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Asymptotic expansions of oscillatory integrals
with complex phase

Robin Pemantle and Mark C. Wilson

Abstract. We consider saddle point integrals in d variables whose phase func-

tions are neither real nor purely imaginary. Results analogous to those for

Laplace (real phase) and Fourier (imaginary phase) integrals hold whenever
the phase function is analytic and nondegenerate. These results generalize

what is well known for integrals of Laplace and Fourier type. The proofs are

via contour shifting in complex d-space. This work is motivated by applications
to asymptotic enumeration.

1. Introduction

Integrals of the form

(1.1) I(λ) := I(λ;φ,A) :=
∫
e−λφ(x)A(x) dx

arise in many areas of mathematics. There are many variations. This integral may
involve one or more variables; the variables may be real or complex; the integral
may be global or taken over a small neighborhood or oddly shaped set; varying
degrees of smoothness may be assumed; and varying degrees of degeneracy may be
allowed near the critical points of the phase function, φ. Often what is sought is
a leading order estimate of I(λ) as the positive real parameter λ tends to ∞, or
an asymptotic series I(λ) ∼

∑
n cngn(λ), where {gn} is a sequence of elementary

functions and the expansion is possibly nowhere convergent, but satisfies

(1.2) I(λ)−
N−1∑
n=0

cngn(λ) = O(gN (λ))

for all N > 1.
In recent work on the asymptotics of multivariate generating functions [PW02;

PW04; PW08; BBBP08; BP08; BP04], we have required results of this type in
the case where the phase function φ and the amplitude function A are analytic
functions of several variables. The phase function is typically neither real nor purely
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imaginary, but satisfies Re{φ} > 0. The domain of integration in many of these
cases is the product of a manifold with a closed simplex. Although results are known
that apply to these cases, the state of the literature is quite poor from the standpoint
of ready application. We therefore wrote this note to remedy this situation and to
supply what would have been ghost citations in [PW04, Lemmas 4.7 and 4.8].

In Section 7, we review the existing literature in greater detail. To explain
briefly the relation between the present results and previous work, we first discuss
two special cases in which the results are well known, but by substantially different
methods.

Integrals of Fourier type. Let f,A : Rd → R be smooth (that is, C∞) func-
tions of d real variables, with A having compact support. Taking φ = −if gives
the Fourier-type integral

I(λ) =
∫
eiλf(x)A(x) dx.

The standard method of studying this integral is as follows. If f has no critical
points in the support of A, then integration by parts shows I(λ) to be rapidly
decreasing: I(λ) = O(λ−N ) for all positive integers, N . Using a partition of unity,
the integral may therefore be localized to neighborhoods of the critical points of f .
At an isolated critical point ∇f vanishes; if the Hessian matrix is non-degenerate
then the Morse lemma produces a smooth change of variables under which f(x) =
S±(x) :=

∑d
j=1(±)jx2

j . This reduces the general problem to the case φ = iS. To
solve this, expand A in a series. Each term may be explicitly integrated, resulting
in an expansion in decreasing powers of λ:

(1.3) I(λ) =
∑
n>0

cn λ
−d/2−n.

To see that the resulting series for I(λ) satisfies (1.2), one uses integration by parts
again to bound the remainder term. The coefficients {cn} are determined by the
derivatives of A and φ. A particularly lucid treatment of this may be found in the
first two sections of [Ste93, Chapter VIII].

Integrals of Laplace type. The other well studied case is the Laplace-type
integral, where φ is real. Localization of the integral to the minima of φ is immediate
because the integrand is exponentially small elsewhere. Integrating over balls whose
radius has order λ−1/2 shows that near a quadratically nondegenerate minimum,
x0, the bound A(x) = O(|x− x0|N ) translates into the bound

(1.4) I(λ) = O(λ−(d+N)/2).

Again one changes variables, expands A into a power series, and integrates term by
term, to obtain the series

(1.5) I(λ) =
∑
n>0

cn λ
−(d+n)/2.

Applying (1.4) to the integral of the remainder term shows that (1.5) is an asymp-
totic expansion for I(λ). Classical treatments of integrals of Laplace type may be
found in many places [BH86; Won89], often accompanied by separate treatments
of the Fourier case.
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Complex methods. The series (1.3) and (1.5) are formally identical. Fur-
ther inspection of formulae for cn in the literature shows these to be nearly the
same as well, differing only by constant factors of unit modulus. This points to the
possibility of unifying the results and generalizing to arbitrary complex functions.
An assumption of analyticity is required; technically, this is stronger than smooth-
ness but in practice one is never satisfied without the other. Assuming analyticity,
derivations in the Fourier and Laplace cases may indeed be unified via a hybrid
approach. In one variable, this is carried out all the time under various names such
as “steepest descent,” “stationary phase” or “saddle point.” If one writes I(λ) as a
complex contour integral, the critical point will be a saddle point in C1 for the real
part of the phase function; the contour may then be re-oriented to pass through the
saddle in the direction of steepest descent of −φ, converting the integral into one of
Fourier type and explaining why the series are nearly identical. This is carried out,
for example, in [dB81] or [BH86, Chapter 7]. Our aim here is to use similar methods
in d dimensions to derive asymptotic expansions for integrals of the form (1.1) such
as arise in generating function applications.

The organization of the rest of the paper is as follows. In the next section we
give some definitions having to do with stratified spaces. We then state our main
result, Theorem 2.3. Section 3 records some easy computations in the case where
φ is the standard phase function S(x) :=

∑d
j=1 x

2
j . Section 4 handles the general

case under the assumption that the real part of φ has a strict minimum at the
critical point. Theorem 2.3 is proved in Section 5. Section 6 gives an application
from [PW04] to the estimation of coefficients of a bivariate generating function.
Finally, Section 7 discusses the relation to existing literature and further research
directions.

2. Notation and statement of results

Stratified spaces. Because of the useful properties ensuing from the defini-
tion, we shall use Whitney stratified spaces as our chains of integration. Aside from
these useful properties, the details of the definition need not concern us, though
for completeness we give a precise definition. Let I be a finite partially ordered set
and define an I-decomposition of a topological space Z to be a partition of Z into
a disjoint union of sets {Sα : α ∈ I} such that

Sα ∩ Sβ 6= ∅ ⇐⇒ Sα ⊆ Sβ ⇐⇒ α 6 β.

Definition 2.1 (Whitney stratification). Let Z be a closed subset of Rn.
A Whitney stratification of Z is an I-decomposition such that

(i) Each Sα is a manifold in Rn.
(ii) If α < β, if the sequences {xi ∈ Sβ} and {yi ∈ Sα} both converge to y ∈ Sα, if

the lines li = xi yi converge to a line l and the tangent planes Txi(Sβ) converge
to a plane T of some dimension, then both l and Ty(Sα) are contained in T .

For example, any manifold is a Whitney stratified space with one stratum; any
manifold with boundary is a Whitney stratified space with two strata, one being
the interior and one the boundary; a k-simplex is a Whitney stratified space whose
strata are all its faces. Whitney stratified spaces are closed under products and the
set of products of strata will stratify the product. Every algebraic variety admits
a Whitney stratification, although the singular locus filtration may be too coarse
to be a Whitney stratification. We remark that our definition supposes a stratified
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space always to be embedded in Rn, but even the more general definition in [GM88]
supposes that the relation between the strata is inherited via embedding in some
ambient manifold.

To fix ideas, consider the example of a cylinder S1 × [0, 1], or more generally,
the product of a compact manifold (without boundary) and a simplex. These are
precisely the types of domain encountered in applications to asymptotic extraction
of coefficients.

Critical points. Associated with the definition of a stratification is the strat-
ified notion of a critical point. Observe that under this definition, any zero-
dimensional stratum of M is a critical point of M.

Definition 2.2 (smooth functions and their critical points). Say that a func-
tion φ : M→ C on a stratified space M is smooth if it is smooth when restricted to
each stratum. A point p ∈M is said to be critical for the smooth function φ if and
only if the restriction dφ|S vanishes, where S is the stratum containing p.

Let M ⊆ Cd be a real analytic, d-dimensional stratified space. This means that
each stratum S is a subset of Cd and each of the chart maps ψ from a neighborhood
of the origin in Rk to some k-dimensional stratum S ⊆ Cd is analytic (the coordinate
functions are convergent power series) with a nonsingular differential. It follows
that ψ may be extended to a holomorphic map on a neighborhood of the origin
in Ck, whose range we denote by S ⊗ C. Choosing a small enough neighborhood,
we may arrange for S ⊗ C to be a complex k-manifold embedded in Cd. We say
a function f : M → C is analytic if it has a convergent power series expansion in
a neighborhood of every point; an analytic function on M may be extended to a
complex analytic one on a neighborhood of M in M⊗C :=

⋃
α∈I Sα ⊗C. Because

we are interested in the integrals of d-forms over M, there is no loss of generality
in assuming that M is contained in the closure of its d-dimensional strata, whence
M ⊗ C is a neighborhood of M in Cd. Real d-manifolds in Cd are not naturally
oriented, so we must assume that an orientation is given for each d-stratum of M,
meaning that the chart maps from Rd to M must preserve orientations.

Definition. The critical point p ∈M is said to be quadratically nondegenerate
if p is in a d-dimensional stratum and H(p) is nonsingular, where

H(p) :=
(

∂2φ

∂xi ∂xj

)
16i,j6d

is the Hessian matrix for the function φ of Definition 2.2 on a neighborhood of p
in Cd.

A point p ∈M is said to be stationary if it is critical and Re{φ(p)} = 0.

Results. The main result of the paper is an asymptotic expansion for I(λ) in
the case where all critical points are in top-dimensional strata and are quadrati-
cally nondegenerate. It may seem surprising, after taking the trouble to work in the
generality of stratified spaces, to restrict our results to the simplest case. Indeed,
combinatorial applications [BM93; PW04; BP04] are known for which the rele-
vant integrals have quadratically nondegenerate critical points in lower-dimensional
strata. However, the method in [PW04] is to resolve the multiple intersection via a
lifting to a simplex, thereby lifting the integral to an integral over the product of a
smooth space with a simplex, with the critical points all lifting to top-dimensional
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strata. In other words, the generality of a stratified domain of integration is needed,
but the critical points are forced into top-dimensional strata. We remark that the
taxonomy of degeneracies and lower-dimensional critical points is complicated but
reasonably well understood [Var77; AGZV88; Wat01].

Theorem 2.3. Let M be a compact, real analytic stratified space of dimension d
embedded in Cd. Let A and φ be analytic functions on a neighborhood of M and
suppose Re{φ} > 0 on M. Let G be the subset of stationary points of φ on M and
assume that G is finite and each stationary point is quadratically nondegenerate.
Then the integral I(λ) :=

∫
M
e−λφ(x)A(x) dx has an asymptotic expansion

I(λ) ∼
∞∑
`=0

c`λ
−(d+`)/2.

If A is nonzero at some point of G then the leading term is given by

(2.1) c0 = πd/2
∑
x∈G

A(x)ω(x, λ) (det H(x))−1/2
.

where ω(x, λ) is the unit complex number e−λφ(x). The choice of sign of the square
root on the right-hand side of (2.1) is determined by choosing any analytic chart
map ψ for a neighborhood of x and defining

(det H(x))−1/2 := (det H(φ ◦ ψ))−1/2 det Jψ,

where Jψ is the Jacobian matrix for ψ at x and the −1/2 power of the determinant
on the right is the product of the inverses of principal square roots of the eigenvalues.

Remark. As usual, by
∫

M
we mean

∫
C

for some chain C representing M.

As mentioned above, analyses involving critical points in lower-dimensional
strata are not required. There is one exception, which arises in [PW04, Lemma 4.7 (ii)].
Here, there is a critical point p ∈ ∂S, where S is a top-dimensional stratum, a neigh-
borhood of p in S is diffeomorphic to a half-space, and the gradient of φ at p vanishes
not only on the (d− 1)-dimensional stratum containing p but in the d-dimensional
half-space neighborhood; quadratic nondegeneracy is assumed in all d dimensions
as well.

Corollary 2.4. Assume the hypotheses of Theorem 2.3 except that some of
the points p ∈ G are as in the previous paragraph: critical and nondegenerate in a
d-dimensional half-space neighborhood. Then the same conclusion holds, except that
the summand in (2.1) corresponding to such a point p must be multiplied by 1/2.

Example 2.5. Let M = [0, 1]×(R/2π) and let φ(x, y) = x2 +2ix cos(y). There
are no critical points in the interior. Every point with x = 0 is a critical point of
the stratum {0} × S1, but for (0, y) to be a critical point in the half space, the
gradient (2i cos y, 0) must vanish, so y = ±π/2. Half the Hessian is[

1 i
i 0

]
,

which is nonsingular. Therefore there are two isolated, quadratically nondegenerate
critical points, to which Corollary 2.4 may be applied. Note that the vanishing of φ
on a part of ∂M renders many classical results inapplicable, though the specific
result may be obtained by hand in a variety of ways.



6 ROBIN PEMANTLE AND MARK C. WILSON

3. Preliminary results for the standard phase function

For x ∈ Rd, let S(x) :=
∑d
j=1 x

2
j denote the standard quadratic form. We

begin with a couple of results on integrals of Laplace type where the phase function
is the standard quadratic and A is a monomial. In one dimension,

Proposition 3.1.∫ ∞
−∞

xn e−λx
2

dx =
n!
√
π

(n/2)! 2n
λ−1/2−n/2

if n is even, while the integral is zero if n is odd.

Proof. For odd n the result is obvious from the fact that the integrand is
an odd function. For n = 0 the result is just the standard Gaussian integral. By
induction, assume now the result for n− 2. Integrating by parts to get the second
line, we have ∫ ∞

−∞
xne−λx

2
dx =

∫ ∞
−∞

−xn−1

2λ

(
−2λx e−λx

2
dx
)

=
n− 1

2λ

∫ ∞
−∞

xn−2 e−λx
2

dx

=
n− 1

2λ
(n− 2)!

√
π

(n/2− 1)! 2n−1
λ1/2−n/2

by the induction hypothesis. This is equal to λ−1/2−n/2√π n! / ((n/2)! 2n), com-
pleting the induction. �

Corollary 3.2 (monomial integral). Let r be any d-vector of nonnegative
integers and let xr denote the monomial xr11 · · ·x

rd
d . Then∫

Rd
xre−λS(x) dx = βrλ

−(d+|r|)/2,

where

(3.1) βr := πd/2
d∏
j=1

rj !
(rj/2)! 2rj

if all the components rj are even, and zero otherwise.

Proof. The integral factors into
d∏
j=1

[∫ ∞
−∞

x
rj
j e−λr

2
j dxj

]
. �

To integrate term by term over a Taylor series for A, we need the following
estimate.

Lemma 3.3 (big-O estimate). Let A be any smooth function satisfying A(x) =
O(|x|r) at the origin. Then the integral of A(x)e−λS(x) over any compact set K
may be bounded from above as∫

K

A(x)e−λS(x) dx = O(λ−(d+r)/2).
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Proof. Because K is compact and A(x) = O(|x|r) at the origin, it follows
that there is some constant c for which |A(x)| 6 c|x|r on all of K. Let K0 denote
the intersection of K with the ball |x| 6 λ−1/2, and for n > 1 let Kn denote the
intersection of K with the shell 2n−1λ−1/2 6 |x| 6 2nλ−1/2. On K0 we have

|A(x)| 6 cλ−r/2,
while trivially ∫

K0

e−λS(x) dx 6
∫
K0

dx 6 cdλ−d/2.

Thus ∣∣∣∣∫
K0

A(x)e−λS(x) dx
∣∣∣∣ 6 c′λ−(r+d)/2.

For n > 1, on K ∩Kn, we have the upper bounds

|A(x)| 6 2rn cλ−r/2

e−λS(x) 6 e−2n−1∫
Kn

dx 6 2rn cd λ−d/2.

Letting c′′ := c · cd ·
∑∞
n=1 22rn e−2n−1

<∞, we may sum to find that
∞∑
n=0

∣∣∣∣∫
Kn

A(x)e−λS(x) dx
∣∣∣∣ 6 (c′ + c′′)λ−(r+d)/2,

proving the lemma. �

It is now easy to compute a series for I(λ) in the case where φ is the standard
quadratic and the integral is over a neighborhood of the origin in Rd.

Theorem 3.4 (standard phase). Let A(x) =
∑

r arx
r be an analytic function

defined on a neighborhood N of the origin in Rd. Let

(3.2) I(λ) :=
∫

N

A(x)e−λS(x) dx.

Then

I(λ) ∼
∑
n

∑
|r|=n

arβr

λ−(n+d)/2

as an asymptotic series expansion in decreasing powers of λ, with βr as in (3.1).

Proof. Write A(x) as a power series up to degree N plus a remainder term:

A(x) =

 N∑
n=0

∑
|r|=n

arxr

+R(x),

where R(x) = O(|x|N+1). Using Corollary 3.2 to integrate all the monomial terms
and Lemma 3.3 to bound the integral of R(x)e−λS(x) shows that

I(λ) =
N∑
n=0

∑
|r|=n

arβrλ
−(d+n)/2 +O(λ−(d+n)/2−1),

which proves the asymptotic expansion. �
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4. The case of a strict minimum

In this section, we continue to integrate over a neighborhood of the origin in Rd,
but we generalize to any analytic phase function φ with the restriction that the real
part of φ have a strict minimum at the origin. The assumption of a strict minimum
localizes the integral to the origin, so the only tricky aspects are keeping track of
the sign (Lemma 4.3) and being rigorous about moving the contour.

Theorem 4.1. Let A and φ be complex-valued analytic functions on a compact
neighborhood N of the origin in Rd, and suppose the real part of φ is nonnegative,
vanishing only at the origin. Suppose the Hessian matrix H of φ at the origin is
nonsingular. Letting I(λ) :=

∫
N
A(x)e−λφ(x) dx, one has an asymptotic expansion

I(λ) ∼
∑
`>0

c`λ
d/2−`,

where

c0 = A(0)
πd/2√
det 1

2 H
= A(0)

(2π)d/2√
det H

and the choice of sign is defined by taking the product of the principal square roots
of the eigenvalues of H.

The proof is essentially a reduction to the case of standard phase. The key is the
well known Morse Lemma. The proof given in [Ste93, VIII:2.3.2] is for the smooth
category and for purely real or imaginary phase but extends without significant
change to complex values and the analytic category. For completeness, we include
the adapted proof.

Lemma 4.2 (Morse lemma). There is a bi-holomorphic change of variables
x = ψ(y) such that φ(ψ(y)) = S(y) :=

∑d
j=1 y

2
j . The differential Jψ = dψ(0) will

satisfy (det Jψ)2 = (det 1
2 H)−1.

Proof. Addressing the second conclusion first, we recall how the Hessian ma-
trix behaves under a change of variables. If ψ : Cd → Cd is bi-holomorphic on a
neighborhood of x and if φ has vanishing gradient at ψ(x) and Hessian matrix H

there, then the Hessian matrix H̃ of φ ◦ ψ at x is given by

H̃ = JTψ H Jψ,

where Jψ is the Jacobian matrix for ψ at x. The standard form S has Hessian
matrix equal to twice the identity, hence any function ψ satisfying φ ◦ ψ = S must
satisfy

2I = JTψ H Jψ.

Dividing by two and taking determinants yields |Jψ|2 det( 1
2 H) = 1, proving the

second conclusion.
To prove the change of variables, the first step is to write

φ(x) =
d∑

j,k=1

xjxkφj,k,

where the functions φj,k = φk,j are analytic and satisfy φj,k(0) = (1/2) Hj,k. It
is obvious from a formal power series viewpoint that this can be done because
the summand xjxkφj,k can be any power series with coefficients indexed by the
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orthant {r : r > ej + ek}. These orthants cover {r : |r| > 2}, so we may obtain
any function φ vanishing to order two; matching coefficients on the terms of order
precisely two shows that φj,k(0) = (1/2) Hj,k.

More constructively, we may give a formula for φj,k. There is plenty of freedom,
but a convenient choice is to let ar denote the coefficient of xr in φ(x) and to take

xkxkφj,k(x) :=
∑
|r|>2

rj(rk − δj,k)
|r|(|r| − 1)

arxr.

For fixed r, it is easy to check that∑
16j,k6d

rj(rk − δj,k)
|r|(|r| − 1)

= 1,

whence φ =
∑
xjxkφj,k. Alternatively, the following analytic computation from

[Ste93] verifies that φ =
∑
j,k xjxkφj,k. Any function f vanishing at zero satisfies

f(t) =
∫ 1

0
(1 − s)f ′(s) ds, as may be seen by integrating by parts (take g(s) =

−(1− s)). Fix x and apply this fact with f(t) = (d/dt)φ(tx) to obtain

φ(x) =
∫ 1

0

d
dt
φ(tx) dt =

∫ 1

0

(1− t) d2

dt2
φ(tx) dt.

The multivariate chain rule gives

d2

dt2
φ(tx) =

∑
j,k

xjxk
∂2φ

∂xj∂xk
(tx) ;

plug in φ =
∑

r arx
r and integrate term by term using

∫ 1

0
(1 − t)tn−2 dt = 1

n(n−1)

to see that φ =
∑
j,k xjxkφj,k.

The second step is an induction. Suppose first that φj,j(0) 6= 0 for all j. The
function φ−1

1,1 and a branch of the function φ
1/2
1,1 are analytic in a neighborhood of

the origin. Set

y1 := φ
1/2
1,1

[
x1 +

∑
k>1

ykφ1,k

φ1,1

]
.

Expanding, we find that the terms of y2
1 of total degree at most one in the terms

x2, . . . , xd match those of φ, and therefore

(4.1) φ(x) = y2
1 +

∑
j,k>2

xjxkhj,k

for some analytic functions hj,k satisfying hj,k(0) = (1/2) Hj,k. Similarly, if

φ(x) =
r−1∑
j=1

y2
j +

∑
j,k>r

xjxkhj,k

then setting

yr := φ1/2
r,r

[
xr +

∑
k>r

ykφr,k
φr,r

]
gives

φ(x) =
r∑
j=1

y2
j +

∑
j,k>r+1

xjxkh̃j,k
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for some analytic functions h̃j,k still satisfying hj,k(0) = (1/2) Hj,k. By induction,
we arrive at φ(x) =

∑d
j=1 y

2
j , finishing the proof of the Morse Lemma in the case

where each Hj,j is nonzero.
Finally, if some Hj,k = 0, because H is nonsingular we may always find some

unitary map U such that the Hessian UT HU of φ ◦ U has no vanishing diagonal
entry. We know there is a ψ0 such that (φ ◦ U) ◦ ψ0 = S, and taking ψ = U ◦ ψ0

finishes the proof in this case. �

Proof of Theorem 4.1. The power series allows us to extend φ to a neigh-
borhood of the origin in Cd. Under the change of variables ψ from the previous
lemma, we see that

I(λ) =
∫
ψ−1C

A ◦ ψ(y)e−λS(y)(det dψ(y)) dy

=
∫
ψ−1C

Ã(y)e−λS(y) dy

for some analytic function Ã, where C is a neighborhood of the origin in Rn. We
need to check that we can move the chain ψ−1C of integration back to the real
plane.

Let h(z) := Re{S(z)}. The chain C′ := ψ−1(C) lies in the region {z ∈ Cd :
h(z) > 0} except when z = 0, and in particular, h > ε > 0 on ∂C′. Let

H(z, t) := Re{z}+ (1− t) i Im{z}.
In other words, H is a homotopy from the identity map to the map π projecting
out the imaginary part of the vector z. For any chain σ, the homotopy H induces
a chain homotopy, H(σ), supported on the image of the support of σ under the
homotopy H and satisfying

∂H(σ) = σ − πσ +H(∂σ).

With σ = C′, observing that h(H(z, t)) > h(z), we see there is a (d + 1)-chain D

with
∂D = C′ − πC′ + C′′

and C′′ supported on {h > ε}. Stokes’ Theorem tells us that for any holomorphic
d-form ω, ∫

∂D

ω =
∫

D

dω = 0,

and consequently that ∫
C′
ω =

∫
πC′

ω +
∫

C′′
ω.

When ω = Ãe−λS dy, the integral over C′′ is O(e−λε), giving

I(λ) =
∫
πC′

Ã(y)e−λS(y) dy +O(e−ελ).

Up to sign, the chain πC′′ is a disk in Rd with the standard orientation plus
something supported in {h > ε}. To see this, note that π maps any real d-manifold
in Cd diffeomorphically to Rd wherever the tangent space is transverse to the imag-
inary subspace. The tangent space to the support of C′ at the origin is transverse
to the imaginary subspace because S > 0 on C′, whereas the imaginary subspace
is precisely the negative d-space of the index-d form S. The tangent space varies
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continuously, so in a neighborhood of the origin, π is a diffeomorphism. Observ-
ing that Ã(0) = A(0) det(dψ(0)) = A(0)(det(1/2) H)−1/2 and using Theorem 3.4
finishes the proof, up to the choice of sign of the square root.

The map dπ ◦ dψ−1(0) maps the standard basis of Rd to another basis for Rd.
Verifying the sign choice is equivalent to showing that this second basis is positively
oriented if and only if det(dψ(0)) is the product of the principal square roots of the
eigenvalues of H (it must be either this or its negative). Thus we shall be finished
if we apply the following lemma (with α = ψ−1). �

Lemma 4.3. Let W ⊆ Cd be the set {z : Re{S(z)} > 0}. Pick any α ∈ GLd(C)
mapping Rd into W , and let M := αTα be the matrix representing the composition
S ◦ α. Let π : Cd → Rd be projection onto the real part. Then π ◦ α is orientation
preserving on Rd if and only if detα is the product of the principal square roots of
the eigenvalues of M (rather than the negative of this product).

Proof. First suppose α ∈ GLd(R). Then M has positive eigenvalues, so the
product of their principal square roots is positive. The map π is the identity on Rd
so the statement boils down to saying that α preserves orientation if and only if
it has positive determinant, which is true by definition. In the general case, let
αt := πt ◦ α, where πt(z) = Re{z} + (1 − t) Im{z}. As we saw in the previous
proof, πt(Rd) ⊆ W for all 0 6 t 6 1, whence Mt := αTt αt has eigenvalues with
nonnegative real parts. The product of the principal square roots of the eigenvalues
is a continuous function on the set of nonsingular matrices with no negative real
eigenvalues. The determinant of αt is a continuous function of t, and we have
seen that it agrees with the product of principal square roots of eigenvalues of Mt

when t = 1 (the real case). So by continuity, this is the correct sign choice for all
0 6 t 6 1; taking t = 0 proves the lemma. �

For later use, we record one easy corollary of Theorem 4.1.

Corollary 4.4. Assume the hypotheses of Theorem 4.1 and let N ′ be the
intersection of N with a region diffeomorphic to a half-space through the origin. If
A(0) 6= 0 then

I′(λ) :=
∫

N′
A(x)e−λφ(x) dx ∼ c0

2
λ−d/2,

where c0 is the same as in the conclusion of Theorem 4.1.

Proof. Under the change of variables ψ and the projection π, this region
maps to a region N ′′ diffeomorphic to a half-space with the origin on the boundary.
Changing variables by y = λ−1/2x and writing Nλ for λ1/2N ′′, we have

I′(λ) = λ−d/2
∫

Nλ

Aλ(y)e−S(y) dy,

where Aλ(y) = (A ◦ ψ)(λ−1/2y). The function Aλ converges to A(0) pointwise
and also in L2(µ), where µ is the Gaussian measure e−S(x) dx. Also, the regions
Nλ converge to a half-space H in the sense that their indicators 1Nλ

converge
to 1H in L2(µ). Thus Aλ1Nλ

converges to A(0)1H in L1(µ), and unravelling this
statement we see that∫

Nλ

Aλ(y)e−S(y) dy→
∫
H

A(0)e−S(y) dy.
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The last quantity is equal to c0/2, showing that λd/2I′(λ)→ c0/2 and finishing the
proof. �

5. Proofs of main results

Theorem 2.3 differs from Theorem 4.1 in several ways. The most important
is that the set where Reφ vanishes may extend to the boundary of the region
of integration. This precludes the use of the easy deformation π, because C′′ is
no longer supported on {h > ε}. Consequently, some work is required to construct
a suitable deformation. We do so via notions from stratified Morse theory [GM88].

Tangent vector fields. If x is a point of the stratum S of the stratified
space M, let Tx(M) denote the tangent space to S at x. Because M is embedded
in Cd, the tangent spaces may all be identified as subspaces of Cd. Thus we have
a notion of the tangent bundle TM, a section of which is simply a vector field f
on M ⊆ Cd such that f(x) ∈ Tx(M) for all x. A consequence of the two Whitney
conditions is the local product structure of a stratified space: a point p in a k-
dimensional stratum S of a stratified space M has a neighborhood in which M is
homeomorphic to some product S×X. According to [GM88], a proof may be found
in mimeographed notes of Mather from 1970; it is based on Thom’s Isotopy Lemma
which takes up fifty pages of the same mimeographed notes. The next lemma is
the only place where we use this (or any) consequence of Whitney stratification.

Lemma 5.1. Let f be a smooth section of the tangent bundle to S, that is,
f(s) ∈ Ts(S) for s ∈ S. Then each s ∈ S has a neighborhood in M on which f
may be extended to a smooth section of the tangent bundle.

Proof. Parametrize M locally by S ×X and extend f by f(s, x) := f(s). �

Lemma 5.2 (vector field near a non-critical point). Let x be a point of the
stratum S of the stratified space M, and suppose x is not critical for the function φ.
Then there is a vector v ∈ Tx(S⊗M) such that Re{dφ(v)} > 0 at x. Furthermore,
there is a continuous section f of the tangent bundle in a neighborhood N of x
such that Re{dφ(f(y))} > 0 at every y ∈ N.

Proof. By non-criticality of x, there is a w ∈ Tx(S) with dφ(w) = u 6= 0 at x.
Multiply w componentwise by u to obtain v with Re{dφ(v)} > 0 at x. Use any
chart map for S⊗C near x to give a locally trivial coordinatization for the tangent
bundle and define a section f to be the constant vector v; then Re{dφ(f(y))} > 0 on
some sufficiently small neighborhood of x in S. Finally, extend to a neighborhood
of x in M by Lemma 5.1. �

Although we are working in the analytic category, the chains of integration are
topological objects, for which we may use C∞ methods (in what follows, even C1

methods will do). In particular, a partition of unity argument enhances the local
result above to a global result.

Lemma 5.3 (global vector field, in the absence of critical points). Let M be
a compact stratified space and φ a smooth function on M with no critical points.
Then there is a global section f of the tangent bundle of M such that the real part
of dφ(f) is everywhere positive.
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Proof. For each point x ∈ M, let fx be a section as in the conclusion of
Lemma 5.2, on a neighborhood Ux. Cover the compact space M by finitely many
sets {Ux : x ∈ F}, and let {ψx : x ∈ F} be a smooth partition of unity subordinate
to this finite cover. Define

f(y) =
∑
x∈F

ψx(y)fx(y).

Then f is smooth; it is a section of the tangent bundle because each tangent space
is linearly closed; and the real part of dφ(f(y)) is positive because we took a
convex combination in which each contribution was nonnegative and at least one
was positive. �

Another partition argument gives our final version of this result.

Lemma 5.4 (global vector field, vanishing only at critical points). Let M be a
compact stratified space and φ a smooth function on M with finitely many critical
points. Then there is a global section f of the tangent bundle of M such that the
real part of dφ(f) is nonnegative and vanishes only when y is a critical point.

Proof. Let Mε be the compact stratified space resulting in the removal of an
ε-ball around each critical point of φ. Let gε be a vector field as in the conclusion
of Lemma 5.3 with M replaced by Mε. Let fε be the product of gε with a smooth
function that is equal to its maximum of 1 on M2ε and its minimum of 0 on M c

ε .
Let cn > 0 be chosen small enough so that the magnitudes of all partial derivatives
of cnf1/n of order up to n are at most 2−n. In the topology of uniform convergence
of derivatives of bounded order, the series

∑
n cnfn converges to a vector field f

with the required properties. �

Proof of Theorem 2.3. Let f be a tangent vector field along which φ in-
creases away from critical points, as given by Lemma 5.4. Such a field gives rise to
a differential flow, which, informally, is the solution to dp/dt = f(p). To be more
formal, let x be a point in a stratum S of M. Via a chart map in a neighborhood
of x, we solve the ODE dΦ(t)/dt = f(Φ(t)) with initial condition Φ(0) = x, ob-
taining a trajectory Φ on some interval [0, εx] that is supported on S. Doing this
simultaneously for all x ∈M results in a map

Φ: M× [0, ε]→ Cd,

with Φ(x, t) remaining in S ⊗ C when x is in the stratum S. The map Φ satisfies
Φ(x, 0) = x and (d/dt)Φ(x, t) = f(Φ(x, t)). The fact that this may be defined
up to time ε for some ε > 0 is a consequence of the fact that the vector field f
is bounded and that a small neighborhood of M in M ⊗ C is embedded in Cd.
Because f is smooth and bounded, for sufficiently small ε the map x 7→ Φ(x, ε) is
a homeomorphism.

The flow reduces the real part of φ everywhere except at the critical points,
which are rest points. Consequently, it defines a homotopy H(x, t) := Φ(x, εt)
between the chain C representing M and a chain C′ on which the minima of the real
part of φ occur precisely on the set G. Recall that H induces a chain homotopy CH
with ∂CH = C′ − C + ∂C × σ, where σ is a standard 1-simplex. Let ω denote
the holomorphic d-form A(z) exp(−λφ(z)) dz. Because ω is a holomorphic d-form
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in Cd, we have dω = 0. Now, by Stokes’ Theorem,

0 =
∫

CH

dω

=
∫
∂CH

ω

=
∫

C′
ω −

∫
C

ω −
∫
∂C×σ

ω.

The chain ∂C × σ is supported on a finite union of spaces S ⊗ C, where S is a
stratum of dimension at most d − 1. This chain is supported on a finite union of
complex manifolds of dimension at most d−1; the integral of a holomorphic d-form
vanishes over such a chain. Therefore, the last term on the right drops out and we
have ∫

C

ω =
∫

C′
ω.

Outside of a neighborhood of G the magnitude of the integrand is exponentially
small, so we have shown that there are d-chains Cx supported on arbitrarily small
neighborhoods N(x) of each x ∈ G such that

(5.1) I(λ)−
∑
x∈G

∫
Cx

ω

is exponentially small. To finish that proof, we need only show that each
∫

Cx
ω has

an asymptotic series in decreasing powers of λ whose leading term, when A(x) 6= 0,
is given by

(5.2) c0(x) = (2π)d/2A(x)eλφ(x)(det H(x))−1/2.

The d-chain Cx may by parametrized by a map ψx : B → N(x), mapping the origin
to x, where B is the open unit ball in Rd. By the chain rule,∫

Cx

ω =
∫
B

[A ◦ ψ](x) exp(−λ[φ ◦ ψ(x)]) det dψ(x) dx.

The real part of the analytic phase function φ ◦ ψ has a strict minimum at the
origin, so we may apply Theorem 4.1. We obtain an asymptotic expansion whose
first term is

(5.3)
(

2π
λ

)d/2
[A ◦ ψ](0) det dψ(0)(detMx)−1/2,

where Mx is the Hessian matrix of the function φ ◦ ψ. The term [A ◦ ψ](0) is
equal to A(x). The Hessian matrix of φ ◦ ψ at the origin is given by Mx =
dψ(0) H(x) dψ(0). Thus

detMx = (det dψ(0))2 det H(x),

and plugging into (5.3) yields (5.2). �

Proof of Corollary 2.4. Lemma 5.4 does not require the critical points
to be in the interior, so the argument leading up to (5.1) is still valid. For those
points x in a (d−1)-dimensional stratum, use Corollary 2.4 in place of Theorem 4.1
to obtain (5.2) with an extra factor of 1/2. �
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Remark. The reason we do not continue with a litany of special geometries
(quarter-spaces, octants, and so forth) is that the case of a half-space is somewhat
special. The differential of the change of variables at the origin is a nonsingular
map, which must send half-spaces to half-spaces, though it will in general alter
angles of any smaller cone.

6. Examples

The simplest multidimensional application of our results is a computation
from [PW04]. The purpose is to estimate coefficients of a class of bivariate gener-
ating functions whose denominator is the product of two smooth divisors. We give
only a brief summary of how one arrives at (6.1) from a problem involving gener-
ating functions; a complete explanation of this can be found in [PW04, Section 4].
Note, however, that the mathematics of the integral is not contained in that paper,
which instead refers to an earlier draft of this one!

Let v1, v2 be distinct analytic functions of z with v1(1) = v2(1) = 1, 0 6= v′1(1) 6=
v′2(1) 6= 0, and such that each |vi(z)| attains its maximum on |z| = 1 only at z = 1.
For example, the last condition is satisfied by any pair of aperiodic power series
with nonnegative coefficients and radius of convergence greater than 1.

Consider the generating function F (z, w) = 1/H(z, w), where

H(z, w) = (1− wv1(z)) (1− wv2(z)) .

The two branches of the curve H = 0 intersect only at (1, 1), and this intersection
is transverse. The Maclaurin coefficients of F (z, w) =

∑
r,s arsz

rws are given by
the Cauchy integral formula

ars =
1

(2πi)2

∫
dw dz

zr+1ws+1 (1− wv1(z)) (1− wv2(z))
,

where the integral is taken over a product of circles centred at (0, 0) and of suffi-
ciently small radii.

Pushing the contour out to |z| = 1, |w| = 1 − ε we obtain the same formula,
since F is still analytic inside the product of disks bounded by these latter circles.
Pushing the w-contour out to |w| = 1 + ε, using the residue formula on the inner
integral and observing that the integral over |w| = 1 + ε is exponentially decaying
as s→∞, we see that

ars ≈
1

2π

∫
|z|=1

−Rs(z)
zr+1

dz,

where ≈ means that the difference is exponentially decaying as s → ∞ and Rs(z)
denotes the sum of residues of w 7→ w−(s+1)F (z, w) at the roots w = 1/vi(z),
i ∈ {1, 2}.

The residue sum Rs(z) can be rewritten in terms of an integral via

−Rs(z) = (s+ 1)
∫ 1

0

[(1− p)v1 + pv2]s dp,

and so we have

ars ≈
s+ 1
2π

∫
|z|=1

z−(r+1)

∫ 1

0

[(1− p)v1(z) + pv2(z)]s dp dz.

In order to cast this into our standard framework, we need to be able to define a
branch of the logarithm of (1 − p)v1(z) + pv2(z). We do this by localizing on the
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circle |z| = 1 to a sufficiently small neighbourhood of the point z = 1. This is
possible since the integrand decays exponentially away from z = 1, by hypotheses
on the vi, and we shall show that the integral near z = 1 decays only polynomially.

The substitution z = eit converts this to an integral

(6.1) ars ≈
s+ 1
2π

∫
N

∫ 1

0

e−sφ(p,t)A(p, t) dp dt,

where φ(p, t) = irθ/s+ log
[
(1− p)v1(eit) + pv2(eit)

]
, A(p, t) = 1, and N is a closed

interval centred at 0. To compute asymptotics in the direction r/s = κ, for fixed
κ > 0, we can consider φ to be independent of r and s.

We now asymptotically evaluate (6.1) using Theorem 2.3. We can rewrite the
iterated integral as a single integral over the stratified space M = N × [0, 1]. The
phase φ has nonnegative real part and this fits into our framework. There is a
single stationary point, at (p, z) = (1/2, 0) (note that Re{φ} is zero for all (p, 0), so
Theorem 4.1 does not suffice). This critical point is quadratically nondegenerate,
and direct computation using Theorem 2.3 yields

(6.2) ars =
1

|v′1(1)− v′2(1)|
+O(s−1)

when s → ∞ with κ fixed. By keeping track of error terms more explicitly, it is
easily shown that this approximation is uniform in κ provided κ stays in a compact
subset of the open interval formed by v′1(1), v′2(1) (it follows from our assumptions
that these numbers are positive real—see [PW04] for more details). This means
that ars is asymptotically constant in any compact subcone of directions away from
the boundary formed by lines of inverse slope κi = v′i(1).

This example, and in fact a number of cases in [PW04], can also be solved using
iterated residues. This is carried out in [BP04]. Iterated residues have the advantage
of showing that the O(s−1) term decays exponentially, but the disadvantage that
they do not give any results when κ approaches the boundary. The present methods
do give boundary results. Corollary 2.4 shows that ars converges to one-half the
right-hand side of (6.2) when (r, s) → ∞ with r/s = κ1 + O(1), and a small
extension yields a Gaussian limit: letting Φ denote the standard normal cumulative
distribution function, we have

ars =
Φ(u)

|v′1(1)− v′2(1)|
+O(s−1)

when r, s→∞ with (r/s− κ1)/s1/2 → u.

7. Further topics

Higher order terms. We have not emphasized explicit formulae for the higher
order terms, giving an equation such as (2.1) only for the leading term in the case
where A(0) 6= 0. However, our results establish the validity of existing computations
of higher order terms under our more general hypotheses.

To elaborate, we prove Theorem 2.3 by first constructing a change of variables
x 7→ Φ(x, ε) homotopic to the identity under which the minimum of Re{φ} at 0
is strict, and then changing variables, again homotopically to the identity, to the
standard form. The composition ψ of these two maps is homotopic to the identity
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but is far from explicitly given: while the second map is constructed by an explic-
itly defined Morse function, the first deformation is the solution to a differential
equation and is not particularly explicit.

In [Hör90], Hörmander derives such an explicit formula (assuming smoothness)
for integrals of our type where M = Rd and A has compact support. The formula is
indeed rewritten and used in [RW08] to compute higher order terms for generating
function applications, in which more restrictive hypotheses preclude the vanishing
of Re{φ} on a curve reaching the boundary of the chain of integration. Their
methods, while not covering the cases of interest here, do have the virtue of dealing
with the change of variables ψ only through the equation S = φ ◦ ψ. In particular,
the derivatives of ψ arising in the computation of the new amplitude function
(A◦ψ) det dψ can be computed by implicitly differentiating the equation S = φ◦ψ.
Having found at least one such ψ homotopic to the identity, we are now free to
replicate the computations of [RW08] under our more general hypotheses, as follows.

In the case of standard phase, the coefficient of λ−(n+d)/2 is given (provided
that all ri are even) by ∑

|r|=n

arβr,

where ar is the Maclaurin coefficient of A corresponding to the monomial r and
βr is the constant defined in Corollary 3.2. Note that n must be even for this
coefficient to be nonzero, so we write n = 2k. The differential operator ∂r11 · · · ∂

rd
d

when applied to A and evaluated at 0 yields precisely
∏
i ri!ar. Thus the operator∑

|r|=k

∂2r1
1 · · · ∂2rd

d

4k r1! · · · rd!

applied to A and evaluated at zero yields the coefficient we seek.
After the Morse lemma is applied using the change of variables S = φ ◦ ψ,

we need to apply the displayed operator to the new amplitude (A ◦ ψ) det dψ. The
resulting expression evaluated at x can be computed directly via the rules of Leibniz
and Faà di Bruno. Evaluating at x simplifies some terms, and, as mentioned above,
derivatives of (A ◦ ψ) det dψ may be computed without explicitly specifying ψ.

As a relatively simple example, consider the case k = 1 and d = 1. The
differential operator reduces to 1

4∂
2, where ∂ denotes differentiation with respect to

the variable x. Applying this to (A ◦ ψ) det dψ yields (with superscripts denoting
the order of derivatives and arguments suppressed)

1
4

(
A(2)

(
ψ(1)

)3 + 3A(1)ψ(1)ψ(2) +A(0)ψ(3)
)
.

The defining equation S = φ ◦ ψ can be differentiated to yield the system

2x = φ(1)ψ(1),

2 = φ(2)
[
ψ(1)

]2
+ φ(1)ψ(2),

0 = φ(3)
[
ψ(1)

]3
+ 3φ(2)ψ(1)ψ(2) + φ(1)ψ(3),

0 = φ(4)
[
ψ(1)

]4
+ 6φ(3)

[
ψ(1)

]2
ψ(2) + 4φ(2)ψ(1)ψ(3) + 3φ(2)

[
ψ(2)

]2
+ φ(1)ψ(4).

Evaluating these at the point in question, we see that the terms with highest deriva-
tives of ψ vanish in each equation. The system is triangular and can be solved
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explicitly to obtain

ψ(1) =

√
2
φ(2)

,

ψ(2) =
−2φ(3)

3
[
φ(2)

]2 ,
ψ(3) =

[
5φ(3)

]2 − 3φ(2)φ(4)

3
√

2
[
φ(2)

]7/2 .

Putting these together with the expression for the derivative of (A◦ψ) det dψ above
yields an expression for the λ−3/2 term in the integral that is a rational function with
denominator

[
φ(2)

]7/2
, and with numerator equal to a polynomial in the derivatives

of A up to order 2, and of φ up to order 4. In summary, the results of this paper
show that the computational apparatus and formulae for higher order terms given
in [RW08] hold in the case of complex phase functions integrated over stratified
spaces.

Relation to existing literature. As stated at the outset, the aim of the
present article has been to outline results that will be useful to the combina-
torics community concerning asymptotics of multidimensional integrals with com-
plex phase. Existing treatments may be classified as belonging to one of two types.

Those of the first type are easily accessible but not sufficiently general. These
include standard references such as [BH86; Won89], which may be found in en-
gineering libraries as well as mathematics libraries. Also in this class are [Bre94]
and [dB81]. These treatments are self-contained, rigorous, and assume little knowl-
edge beyond standard real and complex analysis. These sources treat real phases
and purely imaginary phases but do not treat complex phases and do not use in-
herently complex methods. The treatment by Stein [Ste93], which was written
as background for the study of differential operators, is similarly limited (purely
imaginary phase, C∞ methods). The book by Paris and Kaminski [PK01] contains
great detail on Laplace integrals in dimensions up to three, but has very little on
non-real phases. These are the sources typically cited by combinatorialists. When
multidimensional contour methods are required, combinatorialists will either reduce
somehow to a one-dimensional case, e.g. [BFSS00], or work out the results from
scratch, e.g., [Wor04]. Perhaps the closest we have found to an off-the-shelf usable
source is [Hör90]. This work is self-contained, considers general complex phases,
and is conducive to explicit computation. However, the methods are strictly C∞,
and the amplitude function is assumed to be compactly supported in Rd.

References of the second type are sufficiently high-powered to do everything we
need. However, from our point of view they suffer from a number of drawbacks.
Most noticeable is the significant overhead required to make use of these sources.
The complex algebraic geometry contained in the work of Pham [Pha85] (extending
ideas of [Ler50]) and Malgrange [Mal74], and later [Vas77; Fed77] and the Arnol’d
school [Var77; AGZV88], is well beyond the comfort zone of most of the combina-
torial community. Furthermore, the results we need, while undeniably implicit in
these works, are not always explicitly stated, or easy to find and identify. In some
cases, proofs are absent as well [AGZV88; Fed89].
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It should be noted that the approach taken in these treatments is in some sense
the right approach. It is the forerunner to the constructions of [GM88], taking the
viewpoint of the Thom–Mather theory. We draw heavily on these ideas in the way
we frame and prove our results. The Morse-theoretic deformations we use to prove
the lemmas in Section 5 lead, for example, to Pham’s “thimbles of Lefschetz.” Had
we been able to find the exact result we needed in any of these sources, we would
have greatly preferred to cite it than to reprove it. However, each of these sources
comes with hypotheses that make sense in the context it was written in, but which
are too restrictive for our application. These include restrictions on the form of the
phase function, the nature of the domain of integration, and specifically the behavior
of the integrand on the boundary of the domain. The work of Howls [BH91; DH02]
deserves mention because it is more accessible than the other works mentioned in
the last two paragraphs. Howls’ aim is close to ours: algorithmic understanding
of the asymptotics of integrals. These papers emphasize hyperasymptotic theory
(asymptotic terms beyond the leading exponential order), which involves non-local
classification of the chain of integration and requires added geometric assumptions
on the domain of integration.

Acknowledgements. We are indebted to three referees for educating us on the existing
literature and for insightful comments on the exposition and the proofs of Theorem 2.3
and Lemma 5.4.
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