obtain their types at random, and independently, we have N =
∑n

i=1 Xi,
where X1, . . . , Xn are independent and have probability distribution assigning probability 1/m!
to each of the unit vectors of RT . Note that E [X1] = p1 and the covariance matrix of X1 is Σ.
The result then follows by the central limit theorem (Durrett (1996), p.170).

We use the notation σt(α) for the contribution to candidate α’s score made by a vote of type t
(so if t ranks α in ith place, then σt(α) = wi). The total score of α is then

|α| =
∑
t∈T

Ntσt(α).

Let S = (|α|)α∈C be the vector of candidates’ scores (the “scoreboard”). Proposition 1 immedi-
ately gives a central limit result for S, too.
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Proposition 2.
S − nw̄1√

n
→D σw

(
m

m− 1

)1/2

(Z − Z̄1),

where w̄, σw are the mean and standard deviation of the score vector w (i.e. w̄ = (w1+· · ·+wm)/m
and σ2

w = (w2
1 + · · ·+w2

m)/m−(w̄)2); Z is a vector, indexed by C, of independent standard normal
random variables; and Z̄ = 1

m

∑
α Zα.

Proof. Let Y = (Yt)t∈T ∼ N(0, Σ). From Proposition 1 we have

S − nw̄1√
n

→D U,

where Uα =
∑

t∈T Ytσt(α). It only remains to show that U and σw

(
m

m−1

)1/2
(Z − Z̄1) have the

same multivariate normal distribution. For this, it suffices to observe that they have the same
mean (zero), variances, and covariances. It is routine to check that

Var

(∑
t∈T

Ytσt(α)

)
= σ2

w = σ2
w

(
m

m− 1

)
Var

(
Zα − Z̄

)
for α ∈ C, and for distinct α, β ∈ C

Cov

(∑
t∈T

Ytσt(α),
∑
t∈T

Ytσt(β)

)
=

−σ2
w

m− 1
= σ2

w

(
m

m− 1

)
Cov

(
Zα − Z̄, Zβ − Z̄

)
.

Proposition 2 implies that under IC behaviour in large electorates, the average candidate’s score
will be of order n, but the variability among the scores will be of order only

√
n. Consequently,

most elections will result in all candidates receiving relatively similar scores, and the margin of
victory will be small. However, exact ties in the scores become increasingly rare as the number
of voters increases. The following result establishes this formally.

Proposition 3.

P (all candidates’ scores are numerically distinct) → 1 as n →∞.

Proof. For two distinct candidates α and β, we have

{|α| 6= |β|} =

{
S − nw̄1√

n
∈ G

}
,

where G =
{
s ∈ RC : sα 6= sβ

}
. By Proposition 2 (and Durrett (1996), p.87), since G is an open

set we have

lim inf
n

P

(
S − nw̄1√

n
∈ G

)
= P

(
σw

(
m

m− 1

)1/2

(Z − Z̄1) ∈ G

)
= P (Zα 6= Zβ) = 1.

That is, P (|α| = |β|) → 0 as n →∞. The result follows since

P

 ⋃
α 6=β

{|α| = |β|}

 ≤
∑
α 6=β

P (|α| = |β|) .
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3 Approximations of the minimum manipulating coalition

size

In this section, we formulate the coalitional manipulation problem as an integer linear program.
We then show, via a series of simplifying steps, that this is well approximated by a much simpler
linear program in which there are only two variables, and in which the constraint set does not
depend on the voting situation, but only on the voting rule. We summarize the steps involved
before embarking on them:

• The problem of assembling the smallest possible manipulating coalition can be expressed
as an integer linear program, in which the variables are the numbers of voters of each type
(xt) to recruit;

• The integrality and upper bound (xt ≤ Nt) constraints of this program may be ignored
(Proposition 4).

• Only manipulations in favour of the second-placegetter need be considered (Proposition 6).

• Coalition recruiting may be limited to those voters who rank the two leading candidates a
and b adjacent (b above a), as these voters are best able to manipulate (Proposition 7).

• We may find the minimum coalition size by considering only the members’ (sincere) rankings
of a and b, without regard to how they rank other candidates (Theorem 8). This reduces
the problem to a mere linear program with m− 1 variables and two constraints.

• Replacing this linear program with its dual gives us two variables and m− 1 constraints.

In the present paper, we will consider manipulation only at profiles (or voting situations) for
which there is a sole winner a (i.e. a candidate a with |a| > |β| for each β 6= a). Henceforth,
we shall always assume that the profile at hand is of this kind. This is justified by Proposition
3 which tells us that the probability of a tied situation becomes 0 in the asymptotic limit. The
reader interested in manipulation of tied situations is referred to Pritchard and Wilson (2007).

To specify an attempted coalitional manipulation, we must specify for each t ∈ T the number
xt of coalition members who are recruited from (sincere preference) type t, as well as the number
yt of coalition members who will insincerely vote t. Of course, we must have

∑
t∈T xt =

∑
t∈T yt.

Following a manipulation attempt, the revised score of a candidate α will be

|α| −
∑
t∈T

xtσt(α) +
∑
t∈T

ytσt(α).

At a profile with sole winner a, a manipulation attempt is successful in favour of a candidate
β if (i) the coalition members all prefer β to a, and (ii) the manipulated score of β matches or
exceeds that of all other candidates, including a. (It is convenient to allow the possibility that β
ties with other candidates for the manipulated win, although in the limit this makes no difference
– requiring β to become the sole winner would not change any of our results for n →∞.)

It is clear that the coalition members need only consider insincere votes of types which rank β
in first place; this is a dominant strategy for such manipulations. Let Tβ be the set of such types.
The manipulated score of any candidate α can then be written

|α| −
∑

t∈T̄βa

xtσt(α) +
∑
t∈Tβ

ytσt(α),
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where T̄βa ⊆ T is the set of types preferring β to a. In particular, the manipulated score of β will
be

|β| −
∑

t∈T̄βa

xtσt(β) +
∑
t∈Tβ

yt.

since σt(β) = 1 for t ∈ Tβ.
The problem of constructing the smallest possible coalition (xt) and associated strategy (yt)

for successful manipulation in favour of β can then be expressed by the following optimization
problem.

min
∑

t∈T̄βa
xt

s.t.
∑

t∈Tβ
yt(1− σt(α))−∑

t∈T̄βa
xt(σt(β)− σt(α)) ≥ |α| − |β| ∀α 6= β∑

t∈Tβ
yt =

∑
t∈T̄βa

xt (1)

yt ≥ 0 ∀t ∈ Tβ

0 ≤ xt ≤ Nt ∀t ∈ T̄βa

xt, yt integer

Let Q1(β) be the value of (1) (or ∞ if (1) is infeasible). Let MCS be the minimum size of
a successful manipulating coalition (or ∞ if no manipulation is possible). For completeness of
definition, we let both of these random variables (and others we shall meet later) take the value
∞ when the voting situation N does not have a sole winner, or when β = a. Then

MCS = minβ 6=aQ1(β).

Note the last two constraints of (1) (xt ≤ Nt and xt, yt integer): voters are discrete entities
who must be recruited from among those actually available in the profile. We now aim to show
that, in the asymptotic limit of a large voting population, these constraints are unimportant and
may be dropped. This is as we should expect: each Nt will be about n/m!, while the differences
between candidates’ scores (and hence, presumably, coalition sizes) are likely to be of order only√

n. Similarly, the requirement that xt and yt be integral should not be much of a hindrance
when dealing with large numbers of voters.

To this end, let Q2(β) be the value of a linear program similar to (1), except that the constraints
xt ≤ Nt, and the integrality constraints on xt and yt, are omitted.

Proposition 4.
P (|Q1(β)−Q2(β)| ≤ K) → 1 as n →∞,

where K is a constant that depends only on the voting rule. (In this and subsequent statements,
a condition of the form |q − p| ≤ K is considered to hold if q and p are both infinite.)

Proof. See Appendix A.

Corollary 5.
P (|MCS −minβ 6=aQ2(β)| ≤ K) → 1 as n →∞

Proof. Follows immediately from the earlier observation that MCS = minβ 6=aQ1(β) .

The above result simplifies the manipulation-strategist’s task considerably. No longer is he
limited by the numbers and preferences of the voters who happen to be present in the profile at
hand. Instead, he may recruit an arbitrarily large (or even fractional) number of voters of any
preference types (in T̄βa) he finds convenient. The resulting “coalition” may be smaller than the
smallest coalition that can solve the manipulation problem as originally defined, but Corollary 5
assures us that it cannot be very much smaller.
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Example. A 3-candidate election, with 8 voters, using Borda scoring (w = (1, 1
2
, 0)), produces the

following voting situation:

2 voters have sincere preference acb (i.e. prefer a to c, and c to b);
2 voters have sincere preference abc;
3 voters have sincere preference bca;
1 voter has sincere preference cab;
no voters have preference bac or cba.

The Borda scores are |a| = 4.5, |b| = 4, and |c| = 3.5. Manipulation in favour of b is clearly
not possible (i.e. Q1(b) = ∞), because the only voters who prefer b to a already have b at the top
and a at the bottom. But manipulation in favour of c is possible, with Q1(c) = 2. The optimal
solution to (1) in this case has xbca = ycba = 2, with all other xt and yt equal to zero. That is,
two of the bca voters can insincerely vote cba, changing the result to a tie between a and c. (To
make c the sole winner, all three bca voters would have to change their vote.)

In the more relaxed Q2 sense, manipulation in favour of b becomes possible. We have Q2(b) = 1,
with an optimal solution having xcba = ybca = 1. (To make b the sole winner, we could have
xcba = ybca = 1.00001.) The absence of the constraint xcba ≤ Ncba (where Ncba = 0) effectively
allows the introduction of phantom voters who were never present in the original profile. Of
course, this makes it more likely that “manipulation” will be possible. The essential point of
Corollary 5 is that it does not become very much more likely, nor do the required coalition sizes
change by very much.

We can simplify the problem still further. Let b be a candidate with second-highest score after
a. The next result consists of the observation that only manipulations in favour of b need now be
considered.

Proposition 6. minβ 6=aQ2(β) = Q2(b).

Proof. Let (xt)t∈T̄βa
, (yt)t∈Tβ

be optimal for the problem defining Q2(β), some β 6= b. Form
(x′t)t∈T̄βa

, (y′t)t∈Tβ
by transposing β and b in all the voter types involved. (So if types s and t are

related by transposition of the ranks of β and b, then x′s = xt.) We have, for any α,∑
t∈Tb

y′t(1− σt(α))−
∑

t∈T̄ba

x′t(σt(b)− σt(α)) =
∑
t∈Tβ

yt(1− σt(α))−
∑

t∈T̄βa

xt(σt(β)− σt(α)).

Since |β| ≤ |b|, we see that (x′t), (y′t) are feasible for the problem defining Q2(b), and give the
same objective value. The result follows.

The reader should note that Proposition 6 does not hold for ordinary manipulation (i.e. with Q1

substituted for Q2), as the above example shows.

We next show that a coalition for the Q2(b) problem may always be formed by recruiting only
voters who sincerely rank b and a adjacent (with b above a). Let Ti ⊂ T consist of those types
which rank b in ith place and a in (i + 1)st place, and Tba = ∪m−1

i=1 Ti ⊂ T̄ba. If we replace T̄ba by
Tba in the linear program defining Q2(b), we obtain the linear program

min
∑

t∈Tba
xt

s.t.
∑

t∈Tb
yt(1− σt(α))−∑

t∈Tba
xt(σt(b)− σt(α)) ≥ |α| − |b| ∀α 6= b∑

t∈Tb
yt =

∑
t∈Tba

xt (2)

xt ≥ 0 ∀t ∈ Tba

yt ≥ 0 ∀t ∈ Tb

Let Q denote the optimal value of (2) (or ∞ if (2) is infeasible).
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Proposition 7. Q2(b) = Q.

Proof. For t ∈ Ti, let τ(t) ⊆ T̄ba consist of those types which (i) agree with t in ranking positions
i+1, . . . ,m; and (ii) rank the remaining candidates, other than b, in either the same position as t
does, or one place lower. Observe that {τ(t) : t ∈ Tba} is a partition of T̄ba, and that for s ∈ τ(t),
α 6= b

σt(b)− σt(α) ≤ σs(b)− σs(α).

(This implies that a voter of type s ∈ τ(t) can always be dismissed from the manipulating coalition
and replaced with one of type t.)

Let (xt)t∈T̄ba
, (yt)t∈Tb

be optimal for the problem defining Q2(b). Form (x′t)t∈Tba
by x′t =∑

s∈τ(t) xs. Then
∑

t∈Tba
x′t =

∑
s∈T̄ba

xs, and∑
t∈Tba

x′t(σt(b)− σt(α) ≤
∑

s∈T̄ba

xs(σs(b)− σs(α)).

Hence (x′t) is feasible for (2). The result follows.

Our efforts thus far have established that P (|MCS −Q| ≤ K) → 1 as n → ∞. This will
ensure that for IC asymptotic purposes, we may replace our original description of the minimum
manipulating coalition size with the more tractable problem (2).

Further simplification is possible. The manipulation strategist solving the problem (2) must
recruit voters of m− 1 basic kinds, described by the type-sets T1, . . . , Tm−1. Our next result will
show that what really matters are the numbers z1, . . . , zm−1 of voters of each basic kind recruited.
The allocation of the zi voters of the ith kind to specific types within Ti is unimportant for our
purposes. To that end, define the problem:

min
∑m−1

i=1 zi

s.t.
∑m−1

i=1 (1− wi + wi+1)zi ≥ |a| − |b| (3)∑m−1
i=1 (1− wi)zi ≥ nw̄ − |b|

zi ≥ 0 for i = 1, . . . ,m− 1

where w̄ = (w1 + · · ·+ wm)/m. Note that if zi voters of types in Ti all cast insincere votes which
rank b first, the score of b will be increased by zi(1 − wi). If they all cast insincere votes which
rank a last, the score of a will be decreased by ziwi+1. Thus, the first constraint of (3) makes it
possible for b to catch up to a. The second constraint of (3) is less intuitive: it makes it possible
for b to catch up to the average candidate’s score nw̄. This condition is clearly necessary if b is
to win; it is also (roughly speaking) sufficient to ensure that while overtaking a, b is not himself
overtaken by some third candidate. It is remarkable that these two (apparently rather weak)
linear conditions should be all that is required to describe manipulation in the IC asymptotic
limit.

Theorem 8. The linear programs (2) and (3) have the same optimal value.

Proof. See Appendix B.

Theorem 9. The linear programs (2) and (3) have the same objective value as the following one.

max (|a| − nw̄)λ + (nw̄ − |b|)µ
s.t. wi+1λ + (1− wi)µ ≤ 1 for i = 1, . . . ,m− 1 (4)

0 ≤ λ ≤ µ.

Also, (4) is unbounded if and only if (2) and (3) are infeasible.
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Proof. The linear program (3) has the same objective value as its dual program (Bazaraa (2005),
p. 251):

max (|a| − |b|)λ + (nw̄ − |b|)λ′

s.t. (1− wi + wi+1)λ + (1− wi)λ
′ ≤ 1 for i = 1, . . . ,m− 1

λ ≥ 0, λ′ ≥ 0.

Substituting µ = λ + λ′ yields (4).

Remark. We have now replaced our original description of the minimum manipulating coalition
size with the simple two-variable linear program (4). This will be exploited in the remaining
sections of the paper.

4 IC asymptotics of the minimum manipulating coalition

size

The results of the previous section have established that

P (|MCS −Q| ≤ K) → 1 as n →∞,

where
Q = max {λ(|a| − nw̄) + µ(nw̄ − |b|) : (λ, µ) ∈ Mw}

and
Mw = {(λ, µ) : 0 ≤ λ ≤ µ and wi+1λ + (1− wi)µ ≤ 1 for i = 1, . . . ,m− 1} .

Note in particular that the constraint set Mw does not depend on the voting situation, but only
on the voting rule. For a given rule, it is possible to identify the corresponding Mw (a two-
dimensional linear polytope), and then to identify the (finitely many) vertices of Mw which may
achieve the optimum Q. This often leads to an explicit expression for Q in terms of |a| and |b|.

Furthermore, we have (|a| , |b|) = (ρ1(S), ρ2(S)), where ρj(x) denotes the jth largest element
of a vector x. Proposition 2 gives us

(ρ1(S)− nw̄, nw̄ − ρ2(S))√
n

→D σw

(
m

m− 1

)1/2

(ρ1(Z)− Z̄, Z̄ − ρ2(Z)),

and so it follows that
Q√
n
→D Vw,

where

Vw = max

{
λ(ρ1(Z)− Z̄) + µ(Z̄ − ρ2(Z)) : (λ, µ) ∈ σw

(
m

m− 1

)1/2

Mw

}
.

Hence, too,
MCS√

n
→D Vw,

by the converging-together lemma (Durrett (1996), p.91). Consequently,

P
(
MCS ≤ v

√
n
)
→ gw(v) := P (Vw ≤ v) as n →∞.

That is, the asymptotic probability that the voting situation is manipulable by a coalition of v
√

n
or fewer voters is computable as a (non-decreasing) function of v. This function depends only on
the voting rule.

9



A further observation will be helpful in determining which vertices of Mw may achieve the above
maximum. If x ∈ Rm has mean element x̄ = (x1 + · · ·+ xm)/m, then

ρ1(x)− x̄ ≥ 0 and − (ρ1(x)− x̄) ≤ x̄− ρ2(x) ≤ 1

m− 1
(ρ1(x)− x̄).

We note in passing that for all rules other than the anti-plurality rule w = (1, . . . , 1, 0), Mw is a
bounded set, since the constraints defining it include (1−wm−1)µ ≤ 1. Hence Vw is a finite-valued
random variable. It follows that P (MCS = ∞) → 0 as n → ∞, a well-known result (Kim and
Roush (1996)).

The remainder of this section will be devoted to carrying out the above analysis for some common
positional voting rules.

Borda’s rule. wi = (m − i)/(m − 1) for i = 1, . . . ,m. The constraints defining Mw for this rule
are

(m− 2)λ ≤ m− 1

(m− 3)λ + µ ≤ m− 1
...

λ + (m− 3)µ ≤ m− 1

(m− 2)µ ≤ m− 1

0 ≤ λ ≤ µ

Note that the point with λ = µ = (m− 1)/(m− 2) satisfies each of the constraints with equality.
So Mw is the triangle with vertices at (0, 0), (0, m−1

m−2
), and (m−1

m−2
, m−1

m−2
); the last of these always

achieves the optimum Q. Thus, a good approximation to the minimum manipulating coalition
size is

Q =
(

m− 1

m− 2

)
(|a| − |b|).

For the corresponding asymptotic result, note that

σ2
w =

m + 1

12(m− 1)
.

It then transpires that

MCS√
n

→D
(

m(m + 1)

12(m− 2)2

)1/2

(ρ1(Z)− ρ2(Z)).

Anti-plurality rule: w = (1, . . . , 1, 0). The constraints defining Mw reduce to 0 ≤ λ ≤ 1, µ ≥ λ.
Thus

Q =
{ |a| − |b| , if |b| ≥ nw̄
∞, otherwise.

The corresponding asymptotic result is

MCS√
n

→D Vw =

{
m−1/2(ρ1(Z)− ρ2(Z)), if ρ2(Z) ≥ Z̄
∞, otherwise.

Uniquely among positional voting rules, anti-plurality may not admit the logical possibility of
manipulation even in the IC asymptotic limit. This is reflected here by the possibility that

10



Vw = ∞. As a corollary of our asymptotic result, we can find the limiting probability that an
anti-plurality election is invulnerable to manipulation:

lim
n

P (MCS = ∞) = P (Vw = ∞) = P
(
ρ2(Z) < Z̄

)
,

a result essentially contained in Kim and Roush (1996).

Plurality and k-approval rules: w = (1, . . . , 1, 0, . . . 0) (with k 1s), where 1 ≤ k ≤ m − 2. The
simple plurality rule is included here as the case k = 1. The constraints defining Mw reduce to
0 ≤ λ ≤ µ ≤ 1, so Mw is the triangle with vertices at (0, 0), (0, 1), and (1, 1); the last of these
always achieves the optimum. Thus, our approximation of the minimum manipulating coalition
size is simply

Q = |a| − |b| .

While this expression is valid for all k-approval rules (1 ≤ k ≤ m − 2), different values of k will
give rise to different probability distributions for (|a| , |b|), and so different asymptotic results for
MCS. We have w̄ = k/m and σ2

w = k(m− k)/m2, giving

MCS√
n

→D
(

k(m− k)

m(m− 1)

)1/2

(ρ1(Z)− ρ2(Z)).

Three-candidate “easy case” rules: w = (1, 1 − q, 0) where 1/2 ≤ q ≤ 1. This family includes
the 3-candidate versions of plurality voting (q = 1) and Borda’s rule (q = 1/2). The constraints
defining Mw are 0 ≤ λ ≤ µ, (1 − q)λ ≤ 1, and qµ ≤ 1. Thus Mw is the triangle with vertices at
(0, 0), (0, q−1), and (q−1, q−1); the last of these always achieves the optimum. Thus

Q = q−1(|a| − |b|).

We have σ2
w = 2(1− q + q2)/9; it follows from this that

MCS√
n

→D
(

1− q + q2

3q2

)1/2

(ρ1(Z)− ρ2(Z)).

Three-candidate “hard case” rules: w = (1, 1 − q, 0) where 0 < q ≤ 1/2. This family includes
the remaining 3-candidate positional rules not already considered. For these rules, Mw is the
quadrilateral with vertices at (0, 0), (0, q−1), ((1− q)−1, (1− q)−1), and (1− q)−1, q−1). In voting
situations with |b| ≥ nw̄, the optimum for Q is achieved at ((1 − q)−1, (1 − q)−1); otherwise,
(1− q)−1, q−1) is optimal. Thus

Q =

{
(1− q)−1(|a| − |b|), if |b| ≥ nw̄
(1− q)−1(|a| − nw̄) + q−1(nw̄ − |b|), if |b| ≤ nw̄

that is

Q = (1− q)−1(|a| − |b|) +

(
1

q
− 1

1− q

)
(nw̄ − |b|)+,

where x+ denotes max(x, 0). The corresponding asymptotic result is

MCS√
n

→D
(

1− q + q2

3

)1/2 ((
1

1− q

)
(ρ1(Z)− ρ2(Z)) +

(
1

q
− 1

1− q

)
(Z̄ − ρ2(Z))+

)
.
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Figure 1: The sets σwMw for several four-candidate positional rules, depicted at consistent scales.
The black dots show which points may be optimal.
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Figure 2: The functions gw(v) = P (Vw ≤ v) for some three- and four-candidate voting rules.

Four-candidate rules. For m ≥ 4 it would be tedious to reduce all possible cases to asymptotic
expressions of the kind above. Instead, we have simply illustrated the sets σwMw for a variety of
rules w in Figure 1. Note that σwMw may have up to 3 optimal vertices. (For general m, σwMw

might have up to m− 1 optimal vertices.)
The functions gw(v) = P (Vw ≤ v) for some common voting rules are shown in Figures 2, 3,

and 4.
Computing the quantities gw(v) requires evaluating integrals involving the normal probability

density function (2π)−1/2e−x2/2. This may be done by one of the standard methods of numerical
quadrature, or, more simply, by Monte Carlo simulation using standard normal variates (Kleijnen
and van Groenendaal (1992)). The latter approach has been used to produce Figures 2–4. The
sample size used was 107 – large enough that the sampling error in the curves on the graphs is
imperceptible to the eye.

5 Comparisons between positional voting rules

In this section we compare the various positional voting rules with respect to their manipulability
under IC asymptotic conditions.

It is apparent from Figure 2 that the susceptibility of voting rules to coalitional manipulation
depends on the size of the coalition involved. The graph for m = 3, for example, shows that
elections using the plurality or Borda rules are highly likely to be manipulable by a large coalition
(at least 2

√
n voters), whereas only about half of anti-plurality elections are so manipulable. But,

if one is more concerned about manipulation by small groups, the graph shows that plurality and
anti-plurality elections are about equally susceptible to manipulation by coalitions of less than
0.25

√
n voters, while Borda is rather less susceptible.

This suggests that there will be no single rule which is clearly superior to all others with respect
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to IC coalitional manipulation. However, some are clearly inferior to others. The asymptotic
manipulation probability gw(v) for the plurality rule, for example, is greater than for the other
two 3-candidate rules shown for all values of v.

More formally, given two m-candidate positional voting rules w, w′, we will say that w domi-
nates w′ (and write w′ � w) if gw(v) ≤ gw′(v) for all v ≥ 0. That is, w is less susceptible than w′

to manipulation by coalitions of any given size. Alternatively, the asymptotic minimum coalition
size Vw is larger than Vw′ in the sense of first-order stochastic dominance.

Note that � gives a partial order on the rules. Although the present paper is concerned only
with positional rules, the partial order � could be defined in the same way for any voting rules.

If w′ � w, then the rule w is to be preferred to w′. More generally, the best rules to use (at
least from the point of view of manipulation by IC populations) are those not dominated by any
other.

Proposition 10. The plurality rule is always dominated.

Proof. Indeed, plurality is dominated both by anti-plurality and by Borda. This is apparent from
the asymptotic results of the previous section:

Vantiplurality =

{
m−1/2(ρ1(Z)− ρ2(Z)), if ρ2(Z) ≥ Z̄
∞, otherwise ,

while
Vplurality = m−1/2(ρ1(Z)− ρ2(Z)),

giving Vplurality ≤ Vantiplurality and so (plurality) � (anti-plurality). Similarly for Borda.

Proposition 11. The anti-plurality rule is never dominated.

Proof. No other rule w may dominate the anti-plurality rule, because limv→∞ gantiplurality(v) =

P
(
ρ2(Z) ≥ Z̄

)
< 1, whereas limv→∞ gw(v) = 1.

Proposition 11 is true because the anti-plurality rule is resistant to manipulation by very large
coalitions, in a way that every other positional rule is not. However, as we shall see later, this
advantage becomes very slight in elections with 6 or more candidates.

Proposition 12. Borda’s rule is undominated for m ∈ {3, 4}, but dominated for m ≥ 5.

Proof. From the asymptotic results of the previous section:

VBorda =

(
m(m + 1)

12(m− 2)2

)1/2

(ρ1(Z)− ρ2(Z)),

while

Vbm/2c−approval =

(
bm/2c (m− bm/2c)

m(m− 1)

)1/2

(ρ1(Z)− ρ2(Z)).

(Here b·c denotes the greatest integer function: thus bm/2c is m/2 if m is even, and (m− 1)/2 if
m is odd.) Note that for m ≥ 5,

bm/2c (m− bm/2c)
m(m− 1)

≥ (m− 1)(m + 1)

4m(m− 1)
= 3

(
1− 2

m

)2 m(m + 1)

12(m− 2)2
≥ m(m + 1)

12(m− 2)2
.

This gives VBorda ≤ Vbm/2c−approval and so (Borda) � (bm/2c-approval).
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Now let m ∈ {3, 4} and let w be any positional rule for m-candidate elections. We may observe
that

Mw ⊆ M ′
w :=

{
(λ, µ) ∈ R2 : 0 ≤ λ ≤ bw, λ ≤ µ

}
,

where
bw = mini(1− wi + wi+1)

−1.

It is shown in Pritchard and Slinko (2006) that the quantity σwbw is maximized, over all m-
candidate positional rules, by Borda’s rule. (This is true only when m ∈ {3, 4}; for m ≥ 5, the
maximum value is achieved by the bm/2c-approval rule.) From this we obtain

gw(v) = P (Vw ≤ v)

≥ P
(
Vw ≤ v and ρ2(Z) ≥ Z̄

)
≥ P

(
max

{
λ(ρ1(Z)− Z̄) + µ(Z̄ − ρ2(Z)) : (λ, µ) ∈

√
m

m−1
σwMw

}
≤ v and ρ2(Z) ≥ Z̄

)
≥ P

(
max

{
λ(ρ1(Z)− Z̄) + µ(Z̄ − ρ2(Z)) : (λ, µ) ∈

√
m

m−1
σwM ′

w

}
≤ v and ρ2(Z) ≥ Z̄

)
= P

(√
m

m−1
σwbw(ρ1(Z)− ρ2(Z)) ≤ v and ρ2(Z) ≥ Z̄

)
≥ P

(√
m

m−1
σBordabBorda(ρ1(Z)− ρ2(Z)) ≤ v and ρ2(Z) ≥ Z̄

)
= P

(
VBorda ≤ v and ρ2(Z) ≥ Z̄

)
= gBorda(v) − P

(
VBorda ≤ v and ρ2(Z) < Z̄

)
.

Let c = (m/(m− 1))1/2σBordabBorda. Since all orderings of Z = (Z1, . . . , Zm) are equally likely,

P
(
VBorda ≤ v and ρ2(Z) < Z̄

)
= m!P

(
Z1 ≥ Z2 ≥ · · · ≥ Zm, c(Z1 − Z2) ≤ v, and Z2 < Z̄

)
≤ m!P

(
0 ≤ Z̄ − Z2 ≤ Z1 − Z2 ≤ v/c

)
= m!

∫ v/c

0

∫ x

0
f(x, y) dxdy

≤ 1

2
m!(sup f)

(
v

c

)2

= O(v2) as v → 0,

where f is the (non-degenerate) bivariate normal probability density of (Z1 − Z2, Z̄ − Z2). It
follows that

g′w(0) ≥ g′Borda(0),

and hence that w cannot dominate Borda.
The argument used in Proposition 12 shows that among all positional rules for three- or four-

candidate elections, Borda’s rule has the g function with the smallest derivative at the origin.
This means that it is the most resistant to manipulation by very small coalitions. However, this
property does not hold when there are five or more candidates. In that case, it is the bm/2c-
approval rule which enjoys maximal resistance to manipulation by very small coalitions. These
results are similar to those of Pritchard and Slinko (2006), although the criterion considered there
is the “average threshhold coalition size” rather than the minimum manipulating coalition size of
the present paper.
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Figure 3: The functions gw(v) = P (Vw ≤ v) for some five- and six-candidate voting rules.
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Figure 4: The functions gw(v) = P (Vw ≤ v) for some ten- and twenty-candidate voting rules.
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Figures 2–4 show the manipulability of the rules for particular numbers of candidates. We see
from Figures 2 and 3 that for m = 4, 5, 6 there is not much difference in the manipulability of the
common rules, at least by comparison with the differences evident when m = 3. In the graph for
m = 5 we can see the Borda rule being dominated (by 3-approval) for the first time. (Note that
for m = 5, the 2-approval and 3-approval rules have identical limiting behaviour.) Also worth
noting is that for m ≥ 5 there is very little difference between plurality and anti-plurality from
a manipulation point of view. Anti-plurality has a slight additional chance of resisting attack by
a large coalition – and on this basis dominates plurality – but this advantage has become almost
imperceptible by m = 6.

Figure 4 shows the behaviour of the rules when there are many candidates. In this figure, the
curves for the anti-plurality rule have been left out, as they are indistinguishable from those for
plurality. We see the bm/2c-approval rule dominating the others. It should be noted, though,
that the IC hypothesis is at its least convincing when applied to elections with many candidates,
as it assumes in effect that all candidates are about equally popular.

6 Conclusions

The technique presented in this paper makes it possible to compute the (IC) limiting probability
distribution of the minimum manipulating coalition size for any positional rule, with any number
of candidates.

The consideration of coalition sizes is especially useful when comparing the rules. Some rules
are especially resistant to manipulation by small coalitions, while others fare better with respect
to manipulation by large coalitions. Previous work has made this distinction in a rather limited
way, by considering “individual” and “coalitional” manipulation (the latter meaning that the
coalition may be of any size). But these extremes may be somewhat uninformative. Given a large
voter population, all positional rules (except anti-plurality) are highly likely to be manipulable
by some coalition, and highly unlikely to be manipulable by any individual. Studying coalitions
of intermediate sizes starts to reveal more differences between the rules.

The picture also changes when the number of candidates is varied. Much previous work has
concentrated on the three-candidate case, for which the behaviour of the rules is quite differ-
ent (Borda is least susceptible to small-coalition manipulation, anti-plurality to large-coalition
manipulation). The four-candidate case is similar, except that the differences between rules are
smaller. But when there are five candidates, it appears that all positional rules are about equally
manipulable, across the whole range of coalition sizes, and there is not much to choose between
them. With six or more candidates, the bm/2c-approval rules emerge as favourites.

Another, perhaps surprising, conclusion is that for m ≥ 5 there is very little difference be-
tween plurality and anti-plurality from a manipulation point of view. The approximate symmetry
between these rules does not appear when m = 3, and so does not appear to have been noticed
before (although it was recognized in a more limited sense already in Saari (1990)).

It would be possible in principle to produce results like those in this paper for the IAC voter
behaviour model. However, the technique of analysis would have to be quite different. Rather
than reducing the probabilities to those involving normal distributions, the calculations would
entail the computation of convex volumes, as outlined in Wilson and Pritchard (2007).

It would also be of interest to produce limiting distributions similar to those in this paper (or
at least, graphs like those in Figures 2–4) for voting rules other than positional rules. However,
this too would require new techniques. Approval voting (see Brams and Fishburn (2007)) would
also be an attractive target, as it gives voters two potential ways to manipulate: in addition to
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mis-representing their preferences, they may also make a strategic choice as to the number of
candidates to approve (a possibility investigated in Brams and Sanver (2006)).

Finally, it should be noted that this paper’s assumptions on voter behaviour, though standard
ones in the field, are very demanding with respect to manipulation. Situations harbouring the
logical possibility of manipulation are made rather likely by the IC assumption, which tends to
narrow margins of victory. Manipulation is further invited by the lack of credible counterthreats
from voters outside the manipulating coalition. A valuable refinement of the present work would
be to consider assumptions less favourable to manipulation. In particular, it would be useful to
consider what strategies are (strong) Nash equilibria when all voters may vote strategically, and
how much (if any) insincere voting they entail.

6.1 Acknowledgements

The authors wish to thank two anonymous reviewers for the example in section 3, and for other
valuable comments.

7 Appendix A - Proof of Proposition 4

Let Q1(β) and Q2(β) be defined in the same way as in the main text, and let Q3(β) be defined in
the same way as Q1(β), except that we drop the integrality constraints on xt and yt in (1), and
replace the constraint xt ≤ Nt by xt ≤ Nt −K, where K is a constant that depends only on the
voting rule. We will choose the value

K =

{
2m!(1− wm−1)

−1, if wm−1 < 1
0, if wm−1 = 1

for K, although this choice will be important only in Proposition A.2. Note that we have Q2(β) ≤
Q1(β) and Q2(β) ≤ Q3(β).

Proposition A.1.
P (Q3(β) = Q2(β)) → 1 as n →∞.

Proof. Define f0 : RT → [0,∞] as follows: for q ∈ RT , f0(q) is the optimal value of the linear
program

min
∑

t∈T̄βa
xt

s.t.
∑

t∈Tβ
yt(1− σt(α))−∑

t∈T̄βa
xt(σt(β)− σt(α)) ≥ ∑

t∈T qt(σt(α)− σt(β)) ∀α 6= β∑
t∈Tβ

yt =
∑

t∈T̄βa
xt,

xt ≥ 0 ∀t ∈ T̄βa

yt ≥ 0 ∀t ∈ Tβ

Then Q2(β) = f0(N). Note that f0(λq + µe) = λf0(q) for any q ∈ RT , λ ≥ 0, and µ ∈ R.
Also, f0 is continuous on the closed subset L = {q : f0(q) < ∞} of RT . Let π : RT → L be the
projection which maps each point q ∈ RT to the nearest point of L to q; then π is continuous and
π(λq + µe) = λπ(q) + µe for any q ∈ RT , λ ≥ 0, and µ ∈ R.

Let f : RT → [0,∞) be given by f(q) = f0(π(q)). Then f is continuous; has f(λq+µe) = λf(q)
for any q ∈ RT , λ ≥ 0, and µ ∈ R; and Q2(β) = f(N) whenever Q2(β) < ∞.
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When Q2(β) = ∞, we have Q3(β) = ∞ too. On the other hand, when Q2(β) ≤ mintNt −K,
the corresponding optimal point of the linear program for Q2(β) is also feasible for the linear
program for Q3(β), so Q3(β) = Q2(β). Hence

{Q3(β) 6= Q2(β)} ⊆ {mintNt −K < Q2(β) < ∞} ⊆ {mintNt −K < f(N)} ,

and so it suffices to show that this last event has probability converging to 0.
Now define h : RT → (−∞,∞) by h(q) = (mintqt)−f(q). By Proposition 1 and the continuity

of h, we have

h

(
N − ne√

n

)
→D h(X), where X ∼ N(0, Σ).

This yields
(mintNt)− f(N)− n/m!√

n
→D h(X),

from which

lim sup
n

P

(
(mintNt)− f(N)− n/m!√

n
≤ −λ

)
≤ P (h(X) ≤ −λ)

for any λ > 0. That is,

lim sup
n

P
(
(mintNt)−K − f(N) ≤ n/m!− λ

√
n−K

)
≤ P (h(X) ≤ −λ) .

We have n/m!− λ
√

n−K > 0 for sufficiently large n, so

lim sup
n

P ((mintNt)−K ≤ f(N)) ≤ P (h(X) ≤ −λ) .

Since λ was arbitrary,

P ((mintNt)−K ≤ f(N)) → 0 as n →∞,

and the result follows.

Proposition A.2. With probability 1,

Q1(β) ≤ Q3(β) + K.

Proof of Proposition A.2 for the case wm−1 < 1. Let (xt)t∈T̄βa
, (yt)t∈Tβ

be optimal for the problem
defining Q3(β). Then∑

t∈Tβ
yt(1− σt(α))−∑

t∈T̄βa
xt(σt(β)− σt(α)) ≥ |α| − |β| ∀α 6= β∑

t∈Tβ
yt =

∑
t∈T̄βa

xt

0 ≤ xt ≤ Nt −K ∀t ∈ T̄βa

yt ≥ 0 ∀t ∈ Tβ

Choose types t0 ∈ T̄βa, t1 ∈ Tβ such that t0 ranks a last, β next-to-last, and some γ first,
while t1 is obtained from t0 by transposing the rankings of β and γ. Define (x′t)t∈T̄βa

, (y′t)t∈Tβ
by

x′t0 = xt0 + K, y′t1 = yt1 + K, and x′t = xt and y′t = yt for all other t. Then (x′t), (y′t) satisfy∑
t∈Tβ

y′t(1− σt(α)) −
∑

t∈T̄βa

x′t(σt(β)− σt(α))

=
∑
t∈Tβ

yt(1− σt(α))−
∑

t∈T̄βa

xt(σt(β)− σt(α))

+K(1− wm−1) + K(σt0(α)− σt1(α))

≥ |α| − |β|+ 2m!
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for each α 6= β. Also,
∑

t∈Tβ
y′t =

∑
t∈T̄βa

x′t and 0 ≤ x′t ≤ Nt for each t.

Now obtain (x
′′
t )t∈T̄βa

, (y
′′
t )t∈Tβ

by rounding each x′t, y′t to an integral value. The choice between

rounding up and rounding down (i.e. between x
′′
t = bx′tc and x

′′
t = dx′te) can be made arbitrarily,

but should be done in such a way that
∑

t∈Tβ
y
′′
t =

∑
t∈T̄βa

x
′′
t . Since

∣∣∣x′′
t − x′t

∣∣∣ ≤ 1 and
∣∣∣y′′

t − y′t
∣∣∣ ≤ 1,

we obtain ∑
t∈Tβ

y
′′

t (1− σt(α))−
∑

t∈T̄βa

x
′′

t (σt(β)− σt(α)) ≥ |α| − |β|,

and so (x
′′
t ), (y

′′
t ) are feasible for (1). We have

∑
t∈T̄βa

x
′′
t =

∑
t∈T̄βa

xt + K, from which it follows
that Q1(β) ≤ Q3(β) + K.

Proof of Proposition A.2 for the case wm−1 = 1. A separate proof is required for this case (the
anti-plurality rule w = (1, . . . , 1, 0)). We can show that Q1(β) ≤ Q3(β) by showing that the
optimal (xt), (yt) for the problem defining Q3(β) are always integral (and hence give a feasible
solution to (1)). To establish this, we will use a well-known result in linear programming (see,
e.g. Papadimitriou and Steiglitz (1982) or Parker and Rardin (1988)), which assures us that the
optimal solution of a linear program will always be integral when the constraint coefficient matrix
A is totally unimodular (i.e. every square submatrix has determinant 1, −1, or 0).

A useful sufficient condition for total unimodularity is given in Papadimitriou and Steiglitz
(1982) (Theorem 13.3) as follows: a matrix whose entries are all 1, −1, or 0 is totally unimodular
if each column has at most two non-zero entries, and if the rows can be partitioned into two sets
I1 and I2 such that: (i) if a column has two entries of the same sign, their rows are in different
sets; (ii) if a column has two entries of different signs, their rows are in the same set.

For this problem A has columns corresponding to the variables xt (t ∈ T̄βa) and yt (t ∈ Tβ).
There is one row corresponding to each candidate α 6= β, in which the entry in the column
corresponding to xt is −1 if t ranks α last, and 0 otherwise; the entry in the column corresponding
to yt is 1 if t ranks α last, and 0 otherwise. Let these rows constitute the set I1. There is also a
further row corresponding to the constraint

∑
t∈Tβ

yt −
∑

t∈T̄βa
xt = 0; in this row, the entries in

the columns corresponding to the xt are all −1, and those corresponding to the yt are all 1. Let
this row constitute the set I2. It is clear that this matrix satisfies the sufficient condition above;
the result follows.

From Propositions A.1 and A.2 we have

P (Q1(β)−K ≤ Q3(β) ≤ Q2(β) ≤ Q1(β)) → 1 as n →∞,

from which the conclusion of Proposition 4,

P (|Q1(β)−Q2(β)| ≤ K) → 1 as n →∞,

follows.

8 Appendix B - Proof of Theorem 8

To establish the equality of the optimal values of two optimization problems, it is sufficient to
show that for each feasible point of the first problem, there is a corresponding feasible point of
the second with the same objective value, and vice versa. The following two propositions use this
approach to prove Theorem 8.

Proposition B.1. Suppose non-negative numbers z1, . . . , zm−1 are feasible for (3). Then there
exists (xt)t∈Tba

, (yt)t∈Tb
feasible for (2), with

∑
t∈Ti

xt = zi.
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Proof. Let D be the set of candidates other than a or b. For any type t ∈ T , we denote by t(i)
the candidate ranked in ith place by t.

We will write our proposed (xt), (yt) in terms of parameters r and (uα)α∈D, which are to be
determined later in such a way that 0 ≤ r ≤ 1, uα ≥ 0 ∀α, and

∑
α∈D uα = 1.

For each α ∈ D, let

vα =

{
1−uα

m−3
, if m ≥ 4

1 , if m = 3;

note
∑

α∈D vα = 1.

For each t, let xt =
∑4

k=1 x
(k)
t and yt =

∑4
k=1 t

(k)
t , where

x
(1)
t =

{
rut(m)zi

(m−3)!
, if t ∈ Ti, i = 1, . . . ,m− 2

0 , if t ∈ Tm−1

y
(1)
t =

{∑m−2
i=1

rut(i+1)zi

(m−3)!
, if t ∈ Tb with t(m) = a

0 , otherwise

(this corresponds to ruαzi voters of types in Ti changing sincere votes of form . . . ba . . . α to
insincere ones b . . . α . . . a, for each i = 1, . . . ,m− 2);

x
(2)
t =

{
(1−r)vt(1)zi

(m−3)!
, if t ∈ Ti, i = 2, . . . ,m− 2

0 , if t ∈ T1 ∪ Tm−1

y
(2)
t =

{
(1−r)vt(i)zi

(m−3)!
, if t ∈ Tb with t(i + 1) = a, i = 2, . . . ,m− 2

0 , otherwise

(this corresponds to (1− r)vαzi voters of types in Ti changing sincere votes of form α . . . ba . . . to
insincere ones b . . . αa . . ., for each i = 2, . . . ,m− 2);

x
(3)
t = y

(3)
t =

{
(1−r)z1

(m−2)!
, if t ∈ T1

0 , otherwise;

(this corresponds to (1− r)z1 voters of types in T1 leaving their votes unchanged);

x
(4)
t =

{ vt(1)zm−1

(m−3)!
, if t ∈ Tm−1

0 , if t /∈ Tm−1

y
(4)
t =

{
vt(m−1)zm−1

(m−3)!
, if t ∈ Tb with t(m) = a

0 , otherwise

(this corresponds to vαzm−1 voters of types in Tm−1 changing sincere votes of form α . . . ba to
insincere ones b . . . αa).

The reader may verify that

∑
t∈Ti

xt =
4∑

k=1

∑
t∈Ti

x
(k)
t = zi and

∑
t∈Tb

yt =
4∑

k=1

∑
t∈Tb

y
(k)
t =

m−1∑
i=1

zi.

We now verify that the inequality constraints of (2) hold. Note that

∑
t∈Tba

xtσt(b) =
m−1∑
i=1

ziwi,
∑

t∈Tba

xtσt(a) =
m−1∑
i=1

ziwi+1,
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and

∑
t∈Tb

ytσt(a) =
4∑

k=1

∑
t∈Tb

y
(k)
t σt(a)

= 0 + (1− r)
m−2∑
i=2

ziwi+1 + (1− r)z1w2 + 0

= (1− r)
m−1∑
i=1

ziwi+1.

Hence ∑
t∈Tb

yt(1− σt(a))−
∑

t∈Tba

xt(σt(b)− σt(a)) = B + rA,

where A =
∑m−1

i=1 ziwi+1 and B =
∑m−1

i=1 zi(1 − wi). The inequality constraint for α = a in (2)
thus reduces to

B + rA ≥ |a| − |b| .

Now consider the other inequality constraints. We use the notation w̄−i,j,k to denote the average
of all elements of w other than the ith, jth, and kth (i.e. (−wi − wj − wk +

∑m
`=1 w`)/(m − 3)),

or 0 if m = 3. Similarly w̄−i,j = (−wi − wj +
∑m

`=1 w`)/(m− 2). For α ∈ D we have

∑
t∈Tba

xtσt(α) =
4∑

k=1

∑
t∈Tba

x
(k)
t σt(α)

= r
m−2∑
i=1

zi

uα · 0 +

∑
γ 6=α

uγ

 w̄−i,i+1,m


+ (1− r)

m−2∑
i=2

zi

vα · 1 +

∑
γ 6=α

vγ

 w̄−1,i,i+1


+ (1− r)z1w̄−1,2

+ zm−1

vα · 1 +

∑
γ 6=α

vγ

 w̄−1,m−1,m


and

∑
t∈Tb

ytσt(α) =
4∑

k=1

∑
t∈Tb

y
(k)
t σt(α)

= r
m−2∑
i=1

zi

uαwi+1 +

∑
γ 6=α

uγ

 w̄−1,i+1,m


+ (1− r)

m−2∑
i=2

zi

vαwi +

∑
γ 6=α

vγ

 w̄−1,i,i+1


+ (1− r)z1w̄−1,2

+ zm−1

vαwm−1 +

∑
γ 6=α

vγ

 w̄−1,m−1,m

 .
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It follows that∑
t∈Tb

yt(1− σt(α)) −
∑

t∈Tba

xt(σt(b)− σt(α)) =

m−1∑
i=1

zi − ruα

m−2∑
i=1

ziwi+1 + r(1− uα)
m−2∑
i=1

zi(w̄−i,i+1,m − w̄−1,i+1,m)

+(1− r)vα

m−2∑
i=2

zi(1− wi) + zm−1vα(1− wm−1)−
m−1∑
i=1

ziwi

=
m−1∑
i=1

zi(1− wi)− ruα

m−1∑
i=1

ziwi+1 + rvα

m−2∑
i=1

zi(1− wi)

+(1− r)vα

m−2∑
i=1

zi(1− wi) + zm−1vα(1− wm−1)

= (1 + vα)B − ruαA.

The (xt), (yt) that we have constructed will thus satisfy the constraints required to be feasible for
(2), provided r and (uα) can be chosen in such a way that

B + rA ≥ |a| − |b|
(1 + vα)B − ruαA ≥ |α| − |b| ∀α ∈ D∑

α∈D

uα = 1

uα ≥ 0 ∀α ∈ D

0 ≤ r ≤ 1.

Suppose for the moment that m ≥ 4. Then the inequality required of uα may be written(
1 +

1− uα

m− 3

)
B − ruαA ≥ |α| − |b| ,

or (
rA +

B

m− 3

)
uα ≤ |b| − |α|+

(
m− 2

m− 3

)
B,

a simple upper bound on uα. Note that the upper bound is non-negative. For given r, it will be
possible to choose non-negative (uα) such that

∑
α∈D uα = 1 while complying with these upper

bounds if and only if ∑
α∈D

(
|b| − |α|+

(
m− 2

m− 3

)
B
)
≥ rA +

B

m− 3
,

or

rA ≤ (m− 2) |b| −
∑
α∈D

|α|+
(

(m− 2)2 − 1

m− 3

)
B,

that is
rA ≤ (m− 1)(|b|+ B − nw̄) + |a| − nw̄, (∗)

using the fact that the sum of all the candidates’ scores is mnw̄.
Consider now the case m = 3. Then the sole α ∈ D has uα = vα = 1, and the inequality

required of uα reduces to
2B − rA ≥ |α| − |b| ,
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which is (∗).
We have thus reduced our requirements to a condition on r ∈ [0, 1]:

|a| − |b| −B ≤ rA ≤ (m− 1)(|b|+ B − nw̄) + (|a| − nw̄).

To see that there exists r ∈ [0, 1] satisfying this condition we note that, firstly,

(m− 1)(|b|+ B − nw̄) + (|a| − nw̄) ≥ 0;

secondly,
|a| − |b| −B ≤ A

(from the first constraint of (3)); and thirdly,

|a| − |b| −B ≤ (m− 1)(|b|+ B − nw̄) + (|a| − nw̄).

This last condition can be simplified to

m(|b|+ B − nw̄) ≥ 0,

the second constraint of (3).

Proposition B.2. Suppose (xt)t∈Tba
, (yt)t∈Tb

are feasible for (2). Then z1, . . . , zm−1 given by
zi =

∑
t∈Ti

xt are feasible for (3).
Proof. The inequality for α = a in (2) says that∑

t∈Tb

yt(1− σt(a)) ≥ |a| − |b|+
∑

t∈Tba

xt(σt(b)− σt(a)).

Noting that
∑

t∈Tb
ytσt(a) ≥ 0, we obtain

∑
t∈Tb

yt ≥ |a| − |b|+
m−1∑
i=1

∑
t∈Ti

xt(wi − wi+1)

and so
m−1∑
i=1

zi ≥ |a| − |b|+
m−1∑
i=1

(wi − wi+1)zi

from which the first constraint of (3) can be seen to hold.
If we add the inequalities in (2) for all α 6= b, we obtain

∑
t∈Tb

yt

∑
α 6=b

(1− σt(α)) ≥

∑
α 6=b

|α|

− (m− 1)|b|+
∑

t∈Tba

xt

∑
α 6=b

(σt(b)− σt(α)),

or ∑
t∈Tb

yt

m−1∑
i=1

(1− wi) ≥ nmw̄ −m|b|+
m−1∑
i=1

∑
t∈Ti

xt

∑
j 6=i

(wi − wj),

which gives

(1− w̄)
m−1∑
i=1

zi ≥ nw̄ − |b|+
m−1∑
i=1

zi(wi − w̄),

from which the second constraint of (3) can be seen to hold.
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