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ABSTRACT:

Let {ar : r ∈ Nd} be a d-dimensional array of numbers, for which the generating function
F (z) :=

∑
r arz

r is meromorphic in a neighborhood of the origin. For example, F may be a rational
multivariate generating function. We discuss recent results that allow the effective computation of
asymptotic expansions for the coefficients of F .

Our purpose is to illustrate the use of these techniques on a variety of problems of combinatorial
interest. The survey begins by summarizing previous work on the asymptotics of univariate and
multivariate generating functions. Next we describe the Morse-theoretic underpinnings of some
new asymptotic techniques. We then quote and summarize these results in such a way that only
elementary analyses are needed to check hypotheses and carry out computations.

The remainder of the survey focuses on combinatorial applications, such as enumeration of words
with forbidden substrings, edges and cycles in graphs, polyominoes, and descents in permutations.
After the individual examples, we discuss three broad classes of examples, namely functions de-
rived via the transfer matrix method, those derived via the kernel method, and those derived via
the method of Lagrange inversion. These methods have the property that generating functions de-
rived from them are amenable to our asymptotic analyses, and we describe further machinery that
facilitates computations for these classes of examples.

Keywords: Stratified Morse Theory, residue, enumeration, smooth point, multiple point, singularity,
kernel method, Lagrange inversion, transfer matrix.

Subject classification: Primary: 05A15, 05A16. Secondary: 32A05.

1Research supported in part by National Science Foundation grant # DMS 0103635
2University of Pennsylvania, Department of Mathematics, 209 S. 33rd Street, Philadelphia, PA 19104 USA,

pemantle@math.upenn.edu
3Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, NEW ZEALAND,

mcw@cs.auckland.ac.nz

i



List of generating functions by subsection

4.1 1
1−x−y

4.2 1
1−x−y−xy

4.4 1
1−x−xy(1−x)d

4.5 2
1+2x+

√
1−4x−2xy

4.6 xy(1−x)3

(1−x)4−xy(1−x−x2+x3+x2y)

4.7 ex−ey

xey−yex

4.8 1

1−
Pd

j=1

zj
1+zj

4.9 1

2−
Qk

j=1(1+zj)

4.10 1
1−z(1−x2y2)

1
1−x(1+y)

4.12 exp(x+y)
(1−ρ11x−ρ21y)(1−ρ12x−ρ22y)

5.1 P (u,v,z)
1+z3v+uz3+uz2+uz2v+z2v−uz−2z−zv−uz4v

5.2 [1−(x1+···+xd)−trace ((I+V)−1LJ)]
−1

5.3 1+x2y3+x2y4+x3y4−x3y6

1−x−y+x2y3−x3y3−x4y4−x3y6+x4y6

6.3 3xz(1−z)(3−z)
(1−3y(1+z)2)(27−xz(3−z)2)

7.1 1
1+

√
1−x−y

7.3 2
1+

√
1−4x2−2xy

7.3 2
1+

√
1−2x−3x2−x−2xy

7.3 2
1+

√
1−6x2+x4−x2−2xy

7.4 η(x,y)
x−(x+y)2

8.2 1+xy+x2y2

1−x−y+xy−x2y2
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1. Introduction. The purpose of this paper is to review recent developments in the asymp-
totics of multivariate generating functions, and to give an exposition of these that is accessible and
centered around applications. The introductory section lays out notions of generating functions and
their asymptotics, and delimits the scope of this survey.

We employ the standard asymptotic notation: “f = O(g)” means lim supz→z0
|f(z)/g(z)| <∞,

where the limit z0 is specified but does not appear in the notation; “f = o(g)” means f/g → 0 and
“f ∼ g” means f/g → 1, again accompanied by a specification of which variable is bound and the
limit to which it is taken. When we say “an = O(g(n))” we always mean as n→∞; for multivariate
arrays and functions, statements such as “ar = O(g(r))” must be accompanied by a specification
of how r is taken to infinity. We typically use r for (r1, . . . , rd) ∈ Zd and z for (z1, . . . , zd) ∈ Cd,
but sometimes it is clearer to use (r, s, t) for (r1, r2, r3) or (x, y, z) for (z1, z2, z3). The norm |r| of a
vector r denotes the L1 norm

∑
j |rj |.

1.1. Background: the univariate case. Let {an : n ≥ 0} be a sequence of complex numbers
and let f(z) :=

∑
n anz

n be the associated generating function. For example, if an is the nth

Fibonacci number, then f(z) = 1/(1− z − z2). Generating functions are among the most powerful
tools in combinatorial enumeration. In the introductory section of his graduate text [Sta97], Richard
Stanley deems a generating function f(z) to be “the most useful but most difficult to understand
method for evaluating” an, compared to a recurrence, an asymptotic formula and a complicated
explicit formula.

There are two steps involved in using generating functions to evaluate a sequence: first, one must
determine f from the combinatorial description of {an}, and secondly one must be able to extract
information about an from f . The first step is partly science and partly an art form. Certain
recurrences for {an} translate neatly into functional equations for f but there are numerous twists
and variations. Linear recurrences with constant coefficients, such as in the Fibonacci example,
always lead to rational generating functions, but often there is no way to tell in advance whether
f will have a sufficiently nice form to be useful. A good portion of many texts on enumeration is
devoted to the battery of techniques available for producing the generating function f .

The second step, namely estimation of an once f is known, is reasonably well understood and
somewhat mechanized. Starting with Cauchy’s integral formula

an =
1

2πi

∫
z−n−1f(z) dz , (1.1)

one may apply complex analytic methods to obtain good estimates for an. As a prelude to the
multivariate results which are the main subject of this survey, we will give a quick primer on the
univariate case (Section 2 below), covering several well known ways to turn (1.1) into an estimate
for an when n is large.
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1.2. Multivariate asymptotics. In 1974, when Bender published the review article [Ben74],
the extraction of asymptotics from multivariate generating functions was largely absent from the
literature. Bender’s concluding section urges research in this area:

Practically nothing is known about asymptotics for recursions in two variables even
when a generating function is available. Techniques for obtaining asymptotics from
bivariate generating functions would be quite useful.

By the time of Odlyzko’s 1995 survey [Odl95], a single vein of research had appeared, initiated by
Bender and carried further by Gao, Richmond and others. Let the number of variables be denoted
by d so that z denotes the d-tuple (z1, . . . , zd). We use the multi-index notation for products:
zr :=

∏d
j=1 z

rj

j . Suppose we have a multivariate array {ar : r ∈ Nd} for which the generating
function

F (z) =
∑
r

arzr

is assumed to be known in some reasonable form. We are interested in the asymptotic behavior of
ar. For concreteness, one may keep in mind the following examples, which are discussed in detail in
Sections 4.1 and 4.2.
Example 1.1 (binomial coefficients). Let ars =

(
r+s
r,s

)
. The array {ars} is Pascal’s triangle,

oriented so that the rays of ones emanate from the origin along the positive r and s axes. From the
recursion ars = ar−1,s + ar,s−1, holding whenever (r, s) 6= (0, 0), one easily obtains

F (x, y) :=
∑

r,s≥0

arsx
rys =

1
1− x− y

.

Example 1.2 (Delannoy numbers). Let ars count the number of paths from the origin to the lat-
tice point (r, s) made of three kinds of steps: 1 unit east, 1 unit north, and

√
2 units northeast. These

are called Delannoy numbers. The recursion ar,s = ar−1,s + ar,s−1 + ar−1,s−1 leads immediately
to

F (x, y) :=
∑

r,s≥0

arsx
rys =

1
1− x− y − xy

.

In both of these examples, F is a rational function. In one variable, obtaining asymptotics for
the coefficients of a rational function is a quick exercise (see (2.1) in Section 2 below) but in more
than one variable this is far from true. For example, whereas the binomial coefficients are exact
expressions easily approximated via Stirling’s formula, the Delannoy numbers do not have such a
simple expansion (the expression ars =

∑
i

(
r
i

)(
s
i

)
2i is readily derived from the generating function,

but no simpler one is forthcoming).

In [Sta99, Example 6.3.8], it is shown how to get more information about the central Delannoy
numbers ann by finding the generating function

∑
n annz

n. Uniform estimation of the general term
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ars is not possible by this diagonal method (see Section 8.2), though the problem succumbs easily
to multivariate methods (see (1.4) below). The class of multivariate generating functions addressed
in this survey is larger than the rational functions; the exact hypothesis is that the function be
meromorphic in a certain domain which is spelled out in the remark following Theorem 3.16.

The first paper to concentrate on extracting asymptotics from multivariate generating functions
was [Ben73], already published at the time of Bender’s survey, but the seminal paper is [BR83]. In
this paper, Bender and Richmond assume that F has a singularity of the form A/(zd − g(x))q near
the graph of a smooth function g, for some real exponent q, where x denotes (z1, . . . , zd−1). They
show, under appropriate further hypotheses on F , that the probability measure µn one obtains by
renormalizing {ar : rd = n} to sum to 1 converges to a multivariate normal when appropriately
rescaled. Their method, which we call the GF-sequence method, is to break the d-dimensional
array {ar} into a sequence of (d− 1)-dimensional slices and consider the sequence of (d− 1)-variate
generating functions

fn(x) =
∑

r:rd=n

arzr .

They show that, asymptotically as n→∞,

fn(x) ∼ Cng(x)h(x)n (1.2)

uniformly over x in a certain ball, and that sequences of generating functions obeying (1.2) satisfy
a central limit theorem and a local central limit theorem.

We will review these results in more detail in Section 8, but one crucial feature is that they always
produce Gaussian (central limit) behavior. The applicability of the entire method is therefore limited
to the single, though important, case where the coefficients ar are nonnegative and possess a Gaussian
limit. The work of [BR83] has been greatly expanded upon, but always in a similar framework. For
example, it has been extended to matrix recursions [BRW83] and the applicability has been extended
from algebraic to algebraico-logarithmic singularities of the form F ∼ (zd − g(x))q logα(1/(zd −
g(x))) [GR92]. The difficult step is always deducing asymptotics from the hypotheses (1.2). Thus
some papers in this stream refer to such an assumption in their titles, and the term “quasi-power”
has been coined for such a sequence {fn}.

The theory has also been pushed forward via its use in applications. The forthcoming textbook
by Flajolet and Sedgewick [FS] devotes a chapter of nearly 100 pages to multivariate asymptotics,
in which many of the basic results on quasi-powers are reviewed and extended. The reader is
referred to this substantial body of work for an extensive collection of applications that can be
handled by reducing multivariate problems to univariate contour integrals. The limit theorems
in [FS, Chapter IX] (outside of the graph enumeration example in Section 11) are all Gaussian. The
large deviation results of Hwang [Hwa96; Hwa98] are not restricted to the Gaussian case, but give
asymptotics on a cruder scale.
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1.3. New multivariate methods. Odlyzko’s survey of asymptotic enumeration methods [Odl95],
which is meant to be somewhat encyclopedic, devotes fewer than 6 of its 160 pages to multivariate
asymptotics. Odlyzko describes why he believes multivariate coefficient estimation to be difficult.
First, the singularities are no longer isolated, but form (d − 1)-dimensional hypersurfaces. Thus,
he points out, “Even rational multivariate functions are not easy to deal with.” Secondly, the mul-
tivariate analogue of the one-dimensional residue theorem is the considerably more difficult theory
of Leray [Ler59]. This theory was later fleshed out by Aizenberg and Yuzhakov, who spend a few
pages [AY83, Section 23] on generating functions and combinatorial sums. Further progress in us-
ing multivariate residues to evaluate coefficients of generating functions was made by Bertozzi and
McKenna [BM93], though at the time of Odlyzko’s survey none of the papers based on multivariate
residues such as [Lic91; BM93] had resulted in any kind of systematic application of these methods
to enumeration.

The topic of the present review article is a recent vein of research begun in [PW02] and continued
in [PW04; BP; Lla03] and in several manuscripts in progress. The idea, seen already to some degree
in [BM93], is to use complex methods that are genuinely multivariate to evaluate coefficients of
multivariate generating functions via the multivariate Cauchy formula. By avoiding symmetry-
breaking decompositions such as F (z) =

∑
fn(z1, . . . , zd−1)zn

d , one hopes that the methods will be
more universally applicable and the formulae more canonical. In particular, the results of Bender et
al. and the results of Bertozzi and McKenna are seen to be two instances of a more general result
that estimates the Cauchy integral via topological reductions of the cycle of integration. These
topological reductions, while not fully automatic, are algorithmically decidable in large classes of
cases and are the subject of Section 3. An ultimate goal, stated in [PW02; PW04], is to develop
computer software to automate all of the computation.

Aside from providing a summary and explication of this line of research, the present survey
is meant to serve several other purposes. First, results from [PW02; PW04; BP] are presented in
streamlined forms, stated so as to avoid the scaffolding one needs to prove them. This is to make
the results more comprehensible. Secondly, by focusing on combinatorial applications, we hope to
create a sort of user’s manual: one that contains worked examples akin to those a potential user
will have in mind. Many of the applications are to abstract combinatorial structures but we also
include direct applications to computational biology and to formal languages and automata theory.
Finally, we present a number of results that “pre-process” the basic, general theorems, providing
useful computational reductions of the hypotheses or conclusions in specific cases of interest. We
now give the notation for generating functions and their asymptotics that will be used throughout,
and then briefly describe a prototypical asymptotic theorem.

Throughout this survey, we let

F (z) =
G(z)
H(z)

=
∑
r

arzr (1.3)

be a generating function in d variables, where G and H are analytic and H(0) 6= 0. Recall that in
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the bivariate case (d = 2) we write

F (x, y) =
G(x, y)
H(x, y)

=
∞∑

r,s=0

arsx
rys .

The representation of F as a quotient of analytic functions is required only to hold in a certain
domain, described in the remark following Theorem 3.16, though in the majority of the examples
F is meromorphic on all of Cd. We will assume throughout that H vanishes somewhere, since the
methods in this paper do not give nontrivial results for entire functions.

We are concerned with asymptotics when |r| → ∞ with r̂ := r/|r| remaining in some specified
set, bounded away from the coordinate planes. Thus for example, when d = 2, the ratio s/r will
remain in a compact subset of (0,∞). It is possible via our methods to address the other case,
where r = o(s) or s = o(r), (see, for example, [Lla03]), but our main purpose in this paper is to
give examples that require, among all the methods and results cited above, only those from [PW02]
together with the simplest methods from [PW04; BP].

To illustrate what sort of basic results we quote from [PW02; PW04], we quote the following
combination of Corollary 3.18 and Theorem 3.20 from Section 3.
Theorem 1.3. Let F be as in (1.3) and suppose ar ≥ 0.

(i) For each r in the positive orthant, there is a unique z(r) in the positive orthant satisfying
the equations rdzj∂H/∂zj = rjzd∂H/∂zd (1 ≤ j ≤ d− 1) from (3.5) below, and lying on the
boundary of the domain of convergence of F ; the quantity z(r) depends on r only through
the direction r/|r|.

(ii) With z(r) defined in this way, if G(z(r)) 6= 0,

ar ∼ (2π)−(d−1)/2H−1/2 G(z(r))
−zd∂H/∂zd(z(r))

(rd)−(d−1)/2z(r)−r

uniformly over compact cones of r for which z(r) is a smooth point of {H = 0} uniquely solv-
ing (3.5) on the boundary of the domain of convergence of F , and for which H is nonzero,
where H is the determinant of the Hessian matrix of the function parametrizing the hyper-
surface {H = 0} in logarithmic coordinates.

Going back to Example 1.1, let us see what this says about binomial coefficients. It will turn
out (see Section 4.1) that z(r) = ( r

r+s ,
s

r+s ). Evaluating the Hessian and the partial derivatives then
leads to equation (4.1) below:

ars ∼
(
r + s

r

)r (
r + s

s

)s√
r + s

2πrs

as r, s→∞ at comparable rates. This agrees, of course, with Stirling’s formula. When we try this
with the Delannoy numbers from Example 1.2, we find that

z(r, s) =

(√
r2 + s2 − s

r
,

√
r2 + s2 − r

s

)
5



and that

ars ∼

(√
r2 + s2 − s

r

)−r (√
r2 + s2 − r

s

)−s√
1
2π

√
rs

(r + s−
√
r2 + s2)2

√
r2 + s2

(1.4)

uniformly as r, s→∞ with r/s and s/r remaining bounded. Setting r = s = n gives the estimate

ann ∼ (
√

2− 1)−2n

√
1

2πn
2−1/4

2−
√

2

for the central Delannoy numbers. This estimate can also be computed, with more effort, by using the
methods of Section 2.3 applied to the diagonal generating function, which can itself be derived using
the diagonal method as in [Sta99, Example 6.3.8] (we discuss the diagonal method in Section 8.2).

In the sections to follow, we work through a number of applications of this and other, newer
theorems to problems in combinatorial enumeration. While doing so, we develop companion results
that simplify the computations in certain classes of examples. A prototypical companion result is
the following result for implicitly defined generating functions, which arise commonly in recursions
on trees.

If f(z) = zφ(f(z)) then the nth coefficient of f is given asymptotically by

n−3/2 y0φ
′(y0)n√

2πφ′′(y0)/φ(y0)
(1.5)

where y0 is the unique positive solution to yφ′(y) = φ(y).

In [FS] the computation is reduced via Lagrange inversion to the determination of the yn−1 coefficient
of φn(y), which they then carry out via complex integration methods. By viewing this coefficient
instead as the (n, n) coefficient of

F (x, y) :=
y

1− xφ(y)
,

one sees that the complex integration step is already done, and that (1.5) is immediate upon iden-
tifying that z(n, n) = (1/φ(y0), y0); see Proposition 6.1, where the hypotheses for (1.5) are stated
more completely.

The organization of the remainder of this paper is as follows. The next section gives the promised
quick primer in univariate methods. Section 3 is the most theoretical section, outlining results from
various sources to give a brief but nearly complete explanation as to how one goes from (1.3), via a
multivariable Cauchy formula, to asymptotic formulae for ar. We then quote the precise theorems
we will use from [PW02] and [PW04]. While we attempt here to provide short and accessible
statements of results, readers interested only in knowing enough to handle a particular application
may wish to skip this section, find the closest match among the examples in Sections 4 – 7, and
then refer back to the necessary parts of Section 3. Section 4 works in detail through a number of
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diverse examples. The subsequent three sections discuss collections of examples arising from three
combinatorial methods: transfer matrices, Lagrange inversion and the kernel method, respectively;
we present applications to enumerating various kinds of words, paths, trees and graphs. In Section 8
we discuss open questions and extensions of the material presented here, and compare our results
with those of other authors.

2. A brief review of univariate methods. Since our main subject is the asymptotics of
coefficients of multivariate generating functions, we will give only a quick overview of the univariate
case touching on three widely used methods, namely saddle point analysis, Darboux’ circle method
and branch point contours. In each case we will give a brief summary and an application or two,
as well as some pointers to the literature. For readers who wish to understand univariate asymp-
totic methods in greater detail, we recommend beginning with Sections 10–12 of Odlyzko’s survey
paper [Odl95].

We begin by disposing of a trivial case. If f(z) is a rational function, written as P (z)/Q(z) for
polynomials P and Q, then a partial fraction decomposition exists:

f(z) =
∑
α,k

Pα,k(z)
(1− z/α)k

(2.1)

where α ranges over roots of Q and the integer k is between 1 and the multiplicity of the root α.

For j ≥ i, the zj coefficient of
zi

(1− z/α)k
is αi−j

(
j − i+ k

k

)
, which leads to a representation

an =
∑
α

pα(n)α−n

for easily computed polynomials pα.

We turn now to analyses via contour integrals. To see what underlies all of these methods, we
begin with a preliminary estimate. Suppose that f has radius of convergence R. Taking the contour
of integration in (1.1) to be a circle of radius R − ε gives an = O(R − ε)−n for any 0 < ε < R.
If f is continuous on the closed disk of radius R then an = O(R−n). All the methods we discuss
refine these basic estimates by pushing the contour out far enough so that the resulting upper bound
becomes asymptotically sharp.

2.1. Saddle point methods. We begin with a worked example, then comment on the method
in general.
Example 2.1 (set partitions). Let an be the number of (unordered) partitions of {1, . . . , n} into
ordered sets. This has exponential generating function [Rio68, page 194]

f(z) :=
∞∑

n=0

an

n!
zn = ez/(1−z) .
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To evaluate the Cauchy integral, we attempt to move the contour so it passes through a point where
the integrand is not rapidly oscillating. Specifically, we let In = log(z−n−1f(z)) denote the logarithm
of the integrand and we find where I ′n vanishes. It is not hard to see that

I ′n =
−n− 1
z

+
1

(1− z)2

vanishes at a value 1−βn where βn = n−1/2+O(n−1). Expand the contour to a circle passing through
1− βn, or equivalently and more cleanly, a piece of the line 1− βn + ix near x = 0. Replacing the
integrand exp(In(z)) dz by its two-term Taylor approximation, one obtains

an

n!
=

1
2πi

∫ ∞

−∞
exp(In(1− βn + it))(i dt)

∼ exp(In(1− βn))
2π

∫ ∞

−∞
exp

(
1
2
I ′′n(1− βn)(it)2

)
dt

=
exp(In(1− βn))

2π

√
1

2πI ′′n(1− βn)
.

The approximation may be justified by routine estimates. Plugging in the value of 1− βn into I and
I ′′n shows the estimate to be asymptotically

(1 + o(1))

√
1

4πen3/2
exp(2

√
n) .

For this method to work either f must be entire or the saddle point (where I ′n vanishes) must be
in the interior of the domain of convergence of f . These conditions are frequently satisfied and the
method is widely applicable. We do not know when saddle point approximation was first used in the
context of generating functions. Hayman’s seminal paper from 1956 [Hay56] defines a broad class of
functions, called admissible functions for which the saddle point method can be shown to work
and the Gaussian approximation mechanized. A variation of the generating function exp(z/(1− z))
is analyzed in Hayman’s Theorem XIII.

2.2. Circle methods. Suppose f has a positive, finite radius of convergence, R. If there is
no saddle point of z−n−1f(z) in the open disk of radius R, one might try to push the contour
of integration near or onto the circle of radius R. Darboux’ method is essentially this, with the
refinement that if f extends to the circle of radius R and is k times continuously differentiable there,
then ∫

z−nf(z) dz = O
(
n−kR−n

)
. (2.2)

This follows from integration by parts.

The following very old theorem may be found, among other places, in [Hen91, Theorem 11.10b:
“Theorem of Darboux”].

8



Theorem 2.2 (Darboux). Let f(z) =
∑

n anz
n = (r − z)αL(z) where r > 0, α is not a positive

integer, and L is analytic in a disk of radius greater than r. Then

an ∼ rα−nn−α−1 L(r)
Γ(−α)

.

Example 2.3 (2-regular graphs). Let bn be the number of 2-regular graphs. The exponential
generating function [Wil94, equation (3.9.1)] is given by

f(z) :=
∑

n

bn
n!
zn =

e−z/2−z2/4

√
1− z

.

Letting α = −1/2, r = 1 and L(z) = e−z/2−z2/4 gives

an :=
bn
n!
∼ e−3/4

√
πn

.

To prove the above version of Darboux’ Theorem, write L(z) as m terms of a Taylor series about
r plus a remainder. This expresses f(z) as

m−1∑
k=0

ck(r − z)α+k +O
(
(r − z)α+m

)
.

The known asymptotics for coefficients of (r − z)ν together with the estimate (2.2) is good enough
to yield m− 1 terms in the conclusion provided one takes m ≥ 1 + (Re {−α})+, where x+ denotes
the maximum of x and 0. �

There are a great many variations on this, depending on how badly f behaves near the cir-
cle of radius r. One of the most classical fruits of the circle method is Hardy and Ramanujan’s
estimate [HR17] of the partition numbers.
Example 2.4. Let pn denote the number of partitions of n, that is, representations of n as a sum of
positive integers with the summands written in descending order. The number of identities involving
these numbers and their relatives is staggering (see, e.g., [AE04] for an elementary survey). Euler
observed that the generating function may be written as

λ(z) :=
∞∑

n=0

pnz
n =

∞∏
k=0

1
1− zk

.

From this, Hardy and Ramanujan obtained

pn ∼
exp(π

√
2n/3)

4
√

3n

as n→∞.
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2.3. Transfer theorems. A closer look at the proof of Darboux’ Theorem shows that one can
do better. Analyticity of f/(r− z)α beyond the disk of radius r is used only to provide a series for f
in decreasing powers of (r−z). On the other hand, taking the contour to be a circle of radius r loses
one power of n in the estimate, though this doesn’t matter when the expansion of f has sufficiently
many terms.

In light of these observations, one sees that choosing a custom-built contour can simultaneously
weaken the analyticity assumption while strengthening the estimate. The choice of contour will
depend on the nature of the singularity of f on the boundary of its domain of convergence, but in
many instances a good choice is known. Both a non-integral power of (r − z) and a logarithm or
iterated logarithm of 1/(r− z) are branch singularities and require similar contours. In the simplest
case, the contour, pictured in Figure 2.1, consists of an arc of a circle of radius 1/n around r, an
arc of a circle of radius r− ε centered at the origin, and two line segments connecting corresponding
endpoints of the two circular arcs.

εR− 1/n

ε

R

ε

Fig. 2.1. contour for an algebraic singularity and the corresponding region of analyticity

Among the many refinements of Darboux’ Theorem via such contours are the transfer theo-
rems of Flajolet and Odlyzko. Their paper [FO90] is masterfully written and worth taking a couple
of pages here to summarize. They begin by isolating the gist of (2.2), namely that an = O(n−bαc)
if f(z) = O(1− z)α. Already this allows for f not to be in any nice class of functions, as long as it
is bounded by a class we understand. Next, they use the above contour to improve this to a sharp
estimate,

f(z) = O(1− z)α ⇒ an = O(n−α−1) . (2.3)

Let alg-log denote the class of functions that are a product of a power of r−z, a power of log(1/(r−z))
and a power of log log(1/(r−z)). Flajolet and Odlyzko estimate an for any function in alg-log. Their
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last crucial observation is that the implication in (2.3) gives an explicit constant for the bound on
an based on the constant in the bound f(z) = O(1− z)α, which is sufficiently constructive to give

f(z) = o ((r − z)α) ⇒ an = o(n−α−1) .

The surprisingly strong consequence of this is that any f with an asymptotic expansion by functions
{gk} in alg-log has coefficients asymptotically given by summing the asymptotics of the coefficients
of the functions gk.

The main result of [FO90] begins by stating what analyticity assumption is necessary in order to
use the contour in Figure 2.1. Given a positive real R and ε ∈ (0, π/2), the so-called Camembert-
shaped region,

{z : |z| < R+ ε, z 6= R, | arg(z −R)| ≥ π/2− ε} ,

shown on the right of Figure 2.1, is defined so that it includes the contour in Figure 2.1.
Theorem 2.5. Let f(z) =

∑
anz

n be singular at R but analytic in a Camembert-shaped region. For
g(z) =

∑
bnz

n in the class alg-log, asymptotic relations between f and g as z → R imply estimates
on the coefficients as follows.

(i)

f(z) = O(g(z)) ⇒ an = O(bn) ;

(ii)

f(z) = o(g(z)) ⇒ an = o(bn) ;

(iii)

f(z) ∼ g(z) ⇒ an ∼ bn .

In particular, when f(z) ∼ C(r − z)α, this result subsumes Theorem 2.2.

We have indicated the arguments deriving the second and third part of the theorem from the
first. We now sketch, in the simplest case where g(z) = (1 − z)α, the upper estimate on an, which
appears as Corollary 2 of [FO90]. The integral over the large circular arc is small because z−n−1 is
exponentially small there. The integral over the small circular arc is O(n−α−1) because the integrand
is O(n−α) and the arc has length O(n−1). On the two radial line segments, the modulus of z−n−1

is small on the line segments except in a neighborhood of size O(1/n) of 1. Here, changing variables
to (z − 1)/n, one has an integral of the form

∫
A(z) exp(nφ(z)) dz from which one obtains (e.g., via

the well known Watson-Doetsch lemma [Hen91, Theorem 11.5]) a value

A(1)
n−α−1

Γ(−α)
. (2.4)

�
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Example 2.6 (Catalan numbers). Let an :=
1

n+ 1

(
2n
n

)
be the nth Catalan number. A great

many naturally occurring combinatorial classes are counted by this sequence: there is a list of 66 of
these in [Sta99, Problem 6.19]. The generating function for the Catalan numbers is

f(z) :=
∞∑

n=0

anz
n =

1−
√

1− 4z
2z

=
1− 2

√
1
4 − z

2z
.

There is an algebraic singularity at r = 1/4, near which the asymptotic expansion for f begins

f(z) = 2− 4

√
1
4
− z + 8(

1
4
− z)− 16(

1
4
− z)3/2 +O(

1
4
− z)2 .

Note that f/
√

1/4− z is not analytic in any disk of radius 1/4 + ε, since both integral and half-
integral powers appear in f , but f is analytic in a Camembert-shaped region. Theorem 2.5 thus gives
(note that the integral powers of (1− z) do not contribute):

an ∼
(

1
4

)1/2−n

n−3/2 −4
Γ(−1/2)

+
(

1
4

)3/2−n

n−5/2 −16
Γ(−3/2)

+O(n−7/2)

= 4nn−3/2 (−4)( 1
4 )1/2

Γ(−1/2)
+ 4nn−5/2 (−16)( 1

4 )3/2

Γ(−3/2)
+O(n−7/2)

= 4n

(
n−3/2

√
π

− n−5/2 3
2
√
π

+O(n−7/2)
)
.

We have given only a brief view of what is known in the univariate case. We close this section
with several more pointers to the literature.

One review of univariate asymptotics, that predates the work of Flajolet and Odlyzko but is still
quite useful, is [Ben74, part II]. The 1995 survey article by Odlyzko [Odl95] to which we have already
referred is somewhat more extensive. As mentioned before, contours such as the one in Figure 2.1
occur primarily in the univariate literature, but one recent extension to the multivariate setting,
via a product of these contours, occurs in [GW00]: their Lemma 3 gives a Darboux-type estimate
for the (n, k1, . . . , kj)-coefficient of a generating function asymptotic to (1 − z1)−α

∏j
i=1(1− zi)−βi

uniform as long as ki = O(n) for all i. Finally, the book [FS] is the most up to date, though it is
only available in electronic preprint form at this time.

3. New multivariate results. In [PW02; PW04; BP] the authors derived asymptotic for-
mulae for ar, as |r| → ∞, that are uniform as r/|r| varies over some compact set. It is useful to
separate r into the scale parameter |r|, which is a positive real number, and a direction parameter
r, which is an element of real projective space. Although r is always an element of the positive
orthant of Rd, it will sometimes make sense to consider it as an element of Cd. When convenient,
we identify r with its class r in projective space or its projection r̂ in the real (d− 1)-simplex ∆d−1,

12



the set {x ∈ (R+)d : |x| = 1} (where |x| :=
∑d

j=1 xj). Thus r may appear anywhere in the following
diagram, where O and O denote the positive orthants of Rd and RPd−1 respectively.

O Rd Cd

O RPd−1 CPd−1

∆d−1

- -

- -
? ? ?

?
̂

Quantities that depend on r only through its direction will be denoted as functions of r. The
results we will quote in this section may be informally summarized as follows. Recall that F = G/H.

(i) Asymptotics in the direction r are determined by the geometry of the pole variety V = {z :
H(z) = 0} near a finite set, critr, of critical points [Definition 3.3].

(ii) For the purposes of asymptotic computation, one may reduce this set of critical points
further to a set contribr ⊆ critr of contributing critical points, usually a single point
[Formula (3.4) and Definition 3.4].

(iii) One may determine critr and contribr by a combination of algebraic and geometric criteria
[Proposition 3.11 and Theorem 3.15 respectively].

(iv) Critical points may be of three types: smooth, multiple or bad [Definition 3.9].
(v) Corresponding to each smooth or multiple critical point, z, is an asymptotic expansion for

ar which is computable in terms of the derivatives of G and H at z [Sections 3.3 and 3.4
respectively].

The culmination of the above is the following meta-formula:

ar ∼
∑

z∈contribr

formula(z) (3.1)

where formula(z) is one function of the local geometry for smooth points and a different function
for multiple points. Specific instances of (3.1) are given in equations (3.6) – (3.13); the simplest case
is

ar ∼ C|r|
1−d
2 z−r

where C and z are functions of r. No general expression for formula (z) is yet known when z is a
bad point, hence the name “bad point”.

Fundamental to all the derivations is the Cauchy integral representation

ar =
1

(2πi)d

∫
T

z−r−1F (z) dz (3.2)
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where T is the product of sufficiently small circles around the origin in each of the coordinates, 1
is the d-vector of all ones, and dz is the holomorphic volume form dz1 ∧ · · · ∧ dzd. The gist of the
analyses in [PW02; PW04; BP] is the computation of this integral. The key step is to replace the
cycle T by a product T1 × T2, where the inner integral over T1 is a multivariate residue and the
outer integral over T2 is a saddle point integral. A complete asymptotic series may then be read
off in a straightforward manner by well known methods. The first subsection below explains what
critical points and contributing critical points are and gives the “big picture”, namely the topological
context as outlined in [BP]. The second subsection gives the specific definitions from [PW02] that
we need to find the contributing critical points (note: the question of sorting these into smooth,
multiple or bad critical points is addressed at the beginning of Section 4). Sections 3.3 and 3.4 quote
results from [PW02] and [PW04] that give asymptotics for smooth points if they are respectively
smooth or multiple. Section 3.5 restates some of these asymptotics in terms of probability limit
theorems.

3.1. Topological representation. As r → ∞, the integrand in (3.2) becomes large. It is
natural to attempt a saddle point analysis. That is, we try to deform the contour, T , so as to minimize
the maximum modulus of the integrand. If r̂ remains fixed, then the modulus of the integrand is
well approximated by the exponential term exp (−|r|(r̂ · log |z|)), where log |z| is shorthand for the
vector (log |z1|, . . . , log |zd|). This suggests that the real function

h(z) := −r̂ · log |z| (3.3)

be thought of as a height function in the Morse theoretic sense, and that we try to deform T so
that its maximum height is as low as possible. Stratified Morse Theory [GM88] solves the problem of
accomplishing this optimal deformation. We now give a brief summary of this solution; for details,
consult [BP].

The variety V may be given a Whitney stratification. If V is already a manifold (which is the
generic case), there is just a single stratum, but in general there may be any finite number of strata,
even in two dimensions. The set of smooth points of V always constitutes the top stratum, with the
set of singular points decomposing into the remaining strata, each stratum being a smooth manifold
of lower complex dimension. To illustrate some of the possibilities, we give two examples; for further
details on Whitney stratification, see [GM88, Section I.1.2].
Example 3.1 (complete normal intersection). Let V be the variety where (1− x)(1− y)(1− z)
vanishes. The smooth points are those where exactly one of x, y or z is equal to 1. There are three
one-dimensional strata where two but not all of 1−x, 1−y and 1−z vanish, and one zero-dimensional
stratum at (1, 1, 1).
Example 3.2 (isolated singular point). Let V be the variety {1− x− y − z + 4xyz = 0}. This
has a zero-dimensional stratum at its unique singularity, ( 1

2 ,
1
2 ,

1
2 ); everything else constitutes the

two-dimensional stratum.

In each stratum, there is a finite set of critical points, namely points where the gradient of the
14



height function restricted to the stratum vanishes. Since the height function depends on r via r̂, the
set of critical points may be defined as a function of r̂ or equivalently of r:
Definition 3.3 (critical points). If S is a stratum of V, define the set critr(S) of critical points
of S for H in direction r to be the set of z ∈ S for which ∇h|S(z) = 0. The set critr of all critical
points of V is defined as the union of critr(S) as S varies over all strata.

If S has dimension k then the condition ∇h|S = 0 defines an analytic variety of co-dimension k.
Generically, then, critr(S) is zero-dimensional, that is, finite. It does happen sometimes that for a
small set of values of r the critical set is not finite; for example this happens when V is a binomial
variety {z : za − zb = 0}, in which case ∇h|S vanishes everywhere on S for a particular r and
nowhere on S for other values of r. We address such a case in Section 4.11. Aside from that, such a
degeneracy does not occur among our examples and a standing assumption (3.6 below) will ensure
that it does not cause trouble in any case.

If F is a rational function, then the critical points are a finite union of zero-dimensional varieties,
so elimination theory (see, e.g., [CLO05, Chapters 1 and 2]) will provide, in an automatic way,
minimal polynomials for the critical points; see Proposition 3.11 below. So as to refer to them later,
we enumerate the critical points as {z(1), . . . , z(m)}.

Let M denote the domain of holomorphy of the integrand in (3.2), that is,

M := Cd \

z : H ·
d∏

j=1

zj = 0

 .

The topology of M is determined by neighborhoods of the critical points of V (the complement of
M) in a manner we now describe. Given a real number c, let Mc denote the set of points of M
with height less than c. Let M+ denote the Mc for some c greater than the greatest height of any
critical point and let M− denote Mc for some c less than the least height of any critical point.
If the interval [c, c′] does not contain a critical value of the height function, then Mc is a strong
deformation retract of Mc′ , so the particular choices of c above do not matter to the topology and
hence to the evaluation of the integral (3.2).

Let X denote the topological pair (M+,M−). The homology group Hd(X) is generated by the
homology groups Hd(Mc′ ,Mc′′) as [c′, c′′] ranges over a finite set of intervals whose union contains
all critical values. These groups in turn are generated by quasi-local cycles. At any critical point
z(i) in the top stratum, the quasi-local cycle is the Cartesian product of a patch Pi diffeomorphic
to Rd−1 inside V, and whose maximum height is achieved at z(i), with an arbitrarily small circle γi

transverse to V.

Thus for example when d = 2, the quasi-local cycles near smooth points look like pieces of
macaroni: a product of a circle with a rainbow shaped arc whose peak is at z(i). We have not
described the quasi-local cycles for non-maximal strata, but for a description of the quasi-local
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Fig. 3.1. a piece of a quasi-local cycle at top-dimensional critical point

cycles in general, one may look in [BP] or [GM88]4.

Since the quasi-local cycles generate Hd(M+,M−), it follows that the integral (3.2) is equal to
an integer linear combination ∑

ni

∫
Ci

z−r−1F (z) dz (3.4)

where Ci is a quasi-local cycle near z and T =
∑
niCi in Hd(M+,M−). When z is in the top

stratum, i.e., z is a smooth point of V, then Ci = Pi× γi, the product of a d-patch with a transverse
circle, so the integral may be written as

∫
Pi

∫
γi

exp[−|r|h(z)]F (z) dz. The inner integral is a simple
residue and the outer integral is a standard saddle point integral. The asymptotic evaluation of ar
is therefore solved if we can compute the integers ni in the decomposition of T into

∑
niCi. Observe

that the contribution from z(i) is of exponential order no greater than exp(h(z(i))). It turns out
(Theorem 3.19 and the formulae of Section 3.4) that for smooth and multiple points, this is a lower
bound on the exponential order as well, provided, in the multiple point case, that G(z(i)) 6= 0. Thus
if ni 6= 0, one may ignore any contributions from z(j) with h(z(j)) < h(z(i)) and still obtain an
asymptotic expansion containing all terms not exponentially smaller than the leading term.
Definition 3.4 (contributing critical points). The set contrib = contribr of contributing critical
points is defined to be the set of z(i) such that ni 6= 0 and nj = 0 for all j with h(z(j)) > h(z(i)). In

4For generic r, the function h is Morse. Each attachment map is a d-dimensional complex, so the attachments

induce injections on Hd(X). It may happen for some r that h is not Morse, but in this case one may understand

the local topology via a small generic perturbation. Two or more critical points may merge, but the fact that the

attachments induce injections on Hd(X) implies that such a merger produces a direct sum in Hd(X); in particular, it

will be useful later to know that a cycle in the merger is nonzero if and only if at least one component was nonzero.
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other words, the contributing critical point(s) are just the highest ones with nonzero coefficients, ni.
Note that if there is more than one contributing critical point, all must have the same height.

The problem of computing the topological decomposition may in general be difficult and no
complete solution is known. In two dimensions, in the case where V is globally smooth, an effective
algorithm is known for finding the contributing critical points. The algorithm follows approximate
steepest descent paths; the details are not yet published [vdHP]. In any dimension, if the variety V
is the union of hyperplanes, it is shown in [BP] how to evaluate all the ni; see also some preliminary
work on this in [BM93]. In the case where V is not smooth, while no general solution is known, we
may still state a sufficient condition for the critical point z(i) to be a contributing critical point. It
is to these geometric sufficient conditions that we turn next.

3.2. Geometric criteria. Let F,G,H and ar be as in (1.3). If ar ≥ 0 for all r, we say we are
in the combinatorial case. We assume throughout that G and H are relatively prime in the ring
of analytic functions on the domain of convergence of F . We wish to compute the function contrib

which maps directions in O to finite subsets of V (often singletons). The importance of minimal
points, defined below, is that when contribr̄ contains a minimal point, this point may be identified
by a variational principle.
Definition 3.5 (notation for polydisks and tori). Let D(z) and T(z) denote respectively the
polydisk and torus defined by

D(z) := {z′ : |z′i| ≤ |zi| for all 1 ≤ i ≤ d} ;

T(z) := {z′ : |z′i| = |zi| for all 1 ≤ i ≤ d} .

The open domain of convergence of F is denoted D and is the union of tori T(z). The logarithmic
domain of convergence, namely those x ∈ Rd with (ex1 , . . . , exd) ∈ D, is denoted logD and is always
convex [Hör90]. The image {log |z| : z ∈ V} of V under the coordinatewise log-modulus map is
denoted logV (this is sometimes called the amoeba of V [GKZ94]).
Standing assumption 3.6. We assume throughout that logD is strictly convex, that is, its boundary
contains no line segment.

This ensures that hr̂ is always uniquely minimized on ∂logD. The assumption is satisfied in all
examples in this paper. It is a consequence of logV containing no line segments, which is true in all
examples outside of Section 4.11. This may be checked by computer algebra; we do not include the
checking of this fact in our worked examples.
Definition 3.7 (minimality). A point z ∈ V is minimal if all coordinates are nonzero and the
relative interior of the associated polydisk contains no element of V, that is, V ∩ D(z) ⊆ ∂D(z).
More explicitly, zi 6= 0 for all i and there is no z′ ∈ V with |z′i| < |zi| for all i. The minimal point z
is said to be strictly minimal if it is the only point of V in the closed polydisk: V ∩D(z) = {z}.
Remark. This definition is equivalent to the apparently stronger definition of minimality stated
in [PW02], namely that V ∩D(z) ⊆ T(z) – see Proposition 3.12.
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Proposition 3.8 (minimal points in contrib). Recall the standing assumption 3.6.

(i) A point z ∈ V with nonzero coordinates is minimal if and only if z ∈ ∂D.
(ii) All minimal points in contribr must lie on the same torus and the height hr̂(z) of the point(s)

in contribr are at most the minimum, c, of the height function hr on ∂D.
(iii) If z ∈ contribr ∩ ∂D, then the hyperplane normal to r at log |z| is a support hyperplane to

logD.

To summarize, if contribr contains any minimal points, then these points minimize hr on D and they
all project, via coordinatewise log-modulus, to a single point of ∂logD where the support hyperplane
is normal to r.

Proof. A power series converges absolutely on any open polydisk about the origin in which it is
analytic; this can be seen by using Cauchy’s formula (3.2) to estimate ar. Thus any minimal point
is in the closure of D. A series cannot converge at a pole, so z /∈ D and the first assertion follows.

To prove the second assertion, by strict convexity there is a unique z ∈ ∂D that minimizes h.
Let H be the homotopy {tT(z) : ε ≤ t < 1 − ε}. This may be extended to a homotopy H′ that
pushes the height below c − ε except in small neighborhoods of V ∩ T(z). Thus the small torus T
in (3.2) is homotopic to a cycle in the union of Mc−ε and a neighborhood of V ∩ T(z). Sending
ε→ 0, it follows that contrib has height at most c. If there is a line segment in ∂logD, it is possible
that the minimum height on D occurs on more than one torus, but in this case, if z and w are on
different such tori, the above argument shows that neither z nor w can be in contribr.

The third assertion is immediate from the fact that log |z| minimizes the linear function hr̂ on
the convex set logD.

Having characterized contribr when it is in ∂D, via a variational principle, we now relate this to
the algebraic definition of critr which is better for symbolic computation. It is easy to write down
the inverse of critr, which we will denote by L.
Definition 3.9 (geometry of minimal points). Say that z is a smooth point of V if V is a
manifold in a neighborhood of z. Say that z is a multiple point of V if V is the union of finitely
many manifolds near z intersecting transversely (that is, normals to any k of these manifolds span
a space of dimension min{k, d}). Points that are neither smooth nor multiple are informally called
bad points.
Remark. The transversality assumption streamlines the arguments but is not really needed (see,
e.g., [BP]).
Definition 3.10 (the linear space L). Let z ∈ V be in a stratum S. Let L(z) ⊆ CPd−1 denote the
span of the projections of vectors (z1v1, . . . , zdvd) as v ranges over vectors orthogonal to the tangent
space of S at z.

The Figure 3.2 gives a pictorial example of the foregoing definitions (some parts of the figure
refer to Definition 3.13 below). The singular variety V for the function F (x, y) = 1/[(3−x−2y)(3−
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2x − y)] is composed of two complex lines meeting at (1, 1). The crossing point z0 := (1, 1) is a
singleton stratum. The following proposition, showing why L is important, follows directly from the
definitions.

Fig. 3.2. direction L(z) for positive real points of V when 1/F = (3− x− 2y)(3− 2x− y)

Proposition 3.11 (L inverts crit). The point z is in critr if and only if r ∈ L(z). If z is a smooth
point, then (replacing H by its radical if needed), L(z) is the singleton set (in projective space)

L(z) = {∇logH(z)} :=
{(

z1
∂H

∂z1
(z), . . . , zd

∂H

∂zd
(z)
)}

while the set critr is the (usually zero-dimensional) variety given by the d equations

H = 0

rdzj
∂H

∂zj
= rjzd

∂H

∂zd
(1 ≤ j ≤ d− 1) (3.5)

If z is a multiple point, then L(z) is the span of the vectors

∇logHk(z) :=
(
z1
∂Hk

∂z1
(z), . . . , zd

∂Hk

∂zd
(z)
)

where H =
∏

k Hk. �

Connecting this up to the variational principle, we have:
Proposition 3.12 (smooth minimal points are critical). If z is minimal and smooth then
L(z) ∈ O and is normal to a support hyperplane to logD at log |z|. Consequently, a minimal smooth
point z is a critical point for some outward normal direction to logD at log |z|.

Proof. Assume first that none of the logarithmic partial derivatives hj := zj∂H/∂zj vanishes at
z. Suppose the arguments of two of the partials hk and hl are not equal. Since we have assumed no
hj vanishes, there is a tangent vector v to V with vj = 0 for j /∈ {k, l} and vk 6= 0 6= vl. We may
choose a multiple of this so that vkhk and vlhl both have negative real parts. Perturbing slightly,
we may choose a tangent vector v to V at z with all nonzero coordinates so that vjhj has negative
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real part for all j. This implies there is a path from z on V such that the moduli of all coordinates
strictly decrease, which contradicts minimality. It follows that all arguments of hj are equal, and
therefore that L(z) is a point of O ⊆ CPd; hence it is normal to a support hyperplane to logD at
log |z|.

Now, suppose hj = 0 for j in some nonempty set, J . Let x = log |z|. Vary {zj : j /∈ J} by Θ(ε)
so as to stay on V, varying {zj : j ∈ J} by O(ε2). We see that the complement of logD contains
planes arbitrarily close to the |J |-dimensional real plane through x in directions {ej : j ∈ J}, whence
the closure of the complement contains this plane. But by monotonicity, the orthant of this plane
in the −ej directions must be in the closure of logD. Thus this orthant is in ∂logD, whence there is
a lifting of this orthant to V. Now the argument by contradiction in the previous paragraph shows
that if the arguments of hk and hl are unequal for some k, l /∈ J , then we may move on V so the
moduli of the zj for j /∈ J strictly decrease, while moving down the lifting of the orthant allows us
also to decrease the moduli of the zj for j ∈ J , and we have again contradicted minimality.

Having related critical points to L(z) ⊆ CPd−1, we now relate contributing critical points to a
set K(z) ⊆ RPd−1. An open problem is to find the right definition of K(z) when z is not minimal.
Definition 3.13 (the cone K of a minimal point). If z is a smooth point of V in ∂D, let dir(z)
be defined as L(z), which is in O by Proposition 3.12. For minimal z ∈ V, not necessarily smooth,
define K(z) to be the convex hull of the set of limit points of dir(w) as w → z through smooth
points.

For an example of this, see Figure 3.2, in which arrows are drawn depicting K(z) for smooth
points z in the positive real quadrant and the two-dimensional cone K(z0) is shaded. The next
proposition then follows from Proposition 3.11 and basic properties of convex sets.
Proposition 3.14 (description of K). Let z be a minimal point.

(i) K(z) ⊆ L(z) ∩ O.
(ii) If z is a smooth or multiple point, then K(z) is the cone spanned by the vectors ∇logHk of

Proposition 3.11.
(iii) If a neighborhood of z in V covers a neighborhood of log |z| in ∂logD, then K(z) is the set

of outward normals to logD at log |z|.

The first nontrivial result we need is:
Theorem 3.15 (K inverts contrib). Let z be a minimal point and either smooth or multiple. Then
r ∈ K(z) if and only if z ∈ contribr, provided, in the multiple point case, that G(z) 6= 0.
Remark. Here, rather than global meromorphicity, it is only required that F be meromorphic in a
neighborhood of D(z); see [PW02] and [PW04] for details.

Proof. Assume first that z is strictly minimal, that is, T(z) ∩ V = {z}.

Suppose for now that r is in the relative interior of K(z). Theorems [PW02, Theorem 3.5]
and [PW04, Theorems 3.6 and 3.9] give expressions for ar which are of the order |r|βz−r, relying, in
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the multiple point case, on the assumption of transverse intersection, which we have built into our
definition of multiple point, and on G(z) 6= 0.

On one hand, it is evident from (3.2) that

ar = O (exp [|r|(hr̂(w) + ε)])

for any ε > 0, where w ∈ contribr. On the other hand, we know by Proposition 3.8 that no points
higher than z are in contribr. Since contribr is nonempty, we conclude that it has points at height
hr̂(z), whence from the expressions for ar again, we see that z ∈ contribr.

In the case r ∈ ∂K(z) consider r′ → r through the interior of K(z) (here we mean relative
boundary and relative interior). There will be a contributing point z′ which converges to z. The
coefficient of the quasi-local cycle at z in the limit must be nonzero (see footnote 4). The theorem
is now proven for strictly minimal points.

To remove the assumption of strict minimality, one must verify that this was not necessary for
the formulae we quoted from [PW02; PW04]. These formulae were proved by reducing the Cauchy
integral to an integral over a neighborhood N of a (d− 1)-dimensional subset Θ of V. It is pointed
out [PW02, Corollary 3.7] that it is sufficient to assume finite minimality, that is, finiteness of
T(z) ∩ V. In fact, one needs only finiteness of T(z) ∩ Θ, since the truncation of the integral to N
incurs a boundary term that is sufficiently small as long as Θ avoids T(z). The remaining case,
where Θ ∩ T(z) is infinite, can be handled by contour rotation arguments, but since that work is
not yet published, we point out here that in the case d = 2 (the only case used in this survey), the
set Θ is one-dimensional. Thus when Θ ∩T(z) is infinite, the set Θ must be a subset of T(z); the
integrals in [PW02; PW04] may then be taken over all of Θ with no truncation.

We have remarked earlier that the main challenge in computing asymptotics is to identify
contribr. Our progress to this point is that we may find all strictly minimal smooth or multiple
points in contribr by solving the equation r ∈ K(z) for z. This equation may be solved automat-
ically when F is a rational function and is often tractable in other cases, for example in the case
F = (ex − ey)/(xey − yex) of Section 4.7.

To complement this, we would like to know when solving r ∈ K(z) and checking for minimality
does indeed find all points of contribr. It cannot, for instance, do so if there are no minimal
contributing points. Thus we ask (a) are there any minimal points z with K(z) = r, (b) are all the
contributing points minimal, and (c) is there more than one minimal point? It turns out that the
answers are, roughly: (a) yes, in the combinatorial case, (b) yes as long as (a) is true, by part (ii) of
Proposition 3.8, and (c) rarely (we know they are never on different tori).

Let Ξ ⊆ O denote the set of all normals to support hyperplanes of logD. If the restriction of
F to each coordinate hyperplane is not entire, then Ξ is the entire nonnegative orthant. This is
because logD has support hyperplanes parallel to each coordinate hyperplane. When Ξ is not the
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whole orthant, then in directions r /∈ O, the quantity ar is either identically zero or decays faster
than exponentially (this follows, for example, from [PW04, (1.2)], since −r̂ · log |z| is not bounded
from below on D).
Theorem 3.16 (existence of minimal points in the combinatorial case). Suppose that we
are in the combinatorial case, ar ≥ 0. Under the standing assumption 3.6, for every r in the interior
of Ξ, there is a minimal point z ∈ V which lies in the positive orthant of Rd and has r ∈ K(z).
Remark. At this point, it is clear how far one can generalize beyond rational functions. Given a
compact set K ⊆ Ξ in which one wishes to find asymptotics. Let logD(K) denote the set of all x
such that x ≤ y coordinatewise for some y ∈ ∂logD whose normal direction is in K. Let D(K) be
the inverse image under the coordinatewise log-modulus map of logD(K). Then, in the combinatorial
case, for the existence of a minimal point z in the positive orthant with r ∈ K(z), it is sufficient
that F be meromorphic in a neighborhood of D(K).

Proof. We follow the proof of [PW02, Theorem 6.3]. For any r in the interior of Ξ there is a
point x ∈ ∂logD with a support hyperplane normal to r. Let zi = exi so z is a real point in ∂D. We
claim that z ∈ V. To see this, note that there is a singularity on T(z), which must be a pole by the
assumption of meromorphicity on a neighborhood of D(z). Together, ar ≥ 0 and lack of absolute
convergence of the series on T(z) imply that F (w) converges to +∞ as w → z from beneath. By
meromorphicity, z is therefore a pole of F , so z ∈ V.

We conclude that there is a lifting of ∂logD to the real points of V, that is, a subset of the
real points of V maps properly and one to one onto ∂logD. By the last part of Proposition 3.14, it
follows that r ∈ K(z), and hence from Theorem 3.15 that z ∈ contribr̄.
Remark. By convexity of logD, the point z ∈ Od∩crit(r) in Theorem 3.16 is unique unless there is
a line segment in ∂logD. In this case there is a continuum of such z. Since in almost every example
the critical point variety is finite, there will be precisely one critical point in the positive orthant.
Thus in practice we will have no difficulty in determining the point z.

We say that a power series P is aperiodic if the sublattice of Zd of integer combinations of
exponent vectors of the monomials of P is all of Zd. By a change of variables, we lose no generality
from the point of view of generating functions if we assume in the following proposition that P is
aperiodic.
Proposition 3.17 (often, every minimal point is strictly minimal). If H = 1− P where P
is aperiodic with nonnegative coefficients, then every minimal point is strictly minimal and lies in
the positive orthant.

Proof. Suppose that z = xeiθ, with θ 6= 0, is minimal. Since z ∈ V, we have

1 =

∣∣∣∣∣∣
∑
r6=0

arxr exp(ir · θ)

∣∣∣∣∣∣
≤
∑
r6=0

arxr .
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Thus z can be strictly minimal only if θ = 0.

Equality holds in the above inequality if and only if either there is only one term in the latter
sum, or, in case there is more than one such term, if exp(ir · θ) = 1 whenever ar 6= 0. The former
case occurs precisely when P has the form cxr and the latter can occur on when P has the form
P (z) = g(zb) for some b 6= 0, both of which are ruled out by aperiodicity.

We restate the gist of Theorem 3.16 and Proposition 3.17 as the following corollary.
Corollary 3.18. If H = 1 − P with P aperiodic and having nonnegative coefficients, then the
contributing critical points as r varies are precisely the points of V ∩ Od that are minimal in the
coordinatewise partial order. The point z is in contribr exactly when r ∈ K(z).

Without the assumption H = 1 − P , assuming only ar ≥ 0, the same holds except that there
might be more contributing critical points on the torus T(z).

3.3. Asymptotic formulae for minimal smooth points. It is shown in [PW02] how to
compute the integral (3.2) when r is fixed and contribr is a finite set of smooth points on a torus.
Given a smooth point z ∈ V, let f̃z be the map on a neighborhood of the origin in Rd−1 taking the
origin to zero and taking (θ1, . . . , θd−1) to logw for w such that(

z1e
iθ1 , . . . , zd−1e

iθd−1 , zdw
)
∈ V .

The following somewhat general result is shown in [PW02, Theorem 3.5].
Theorem 3.19 (smooth point asymptotics). Let K ⊂ Ξ be compact, and suppose that for
r ∈ K, the set contribr is a single smooth point z(r) and that f̃z has nonsingular Hessian (matrix
of second partial derivatives). Then there are effectively computable functions bl(r) such that

ar ∼ z(r)−r
∑
l≥0

bl(r)(rd)−(l+d−1)/2 (3.6)

as an asymptotic expansion when |r| → ∞, uniformly for r ∈ K.
Remark. In connection with Theorem 3.19, the following points should be noted.

(i) The coefficients bl depend on the derivatives of G and H to order k + l − 1 at z(r), and
b0(r) = 0 if and only if G(z(r)) = 0.

(ii) The sum on the right of equation 3.6 may be rewritten as a sum of b∗l (r)|r|−(l+d−1)/2 where
b∗l = r̂−(l+d−1)/2

d bl, in order to see what depends on r̂ and what depends on |r|.
(iii) Suppose contribr is a finite set of points z(1), . . . z(k), satisfying the hypotheses of the theo-

rem. Then one may sum (3.6) over these, obtaining

ar ∼
∑

k

z(k)(r)−r
∑
l≥0

b∗k,l(r)|r|−(l+d−1)/2 .

Theorem 3.19 is somewhat messy: even when l = 1, the combination of partial derivatives of
G and H is cumbersome, though the prescription for each bl in terms of partial derivatives of G
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and H is completely algorithmic for any l and d. In the applications herein, we will confine our
asymptotic computations to the leading term. The following expression for the leading coefficient is
more explicit than (3.6) and is proved in [PW02, Theorems 3.5 and 3.1].
Theorem 3.20 (smooth point leading term). When G(z(r)) 6= 0, the leading coefficient is

b0 = (2π)(1−d)/2H−1/2 G(z(r))
−zd∂H/∂zd

(3.7)

where H denotes the determinant of the Hessian of the function f̃z at the origin.
Corollary 3.21. In particular, when d = 2 and G(z(r)) 6= 0, we have

ars ∼
G(x, y)√

2π
x−ry−s

√
−yHy

sQ(x, y)
(3.8)

where (x, y) = z((r, s)) and Q(x, y) is defined to be the expression

−(xHx)(yHy)2 − (yHy)(xHx)2 −
[
(yHy)2x2Hxx + (xHx)2y2Hyy − 2(xHx)(yHy)xyHxy

]
. (3.9)

�

Remark. In the combinatorial case, the expression in the radical will be positive real (this is true
for more general F with correct choice of radical). The identity ryHy = sxHx (see Proposition 3.11)
shows that the given expression for ars, though at first sight asymmetric in x and y, has the expected
symmetry.

3.4. Multiple point asymptotics. Throughout this section, z will denote a minimal multiple
point. We will let m denote the number of sheets of V intersecting at z and let

H =
m∏

j=1

Hnk

k (3.10)

denote a local representation of H as a product of nonnegative integer powers of functions whose
zero set is locally smooth. For 1 ≤ k ≤ m, let b(k) denote the vector whose jth component is
zj∂Hk/∂zj .

We divide the asymptotic analysis of ar into two cases, namely m ≥ d and m < d. In the
former case, since we have assumed transverse intersection at multiple points, the stratum of z is
just the singleton {z}. The asymptotics of ar are simpler in this case. In fact it is shown in [Pem00,
Theorem 3.1] that

ar = z−r (P (r) + E(r)) (3.11)

where P is piecewise polynomial and E decays exponentially on compact subcones of the interior of
K(z). We begin with this case.

We will state three results in decreasing order of generality. The first is completely general, the
second holds in the special case m = d and nk = 1 for all k ≤ m, and the last holds for m = d = 2 and
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n1 = n2 = 1. Our version of the most general result provides a relatively simple formula from [BP]
but under the more general scope of [PW04].
Definition 3.22. Let M =

∑m
k=1 nk and for 1 ≤ j ≤ M let tj be integers so that the multi-

set {t1, . . . , tM} contains nk occurrences of k for 1 ≤ k ≤ m. Define a map Ψ : RM → Rd by
Ψ(ej) = b(tj). Let λM be Lebesgue measure on OM and let P (x) be the density at x of the push-
forward measure λM ◦Ψ with respect to Lebesgue measure under Ψ. The function P is a piecewise
polynomial of degree M −d, the regions of polynomiality being no finer than the common refinement
of triangulations of the set {b(k) : 1 ≤ k ≤ m} in RPd−1 [BP, definition 5].

The above definition of P is a little involved but is made clear by the worked example in
Section 4.11. Armed with this definition, we may say what happens when there are d or more sheets
of V intersecting at a single point.
Theorem 3.23 (isolated point asymptotics). If m ≥ d and z is a minimal point in a singleton
stratum, with G(z) 6= 0, then uniformly over compact subcones of K(z),

ar ∼ G(z)P
(
r1
z1
, . . . ,

rd
zd

)
z−r , (3.12)

provided that contribr contains only z. This formula may be summed over contribr as long as
contribr has finite cardinality.

In the case z = 1, (3.12) reduces further to

ar ∼ G(1)P (r) .

If, furthermore, ar/G(1) are integers, then ar/G(1) is actually a piecewise polynomial whose leading
term coincides with that of P (r).

Proof. First assume z is strictly minimal. Theorem 3.6 of [PW04] gives an asymptotic expression
for ar valid whenever z is a strictly minimal multiple point in a singleton stratum. The formula,
while not impossible to use, is not as useful as the later formula given in [BP, equation (3.8)]. This
latter equation was derived under the assumption that H is a product of linear polynomials. Noting
that the formula in [PW04, Theorem 3.6] depends on H only through the vectors {b(k) : 1 ≤ k ≤ m},
we see it must agree with [BP, equation (3.8)] which is (3.12). The last statement of the theorem
follows from (3.11).

To remove the assumption of strict minimality, suppose that z is minimal but not strictly
minimal and that there are finitely many points z(1), . . . , z(k) in contribr, necessarily all on a torus.
The torus T in (3.2) may be pushed out to (1+ε)T(z) except in neighborhoods of each z(j). The same
sequence of surgeries and residue computation in the proofs of [PW04, Proposition 4.1, Corollary 4.3
and Theorem 4.6] now establish Theorem 3.6 of [PW04] without the hypothesis of strict minimality,
and as before one obtains (3.12) from (3.8) of [BP].
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While this gives quite a compact representation of the leading term, it may not be straightfor-
ward to compute P from its definition as a density. When M = m = d, P is a constant and the
computation may be reduced to the following formula.
Corollary 3.24 (simple isolated point asymptotics). If m = d and each nk = 1 in (3.10),
then if G(z) 6= 0, and z is a minimal point in a singleton stratum, then

ar ∼ G(z)z−r |J |−1

where J is the Jacobian matrix (∂Hi/∂zj). This formula may be summed over finitely many points
as in the remark following Theorem 3.19.

Occasionally it is useful to have a result that does not depend on finding an explicit factorization
of H. The matrix J can be recovered from the partial derivatives of H. The result of this in the
case m = d = 2 is given by the following formula [PW04, Theorem 3.1].
Corollary 3.25 (simple isolated point asymptotics, dimension 2). If M = m = d = 2, and
if G(z) 6= 0, then setting z = (x, y),

ars ∼ x−ry−s G(x, y)√
−x2y2H

where H := HxxHyy −H2
xy is the determinant of the Hessian of H at the point (x, y). In the special

but frequent case x = y = 1 we have simply

ars ∼
G(1, 1)√
−H

.

This formula may be summed over finitely many points as in the second remark following Theo-
rem 3.19.

Finally, we turn to the case m < d. In this case, z is in a stratum containing more than just
one point. The leading term of ar is obtained by doing a saddle point integral of a formula such
as (3.12) over a patch of the same dimension as the stratum. Stating the outcome takes two pages
in [PW04]. Rather than give a formula for the resulting constant here, we state the asymptotic form
and refer the reader to [PW04, Theorem 3.9] for evaluation of the constant, b0.
Theorem 3.26. Suppose that as r varies over a compact subset K of O, the set contribr is always a
singleton varying over a fixed stratum of codimension m < d. If also z(r) remains a strictly minimal
multiple point, with each smooth sheet being a simple pole of F , and if G(z) 6= 0 on K, then

ar ∼ z(r)−rb0(r)|r|
m−d

2 (3.13)

uniformly as |r| → ∞ in K.

3.5. Distributional limits. Of the small body of existing work on multivariate asymptotics,
a good portion focuses on limit theorems. Consider, for example, the point of view taken in [Ben73;
BR83] and the sequels to those papers [GR92; BR99], where one thinks of the the numbers ar
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as defining a sequence of (d − 1)-dimensional arrays, the kth of which is the horizontal slice
{ar : rd = k} (cf. Section 1.2). Often this point of view is justified by the combinatorial application,
in which the last coordinate, rd, is a size parameter, and one wishes to understand rescaled limits
of the horizontal slices. Distributional limit theory assumes nonnegative weights ar, so for the
remainder of this section we assume we are in the combinatorial case, ar ≥ 0.

If Ck :=
∑

r : rd=k ar <∞ for all k, we may define the slice distribution µk on (d− 1)-vectors to
be the probability measure giving mass ar/Ck to the vector (r1, . . . , rd−1) in the kth slice. There
are several levels of limit theorem that may be of interest. A weak law of large numbers (WLLN) is
said to hold if the measures A 7→ µk( 1

kA) converge to a point mass at some vector m (here, division
of A by k means division of each element by k). Equivalently, a WLLN holds if and only if for some
mean vector m, for all ε > 0,

lim
k→∞

µk

{
r :
∣∣∣ r
k
−m

∣∣∣ > ε
}

= 0 . (3.14)

Stronger than this is Gaussian limit behavior. As r varies over a neighborhood of size
√
k about

km with rd held equal to k, formula (3.6) takes on the following form:

ar ∼ C|r|(−(d−1)/2 exp [φ(r)] .

Here the factor C|r|−(d−1)/2 varies only by o(1) when r varies by O(
√
k), and

φ(r) := −r · log |z(r)| ,

or just −r · log z(r) when z(r) is real. The WLLN identifies the location rmax at which φ takes its
maximum for rd held constant at k. A Taylor expansion then gives

exp [φ(rmax + s)− φ(rmax)] = exp
[
−B(s)

2k

]
(3.15)

for some nonnegative quadratic form, B. Typically B will be positive definite, resulting in a local
central limit theorem for {µk}.

Unfortunately, the computation of B, though straightforward from the first two Taylor terms of
H, is very messy. Furthermore, it can happen that B is degenerate, and there does not seem to be a
good test for this. As a result, existing limit theorems such as [BR83, Theorems 1 and 2] and [GR92,
Theorem 2] all contain the hypothesis “if B is nonsingular”. Because of the great attention that
has been paid to Gaussian limit results, we will state a local central limit result at the end of this
section. But since we cannot provide a better method for determining nonsingularity of B, we will
not develop this in the examples.

Distributional limit theory requires the normalizing constants Ck be finite. We make the slightly
stronger assumption that ar = 0 when r/rd is outside of a compact set K. We define the map

r 7→ r∗ :=
(
r1
rd
, . . . ,

rd−1

rd

)
,
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which will be more useful for studying horizontal slices than was the the previously defined projection
r 7→ r̂.
Theorem 3.27 (WLLN). Let F be a d-variate generating function with nonnegative coefficients,
and with as = 0 for s/sd outside some compact set K. Let f(x) = F (1, . . . , 1, x). Suppose f

has a unique singularity x0 of minimal modulus which is a simple pole. Let r = dir(x), where
x = (1, . . . , 1, x0). If F is meromorphic in a neighborhood of D(x), then the measures {µk} satisfy
a WLLN with mean vector r∗ := (r1/rd, . . . , rd−1/rd).

Proof. We begin by showing that logD has a unique normal at log |x|, which is in the direction
r. We know that x0 is positive real, since f has nonnegative coefficients. The proof of Theorem 3.16
showed that a neighborhood N of x in V maps, via log-moduli, onto a neighborhood of log |x| in
∂logD. Since x0 is a simple pole of f , we see that N is smooth with a unique normal ∇H(x), whence
logD has the unique normal direction r at log |x|.

We observe next that
∑

k Ckx
k = f(x), whence, via Theorem 2.2, Ck ∼ cx−k

0 . Thus Theo-
rem 3.27 will follow once we establish:

lim sup
k

1
k

log

 ∑
s:sd=k,s∗∈K,|s∗−r∗|>ε

as

 < − log x0 . (3.16)

Each s∗ ∈ K with |s∗− r∗| ≥ ε is not normal to a support hyperplane at log |x|, so for each such
s∗ there is a y ∈ ∂logD for which

hs∗(y) < hs∗(x) = − log x0 . (3.17)

By compactness of {s∗ ∈ K : |s∗ − r∗| ≥ ε} we may find finitely many y such that one of these,
denoted y(s∗), satisfies (3.17) for any s∗. By compactness again,

sup
s∗

hs∗(y(s∗)) < − log x0 .

It follows from the representation (3.2), choosing a torus just inside T(y) for y as chosen above
depending on s, that |s|−1 log as is at most − log x0 − δ for some δ > 0 and all sufficiently large s
with |s∗ − r∗| ≥ ε. Summing over the polynomially many such s with sd = k proves (3.16) and the
theorem.

Coordinate slices are not the only natural sections on which to study limit theory. One might,
for example study limits of the sections {ar : |r| = k}, that is, over a foliation of (d − 1)-simplices
of increasing size. The following version of the WLLN is adapted to this situation. The proof is
exactly the same when slicing by |r| or any other linear function as it was for slicing by rd.
Theorem 3.28 (WLLN for simplices). Let F be a d-variate generating function with nonnega-
tive coefficients. Let f(x) = F (x, . . . , x). Suppose f has a unique singularity x0 of minimal modulus
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which is a simple pole. Let r = dir(x), where x = (x0, . . . , x0). If F is meromorphic in a neighbor-
hood of D(x), then the measures {µ′k}, defined analogously to µk but over the simplices {|r| = k},
satisfy a WLLN with mean vector r̂. �

We end with a statement of a local central limit theorem.
Theorem 3.29 (LCLT). Let F, f, x0,x, r and r∗ be as in Theorem 3.27. Suppose further that
contribr is the singleton, {x}. If the quadratic form B from (3.15) is nonsingular, then

lim
k→∞

k(d−1)/2 sup
r
|µk(r)− nB(r)| = 0 (3.18)

where

nB(r) := (2π)−(d−1)/2 det(B)−1/2 exp
(
−1

2
B(r)

)
. (3.19)

is the discrete normal density. �

4. Detailed examples. In Sections 4 – 7 we work a multitude of examples. We aim to cover a
sufficient variety of examples so that a user with a new application is likely to find a worked example
that is similar to his or her own. With luck, the derivation of the result will be adaptable, and the
user can thereby avoid original sources as well as the bulk of Section 3 of the present survey. The
use of computer algebra is essential to many of these examples, and we preface the worked examples
with a brief explanation of this.

To apply any of the theorems of Sections 3.3 – 3.5, one must solve for the point z ∈ V as
a function of the direction r and then plug this into a variety of formulae. This may always be
done numerically, but there are advantages to doing it analytically when possible: one may then
differentiate, compute asymptotics near a point of interest, solve in terms of other data, and so forth.
Even when one is interested chiefly in a numerical approximation for a single ar, one often obtains
better numerics by simplifying analytically as much as possible.

When the generating function is rational or algebraic, as is quite frequent in applications, if
one attempts to solve for z and plug in the results, one often finds that a computer algebra system
cannot simplify an expression that one suspects should be simpler. Consequently, the computer
cannot tell whether such an expression is zero, may have trouble plotting the expression, and so
forth. As is well known in computational commutative algebra, these problems can be avoided by
working directly with polynomial ideals. This survey incorporates the Groebner package in the
computer algebra system Maple to illustrate the required computational algebra. We hope that
these commands from Maple version 10 will remain in the Maple platform, but in any case, we
include platform-independent explanations of the algebra. Our treatment is necessarily quite brief,
and readers who require more explanation should consult a source such as [CLO05; Stu05].

Suppose a point z ∈ Cd is the solution to polynomial equations P1(z) = · · · = Pk(z) = 0. The
set of all polynomials P for which P (z) = 0 is an ideal, and, if the number of common solutions is
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finite, is said to be a zero-dimensional ideal. Such an ideal has many generating sets or bases,
of which some are particularly useful to know. In particular, given a term order, that is, an order
on the monomials zr that obeys certain properties, each ideal has a unique Gröbner basis. The
lexicographic term order, known to Maple as plex, has the property that it forces the Gröbner basis
of a zero-dimensional ideal to contain a univariate polynomial in the variable designated to come
last in the lexicographical order. Thus, if p1, p2 and p3 are polynomials in x, y and z with finitely
many common solutions, then the commands (the first just loads the Gröbner basis package into
Maple)

> with(Groebner);

> L := Basis([p1,p2,p3],plex(x,z,y));

will produce a basis for the ideal of all polynomials vanishing on the common solutions to p1, p2

and p3. The last variable in the variable list is y, so the choice of term order plex causes the last
polynomial of the basis L to be a polynomial in y alone, whose roots are the possible y-coordinates
of the common solution points.

A few words may prove helpful concerning the classification of critical points into smooth,
multiple and bad points. A stratum always consists of points of a single topological type. The
critical point equations are different for different strata. Therefore, sorting critical points by type
occurs as a preliminary step of sorting strata by type. If one assumes the denominator H of F is
square free (if not, a single Maple command allows one to pass to the radical), then the smooth
points of V are precisely those where ∇H does not vanish. The first step is always to check whether
there are any non-smooth points; generically, there are not, though interesting applications tend not
to be generic. This step is accomplished by the single command

> Basis ([H , diff(H,x) , diff(H,y) , diff(H,z)] , tdeg(x,y,z));

Maple returns the trivial ideal [1] if and only if there are no non-smooth points on V. We have
used tdeg rather than the slower plex to check whether we get [1]; if not, then we can go back and
use plex to produce a more useful basis for the ideal corresponding to the variety of singular points.
Further tests may be done to determine whether a stratum of singular points consists of multiple
points: one must check whether the radical of the ideal is reduced; for definitions and algorithms,
the reader is referred to a text such as [Mum95].

The algebra above is often sufficient to compute quantities such as the quantity critr, which is
defined by the polynomial equations (3.5). One may, however, go further: the substitution of one of
these finitely many points into a polynomial expression such as (3.9) results in an algebraic number
which Maple usually cannot write in its simplest form. Later, we discuss two reasonable ways to
handle this. Given a quantity x defined by algebraic equations p1, . . . , pk, the most straightforward
way to simplify the polynomial expression Q(x) is to reduce Q modulo the ideal generated by
{p1, . . . , pk} (see Section 4.2). An alternative is to obtain directly the minimal polynomial satisfied
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by Q(x). This may be done by elimination (see Section 4.4) or by matrix representation (see
Section 4.5). These techniques are useful for almost every example, but to avoid being repetitive,
we often refer back to these fully worked computations.

4.1. Binomial coefficients. To allow the reader a chance to check the application of Corol-
lary 3.21 in a familiar setting, we begin with an example where the numbers ars are explicitly known.

Let ars =
(
r + s

r, s

)
=

(r + s)!
r! s!

be the binomial coefficients and let

F (x, y) =
∑

r,s≥0

arsx
rys .

The binomial coefficients satisfy the recurrence ar,s = ar−1,s + ar,s−1 and this holds for all (r, s) 6=
(0, 0), provided that we take ars to be zero when either r or s is negative. Linear recursions for
ars in terms of values ar′,s′ with (r′, s′) ≤ (r, s) in the coordinatewise partial order lead easily to
rational generating functions (as discussed in Section 7, more general linear recursions do not yield
rational functions). To find F , we observe from the recursion that all the coefficients of (1−x− y)F
vanish except the (0, 0)-coefficient, which is 1. Thus

F (x, y) =
1

1− x− y
.

Let us compute the set contribr and the quantities appearing in Corollary 3.21. The singular
variety V is the complex line x+y = 1. The numerator of F is 1, and in particular, it never vanishes.
For any z ∈ V, the space L(z) is the linear span of z. To see this, either use Proposition 3.11 or note
that the tangent space to V is everywhere orthogonal to (1, 1) and plug this into Definition 3.10.

For each direction r in the positive real orthant, there is thus a unique solution z ∈ V to
r ∈ L(z), namely z = r̂ = ( r

r+s ,
s

r+s ) for any representative (r, s) of r. One may apply Theorem 3.16
to conclude that contribr = {r̂}.

To apply Corollary 3.21, we need only compute the quantity Q in (3.9) and verify that it is
nonzero. We have H = 1− x− y,Hx = −1,Hy = −1 and all other partial derivatives of H are zero,
whence Q = −xy(x+ y) and plugging in (x, y) = ( r

r+s ,
s

r+s ) gives

−yHy

sQ(x, y)
=

1
sx(x+ y)

=
r + s

rs
.

Substituting this and G ≡ 1 into (3.8) gives

ars ∼
(
r + s

r

)r (
r + s

s

)s√
r + s

2πrs
. (4.1)

This asymptotic expression is valid as (r, s) → ∞, uniformly if r/s and s/r remain bounded – see
the uniformity conclusion in Theorem 3.19. In fact, we know from Stirling’s formula that this holds
uniformly as min{r, s} → ∞; see [Lla] to obtain the latter result in the present framework.
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Although we have not presented precise error bounds in our asymptotic approximations, the
errors for such smooth bivariate problems can be shown to be of the order 1/s and our approximations
are good even for moderate values of r and s. As a randomly chosen example, we observe that the
approximation above yields a relative error of about 0.8% when r = 25, k = 12, while the relative
error has decreased to about 0.4% when r = 50, k = 24 and 0.08% when r = 250, s = 120.

4.2. Delannoy numbers. Recall the Delannoy numbers ars that count paths from the origin
to the point (r, s) with each step having displacement (1, 0), (0, 1) or (1, 1). In exactly the same
way that we obtained the generating function for the binomial coefficients, we may use the recursion
ar,s = ar−1,s + ar,s−1 + ar−1,s−1 valid for all (r, s) except (0, 0) to obtain the generating function

F (x, y) :=
∑

r,s≥0

arsx
rys =

1
1− x− y − xy

so the denominator is given by H = 1− x− y − xy.

Solving for contribr is only a little more involved for this generating function than it was for
1/(1 − x − y). However, performing all calculations by hand, as we did in the case of binomial
coefficients, is tedious for this example and completely impractical for later examples. The step-
by-step computation below illustrates how a computer algebra system such as Maple can carry the
derivation to completion at a symbolic level.

The linear space L(x, y) is the one-dimensional complex vector space spanned by (xHx, yHy) =
(−x(1 + y),−y(1 + x)). The most convenient way in which to solve the equations H = 0 and
r ∈ L(x, y) is to obtain a Gröbner basis. We load Maple’s Groebner package using the command
with(Groebner) and then execute the following command.

> GB:=Basis([H, s*x*diff(H, x) - r*y*diff(H, y)], plex(x,y));

This computes a basis for the ideal corresponding to the common solutions to H = 0 and (r, s) ∈
L(x, y). The answer is GB := [−s + sy2 + 2ry, s − sy − r + rx] =: [p1(y), p2(x, y)]. The first
element of the basis is an elimination polynomial in y alone. Solving p1 = 0 yields the two values
y = (−r ±

√
r2 + s2)/s. For each of the two y-values there is a unique x-value obtained by solving

p2 for x. One might observe that symmetry tells us these will be (−s ±
√
r2 + s2)/r; however we

need p2 to tell us which x-value goes with which y-value. We find that there is a unique positive
solution

x(r) =
√
r2 + s2 − s

r
;

y(r) =
√
r2 + s2 − r

s
.

By Theorem 3.16 we see that contribr = (x(r), y(r)) for any positive direction r. The numerator,
G, is again identically 1. It remains only to plug the values for x and y into expressions for Q and
ars and simplify.
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Using the definition of Q and simplifying, we obtain Q = xy(1+x)(1+ y)(x+ y). Let us reduce
Q modulo H by the command

NormalForm (Q, [H, s*x*diff(H ,x) - r*y*diff(H, y)], plex(x,y));

to get

Q = −2x2 − 2y2 + 6x+ 6y − 4 . (4.2)

Finally, substituting x = x(r) and y = y(r) into −yHy/(sQ) yields

−yHy

sQ
=

rs√
r2 + s2(r + s−

√
r2 + s2)2

and putting this all together yields the expression (1.4) for the Delannoy numbers:

ars ∼

(√
r2 + s2 − s

r

)−r (√
r2 + s2 − r

s

)−s√
1
2π

√
rs√

r2 + s2(r + s−
√
r2 + s2)2

.

For example, putting r = s = n shows that the central Delannoy numbers ann have first order
asymptotic approximation

ann ∼
cosh( 1

4 log 2)
√
π

(3 + 2
√

2)nn−1/2.

4.3. Powers, quasi-powers, and generalized Riordan arrays. It often happens that we
wish to estimate [zn]v(z)k, that is, the nth coefficient of a large power of a given function v(z).
Clearly, this is equal to the xnyk coefficient of the generating function

F (x, y) :=
1

1− yv(x)
. (4.3)

One place where this arises is in the enumeration of a combinatorial class whose objects are strings
built from given blocks. Let v(z) :=

∑∞
n=1 anz

n count the number an of blocks of size n. Then the
generating function (4.3) counts objects of a given size by the number of blocks in the object.
Example 4.1. A long sequence of zeros and ones may be divided into blocks by repeatedly stripping
off the unique initial string that is a leaf of T , a given prefix tree. Lempel-Ziv coding, for instance,
does this but with an evolving prefix tree. When v(x) is the generating function for the number an

of leaves of T at depth n, then 1/(1− yv(x)) generates the numbers ars of strings of length r made
of s blocks (the final block must be complete).

Another place where generating functions of this form arise is in the Lagrange inversion formula.
This application is discussed at length in Section 6, but briefly, if h solves the equation h(z) =
zv(h(z)), then even if we cannot explicitly solve for h, its coefficients are given by

[zn]h(z) =
1
n

[zn−1]v(z)n .
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This identity has been very profitable in the analysis of planar graphs and maps, cf. the discussion
of results of [GW99; BFSS01] in Section 6.3.

A third place where coefficients of powers arise is in sums of independent random variables.
Let v(z) =

∑∞
n=0 anz

n be the probability generating function for a distribution on the nonnegative
integers, that is, an = P(Xj = n) where {Xj} are a family of independent, identically distributed
random variables. Then v(z)n is the probability generating function for the partial sum Sn :=∑n

j=1Xj , and hence

P(Sn = k) = [zk]v(z)n .

A Riordan array is defined to be an array {ank : n, k ≥ 0} whose generating function F (x, y) :=∑
n,k≥0 ankx

nyk satisfies

F (x, y) =
φ(x)

1− yv(x)
(4.4)

for some functions φ and v with v(0) = 0 and φ(0) 6= 0. If in addition v′(0) 6= 0 the array is
called a proper Riordan array. Just as (4.3) represents sums of independent, identically distributed
random variables when v is a probability generating function, the format (4.4) generalizes this to
delayed renewal sums (see, e.g. [Dur04, Section 3.4]), where an initial summand X0 may be
added that is distributed differently from the others. The quasi-powers (1.2) arising in GF-sequence
analysis, which were described in Section 1.2, are asymptotically of this form as well. Thus (4.4)
approximately encompasses most of the known results leading to Gaussian behavior in multivariate
generating functions.

Riordan arrays have been widely studied. In addition to enumerating a great number of combi-
natorial classes, Riordan arrays also behave in an interesting way under matrix multiplication (note
that the condition v(0) = 0 implies ank = 0 for k < n, and, by triangularity of the infinite array,
that multiplication in the Riordan group is well defined). Surveys of the Riordan group and its
combinatorial applications may be found in [Spr94; SGWW91].

As we will see in this section, the asymptotic analysis of these arrays is relatively simple, or at
least, is no more difficult than analyses of the functions φ and v that define the array. One should
note, however, that Riordan arrays are often defined by data other than φ and v. Commonly, one has
a linear recurrence for an,k+1 as a sum

∑k−n
s=1 csan+s,k; the generating function A(t) :=

∑∞
j=1 cjt

j

is known and is fairly simple, but the function v(x) in (4.4) is known only implicitly through an
equation ([Rog78, Equation 6])

v(x) = xA(v(x))

which is reminiscent of Lagrange inversion. The paper [Wil05], which is devoted to bivariate asymp-
totics of Riordan arrays, discusses at length how to proceed when the known data includes A(t)
rather than v(x). Thus there are versions of (4.10) below, such as Proposition 6.2, which state
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asymptotics in terms of A without explicit mention of v. The discussion in this section, however,
will be limited to deriving asymptotics in terms of φ and v. For our analyses it is not important
to require v(0) = 0 (for example, neither the binomial coefficient nor Delannoy number examples
above satisfies that condition), so we drop this hypothesis and consider generalized Riordan arrays
that satisfy (4.4) but may have v(0) 6= 0.

The following computations show that the quantities L(x, y) and Q(x, y) turn out to be relatively
simply expressed in terms of the function v(x). Define the quantities

µ(v;x) :=
xv′(x)
v(x)

; (4.5)

σ2(v;x) :=
x2v′′(x)
v(x)

+ µ(v;x)− µ(v;x)2 = x
dµ(v;x)
dx

. (4.6)

It is readily established that for (x, y) ∈ V, we have L(x, y) = (µ(v;x), 1). In other words,
(x, 1/v(x)) ∈ crit(r,s) if and only if sµ(v;x) = r. Furthermore, when this holds, Q(x, 1/v(x)) =
σ2(v;x). Provided that φ and σ2 are nonzero at a minimal point, the leading term of its asymptotic
contribution in (3.8) then becomes

ars ∼ x−rv(x)s φ(x, 1/v(x))√
2πsσ2(v;x)

(4.7)

where µ(v;x) = r/s.

The notations µ and σ2 are of course drawn from probability theory. These quantities are always
nonnegative when v has nonnegative coefficients. To relate this to the limit theorems in Section 3.5,
observe that setting x = 1 gives

µ(v; 1) =
v′(1)
v(1)

; (4.8)

σ2(v; 1) =
vv′′ − (v′)2 + vv′

v2
(1) . (4.9)

Thus, under the hypotheses of Theorem 3.27, a WLLN will hold with mean m = µ(v; 1). Of course
we see here that µ(v; 1) is simply the mean of the renormalized distribution on the nonnegative
integers with probability generating function v. Similarly, we see in Theorem 3.29 that B(r, s) = (s−
µ(v; 1)r)2/σ2(v; 1) is the Gaussian term corresponding to the variance σ2(v; 1) of this renormalized
distribution.

Suppose we are in the combinatorial, aperiodic case: the coefficients of v are nonnegative and
v(x) cannot be written as xbg(xd) for any power series g and d > 1. The set V is the union of
the set V0, parametrized as (x, 1/v(x)), with the union of horizontal lines where the value of x is a
singular value for v or φ. As x increases from 0 to R, the (possibly infinite) minimum of the radii of
convergence of v and φ, it is easy to verify that all the points of V0 encountered are strictly minimal,
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and that σ2(v;x) > 0. Since the derivative of µ(v;x) is σ2(v;x)/x, this shows that µ(v;x) is strictly
increasing on (0, R). Thus A := µ(v; 0) and B := µ(v;R) are well defined as one-sided limits and for
A < λ < B there is a unique solution to µ(v; y) = λ. In fact, A is the order of v at 0, so equals 1 for
proper Riordan arrays, but may be 0 for generalized Riordan arrays or an integer greater than 1 for
improper Riordan arrays. From this it is evident that ars = 0 for r/s < A, so we should not have
expected a solution to µ(v;x) = λ when λ < A. If R = ∞, then B is the (possibly infinite) degree of
v, and one has again that ars = 0 for r/s > B. If v or φ is not entire, then one cannot say without
further analysis what one expects for ars when r/s→ λ > B. To summarize:
Proposition 4.2. Let (v(x), φ(x)) determine a generalized Riordan array. Suppose that v(x) has
radius of convergence R > 0 and is aperiodic with nonnegative coefficients, and that φ has radius of
convergence at least R. Let A,B be as above. Then for A < r/s < B,

ars ∼ v(x)sx−rs−1/2
∞∑

k=0

bk(r/s)s−k (4.10)

where x is the unique positive real solution to µ(v;x) = r/s. Here b0 = φ(x)√
2πσ2(v;x)

6= 0. The

asymptotic approximation is uniform as r/s varies within a compact subset of (A,B), whereas ars = 0
for r/s < A.

We note that if the combinatorial restriction is lifted, much more complicated behavior can occur.
The generating function 3/(3− 3x− y+ x2) is of Riordan type with φ(x) = v(x) = (3− 3x+ x2)−1,
and even though v is aperiodic, contribr has cardinality 2. Furthermore, at the unique contributing
point for the diagonal direction, σ2 vanishes.

The condition on the radius of convergence of φ is satisfied in most applications. One way in
which it may fail is when F is a product of more than one factor. We will see an example of this
in Section 4.4. The next two subsections consider applications of Proposition 4.2 to combinatorial
applications.

4.4. Maximum number of distinct subsequences. Flaxman, Harrow and Sorkin [FHS04]
consider strings over an alphabet of size d which we take to be {1, 2, . . . , d} for convenience. They
are interested in strings of length n which contain as many distinct subsequences (not necessarily
contiguous) of length k as possible. Let ank denote the maximum number of distinct subsequences
of length k that can be found in a single string of length n. Initial segments S|n of the infinite
string S consisting of repeated blocks of the string 12 · · · d turn out always to be maximizers, that
is, S|n has exactly ank distinct subsequences of length k. The generating function for {ank} is given
by [FHS04, equation (7)]:

F (x, y) =
∑
n,k

ankx
nyk =

1
1− x− xy(1− xd)

.

This is of Riordan type with φ(x) = (1− x)−1 and v(x) = x+ x2 + · · ·+ xd.
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The case d = 1 is uninteresting. Suppose that d ≥ 2. The singular variety V is the union of the
line x = 1 and the smooth curve y = 1/v(x) and they meet transversely at the double point (1, 1/d);
see Figure 4.1 for an illustration of this when d = 3.

x

43210

y

4

3

2

1

0

Fig. 4.1. V in the case d = 3

This is a case where the radius of convergence of φ is less than the radius of convergence of v,
the former being 1 and the latter being infinite. We have µ(v;x) = 1/(1 − x) − dxd/(1 − xd) =
(1 + 2x + 3x2 + · · · + dxd−1)/(1 + x + x2 + · · · + xd−1). As x increases from 0 to 1 (the radius
of convergence of φ, which is the value of x at the double point), µ increases from 1 to (d + 1)/2.
Thus when λ := n/k remains in a compact sub-interval of (1, d+1

2 ), the Gaussian asymptotics of
equation (4.10) hold.

To compute these in terms of λ, we solve for x in

µ(v;x) = λ :=
n

k
(4.11)

and plug this into (4.7). One can do this numerically, but in the case where v is a polynomial, one
can do better.

Solving µ(v;x) = λ by radicals and plugging into (4.6), which worked in Section 4.2, will not be
possible when d ≥ 5 and is not practical even for smaller d. However, we see that σ2 is algebraic,
in the same degree d − 1 extension of the rationals that contains the value of x solving (4.11). We
look therefore for a polynomial with coefficients in Q(λ), of degree d − 1, which annihilates the σ2

in Proposition 4.2. To find this polynomial, the best tactic is to work directly with generators of
polynomial ideals, and we give the details below.

When d = 2, the solution

x(λ) =
λ− 1
2− λ

is a rational function of λ and nothing fancy is needed to arrive at σ2 = (λ−1)(2−λ). We therefore
illustrate with d = 3, though this procedure is completely general and will work any time v is a
polynomial.
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Plugging in the expression (4.5) for µ(v;x) in (4.11) and clearing denominators gives a polyno-
mial equation for x:

x
dv

dx
− λv = 0 .

In our example,

x
(
1 + 2x+ 3x2

)
− λ

(
x+ x2 + x3

)
= 0 . (4.12)

We now need to evaluate

σ2(v;x) = x
dµ

dx
=
x
(
1 + 4x+ x2

)
(1 + x+ x2)2

(4.13)

at the value x that solves (4.12).

To do this we compute a Gröbner basis of the ideal in Q(λ)[x, S] generated by µ(v;x)− λ and
σ2(v;x)− S (after clearing denominators). The commands

p1:=(1+2*x+3*x^2)-lambda*(1+x+x^2):

p2:=x*(1+4*x+x^2)-S*(1+x+x^2)^2:

Basis([p1, p2], plex(x, S));

produce the elimination polynomial

p(S;λ) = 3S2 + (6λ2 − 24λ+ 16)S + 3λ4 − 24λ3 + 65λ2 − 68λ+ 24

which is easily checked to be irreducible (using Maple’s factor command, for example), and hence
is generically the minimal polynomial for σ2. It is easy to choose the right branch of the curve:
the function x(λ) increases in (0, 1) as λ increases in (1, 2), and σ2 is given in (4.13) as an explicit
function of x that is easily checked to be increasing. It follows from these that σ2 increases from 0
to 2/3 as λ goes from 1 to 2.

To finish describing the asymptotics, we first note that values of λ greater than d are uninter-
esting. It is obvious that any prefix of S of length at least dk will allow all possible k-subsequences
to occur. Thus ank = dk when λ ≥ d.

We already know that as λ := n/k → (d+ 1)/2 from below, the asymptotics are Gaussian and
the exponential growth rate approaches d. For slopes λ ≥ (d + 1)/2, we use Theorem 3.16 to see
that for each such λ, there is a minimal point in the positive quadrant controlling asymptotics in
direction λ. The only minimal point of V we have not yet used is the double point (1, 1/d). It is
readily computed that this cone has extreme rays corresponding to λ = (d+ 1)/2 and λ = ∞, and
thus asymptotics in the interior of the cone will be supplied by the double point. Using Corollary 3.25
we obtain aλk,k ∼ dk.
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Although Section 3 did not discuss what happens when λ approaches but is not equal to (d+1)/2,
some results are known. A refinement of Corollary 3.25, given in [PW04, Theorem 3.1 (ii)], shows
that asymptotics in the boundary direction λ = (d + 1)/2 are smaller by a factor of 2 than in the
interior of the cone. In fact an examination of the proof there (see [PW04, Lemma 4.7 (ii)]) shows
that one has Gaussian behavior,

ank ∼ dkΦ(x) for n =
d+ 1

2
k + x

√
d2 − 1

12
k

where Φ(x) = (2π)−1/2
∫ x

−∞ e−t2/2 dt is the standard normal CDF and the constant
√

(d2 − 1)/12
is obtained in a manner similar to Q. This can also be obtained from a probabilistic analysis as
follows. The quantity d−kank is the probability that a uniformly chosen sequence of length k is a
subsequence of S|n. The length of an initial substring of S required to contain a given sequence
u1u2 · · ·uk is

∑k
j=1(uj − uj−1) mod d where 0 mod d is taken to be d and where u0 := 0. Thus the

probability of a uniformly chosen word of length k being a subsequence of S|n is equal to

P

 k∑
j=1

Uj ≤ n


where Uj are independent uniform picks from {1, . . . , d}. The central limit theorem now gives

P

 k∑
j=1

Uj ≤
d+ 1

2
k + x

√
d2 − 1

12
k

 ∼ Φ(x) .

4.5. Paths, hills and Fine numbers. Dyck paths are paths from the origin whose steps
are in the set {(1, 1), (1, 0), (1,−1)} and that never go below the x-axis. In Section 7.3 we will count
Dyck paths by their final point, which may be anywhere in the bottom half of the first quadrant.
Often in the literature, the term Dyck path is reserved for a path constrained to end on the x-axis.
In [DS01], a number of combinatorial interpretations are found for these constrained Dyck paths
when counted by final x-value and by the number of hills, a hill being a peak of height 1 (a peak
is an occurrence of the step (1, 1) immediately followed by (1,−1)). Let ank denote the number of
Dyck paths from the origin to (2n, 0) that have k hills. Of particular interest are the values an0

which count hill-free Dyck paths and are called Fine numbers.

The generating function for {ank} is derived in [DS01, Proposition 4]:

F (x, y) :=
∑
n,k

ankx
nyk =

2
1 + 2x+

√
1− 4x− 2xy

=
v(x)/x

1− yv(x)
, (4.14)

with

v(x) =
1−

√
1− 4x

3−
√

1− 4x
=

2x
1 +

√
1− 4x+ 2x

.
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Rationalizing the denominator, we have

v(x) =
1 + 2x−

√
1− 4x

4 + 2x
, (4.15)

and thus the domain of convergence is given by |x| < 1/4, |yv(x)| < 1. For 1 < λ < ∞ the critical
points are determined by

µ(v;x) =
4x

(1−
√

1− 4x)(
√

1− 4x)(3−
√

1− 4x)
= λ .

The left side of the above equality increases strictly from 1 at x = 0 to ∞ as x ↑ 1/4, and there is a
unique positive real solution xλ for each λ > 1. Figure 4.2 shows x increasing from 0 to 1/4 and v

increasing from 0 to 1/3 as λ increases from 1 to ∞.

Fig. 4.2. x and v plotted against λ

We now want to complete the computations by simplifying σ2(v;x) at the value of x satisfying
µ(v;x) = λ. We sketch here how the computations of Section 4.4 generalize to the algebraic case.
The algebra is only a little more involved than it is for rational v but some changes are clearly
required.

In order to perform Gröbner basis computations, we must first pass from (4.15) to the implicit
form α(x, v) = 0 where α is a polynomial in Q[x, v]. It is easy in this case to see by inspection that

α(v, x) = (2 + x)v2 − (1 + 2x)v + x ;

at worst, implicitizing will require going back to the original derivation and following the computation
at the level of ideals 5. Next, according to (4.5) and (4.6), differentiating α implicitly gives µ and

5Implicitization techniques for polynomial or rational parametrizations x = f(t), v = g(t), though not needed

here, may be found in [CLO05, Sections 3.2 and 6.4].

40



σ2 as rational functions of v and x:

v′ = −αx

αv
=

v2 − 4x
2v(2 + x)

v′′ = −α
2
vαxx + α2

xαvv − 2αxvαxαv

α3
v

=
3v4 + 16v2 − 16x2

4v3(2 + x)2

µ = −xαx

vαv
=

x(4x− v2)
2v2(2 + x)

σ2 = −
x
(
xvα2

vαxx + xvα2
xαvv − 2xvαxvαxαv + vα2

vαx + xα2
xαv

)
α3

vv
2

=
−x(8x3 − 4x2v2 − 8xv2 + v4)

v4(2 + x)2
.

(4.16)
Setting µ = n/k and clearing denominators gives a polynomial β = nvαv +kxαx ∈ Q[n, k] [x, v] that
vanishes when µ(v;x) = n/k. In our present example, we have

β(x, v) = (4n+ 2nx+ kx) v2 + (−2 kx− n− 2nx) v + kx .

To find the critical point corresponding to the direction n/k, we could simply solve the equations
α = 0, β = 0 for x, v. Then to simplify σ2, we add in the equation stating that σ2 = S (with
denominator cleared), and find a Gröbner basis using the “plex” order with S as the last variable,
just as in the previous section. Unfortunately, as is well known, such computations can be very slow,
and in the present instance we have difficulty in obtaining an answer with Maple in a reasonable
time.

Thus we use the following alternative method, as described in [CLO05, Section 2.2]. The poly-
nomials α and β have finitely many common solutions (x, v) for any fixed n, k, so they define a
zero-dimensional ideal, J . In other words, there are finitely many linearly independent monomials
in x and v over Q[n, k] / 〈α, β〉. A convenient choice is the set of monomials not divisible by any
leading term of a fixed Gröbner basis for J . With respect to this basis, one may express x and v as
matrices over Q[n, k] for multiplication operators, then compute the matrix for σ2 as a rational func-
tion of these matrices, and finally, find the minimal polynomial γ for this matrix. The polynomial
γ ∈ Q[n, k] will vanish at σ2.

To carry this out in Maple, we use the following commands:

sys:=[alpha, beta]:

monomialorder := tdeg(x, v):

gb := Basis(sys, monomialorder):

ns, rv := NormalSet(gb, monomialorder):

Mx := MultiplicationMatrix(y, ns, rv, gb, monomialorder):

Mv := MultiplicationMatrix(v, ns, rv, gb, monomialorder):

Now evaluate the rational expression for σ2 given above, with x, v replaced by Mx,Mv (making
liberal use of the simplification capabilities of Maple). We then compute the minimal polynomial
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using the MinimalPolynomial command. The result is

z3
(
32n4k5

)
+z2

(
−144n7k2 + 160n6k3 − 16n5k4 − 6n4k5 + 4n2k7 + 2k9

)
+z
(
144n9 − 304n8k + 203n7k2 − 46n6k3 − 15n5k4 + 20n4k5 − 11k6n3 + 10n2k7 − nk8

)
+
(
−15n7k2 + 31n5k4 − 27n9 − 35n6k3 − 21n4k5 + 57n8k + 11k6n3 − n2k7

)
and computing eigenvalues (using solve) we obtain three possible values for σ2, namely

S1 :=
(n− k)(n+ k)(3n2 + k2)

16n4

S2 :=

(
9n− k + 3

√
9n2 − 10nk + k2

)
(n− k)n

4k3

S3 :=

(
9n− k − 3

√
9n2 − 10nk + k2

)
(n− k)n

4k3
.

Seeing which of these three gives the correct value for σ2 may be done similarly to the way it was
in the previous section. Equation (4.16) gives σ2 as a univalent function of x and v. The correct
branches for x and v as functions of λ = n/k is shown in Figure 4.2. Plugging these into (4.16) and
comparing to S1, S2 and S3 (to avoid a numerical comparison, one may compare limits at 0) shows
that second expression is correct:

σ2 = S3 :=

(
9n− k + 3

√
9n2 − 10nk + k2

)
(n− k)n

4k3
.

To write x(λ) and v(λ) in their simplest forms, observe that the values of x and v are sim-
ply eigenvalues of the multiplication matrices Mx,Mv and so we obtain their respective minimal
polynomials:

4n2x2 + (7n− k)(n− k)x− 2n(n− k) ,

and 2kv2 + 3(n− k)v − (n− k) .

Since we know that the relevant point has positive coordinates, we have the explicit forms

x =
(3n− k)

√
(n− k)(9n− k)− (7n− k)(n− k)

8n2

v =

√
(n− k)(9n− k)− 3(n− k)

4k
.

As can be seen from this example, the computations can be rather messy, though still routine
and automatable. In the end we have verified that σ2 > 0 for λ > 1, and we conclude that Gaussian
asymptotics given by Proposition 4.2 hold uniformly as n/k varies over any compact subinterval of
(1,∞).
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Another way to simplify computations such as this one will be discussed in Section 6. Of course,
for any given value of n, k, we may shortcut the above computation and solve numerically for x
to obtain σ2. For example, with n/k = 2, we have x = (5

√
17 − 13)/32 ≈ 0.2379852541, so that

y = 1/v(x) = (3 +
√

17)/2 ≈ 3.561552813. Hence

a2k,k ∼ (0.1228255460 · · · )(4.957474791 · · · )kk−1/2 .

As far as we know, asymptotics such as these have not previously been computed. Using 10 significant
figure floating point approximations, we obtain (using Maple) an answer accurate to within 0.8%
already for k = 30.

4.6. Horizontally convex polyominoes. A horizontally convex polyomino (HCP) is a
union of cells [a, a+ 1]× [b, b+ 1] in the two-dimensional integer lattice such that the interior of the
figure is connected and every row is connected. Formally, if S ⊆ Z2 and P =

⋃
(a,b)∈S [a, a + 1] ×

[b, b+1] then P is an HCP if and only if the following three conditions hold: B := {b : ∃a, (a, b) ∈ S}
is an interval; the set Ab := {a : (a, b) ∈ S} is an interval for each b ∈ Z; and whenever b, b+ 1 ∈ B,
the sets Ab and Ab+1 intersect. Let an be the number of HCP’s with n cells, counting two as the

Fig. 4.3. an HCP with 13 cells and 4 rows

same if they are translates of one another. Pólya [Pól69] proved that∑
n

anx
n =

x(1− x)3

1− 5x+ 7x2 − 4x3
. (4.17)

Further discussion of the origins of this formula and its accompanying recursion may be found
in [Odl95] and [Sta97]. The proof in [Wil94, pages 150–153] shows in fact that

F (x, y) =
∑
n,k

ankx
nyk =

xy(1− x)3

(1− x)4 − xy(1− x− x2 + x3 + x2y)
, (4.18)

where ank is the number of HCP’s with n cells and k rows. Let us find an asymptotic formula for
ars.

All the coefficients of F (x, y) are nonnegative; they vanish when s > r but otherwise are at
least 1. By Corollary 3.18 (the last part, which requires only ar ≥ 0), we know that all points of V
in the first quadrant that are on the southwest facing part of the graph (that is, that are minimal in
the coordinatewise partial order) are contributing critical points. We do not know yet but will see
later that there are no other critical points on each torus. As r varies over Ξ = {r : 0 < s/r < 1}
from the horizontal to the diagonal, the point contribr moves along this graph from (1, 0) to (0,∞).
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Fig. 4.4. minimal points of V in the positive real quadrant

To make the mapping from r to z explicit, we use the fact that r ∈ K(z) ⊆ L(z) (Theorem 3.16
and part (i) of Proposition 3.14), so z may be gotten from r by (3.5). It is readily computed that
∇H 6= 0 except at (1, 0). Thus all minimal points are smooth. The only solution to G = H = 0
is at (1, 0), so the numerator is nonvanishing at any minimal point as well. Checking whether the
quantity Q defined in equation (3.9) of Theorem 3.21 ever vanishes, we find that the only solutions
to H = Q = 0 are at (1, 0) and at complex locations that are not minimal because L(z) is not real
there (Proposition 3.12). Lastly, we must check that there are no contributing points other than
the minimal points in the positive quadrant. We can ascertain that there are not by checking the
“extraneous” critical points, which will lie on three other branches of a quartic (see below), and
seeing that they lie on the wrong torus. We then know that the asymptotics for ars are uniform as
s/r varies over a compact subset of the interval (0, 1) and given by

ars ∼ Cx−ry−sr−1/2 .

We will use Maple to determine x, y and C as explicit functions of λ := s/r, giving asymptotics
for the number of HCP’s whose shape is not asymptotically vertical or horizontal, but first we see
what we may tell without much computation.

A crude approximation at the logarithmic level is

ars ≈ exp [r(− log x− (s/r) log y]

where x and y of course still depend on s/r. We first compute the average row length of a typical
HCP. We may apply Theorem 3.27 to find the limit in probability of hk/k, where hk is the height of
an HCP chosen uniformly from among all HCP’s of size k. Setting y = 1 in the bivariate generating
function recovers the univariate generating function (4.17). The point (x, 1), where x = x0 is
the smallest root of the denominator of (4.17) controls asymptotics in this direction; we compute
dir(x, 1) there to be (xHx, yHy)(x0, 1), which simplifies to r/s = 4(5−14x0 +12x2

0)/(5−9x0 +11x2
0)

or still further to α := 1
47 (147 − 246x0 + 344x2

0) ≈ 2.207. We conclude that for large k, k/hk → α.
Thus we see that the average row length in a typical large HCP is around 2.2. Finally, let us see
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how the computer algebra for general r turns out. To find (x, y) given r, solve the pair of equations
H = 0, sxHx = ryHy; this find points on V with r = (r, s) ∈ L(x, y). Explicitly, we set λ = s/r and
ask Maple for a Gröbner basis for the ideal generated by H and λxHx − yHy. The following Maple
code fragment is useful in such cases.

Hx := diff(H,x): Hy := diff(H,y): X:=x*Hx: Y:=y*Hy:

Hxx := diff(Hx,x): Hxy := diff(Hx,y): Hyy := diff(Hy,y):

Q := -X^2*Y-X*Y^2-x^2*Y^2*Hxx-X^2*y^2*Hyy+2*X*Y*x*y*Hxy:

L := [H,lambda*X-Y]:

gb := Basis(L, plex(y,x)):

Maple returns a basis consisting of polynomials α and (x− 1)5β, where the quartic

β := (1 + λ)x4 + 4(1 + λ)2x3 + 10(λ2 + λ− 1)x2 + 4(2k − 1)2x+ (1− λ)(1− 2λ)

is the elimination polynomial for x and is generically irreducible. Furthermore α is linear in y.
Rather than express y in terms of x, it is perhaps easier to compute the elimination polynomial for
y, which is y3 times the following polynomial:

(4λ4 − 4λ3 − 3λ2 + 4λ− 1)y4 + (40λ4 − 44λ3 − 20λ2 + 48λ− 16)y3

+ (−172λ4 + 128λ3 + 160λ2 − 256λ+ 64)y2 + (1152λ4 − 1024λ3 − 512λ2)y − 1024λ4 .

Note that when H = 0, x = 1 if and only if y = 0. The point (1, 0) is a solution to the critical point
equations for every value of λ. However it is never a contributing point, because hr̂ = ∞ when any
coordinate vanishes (recall r̂ is in a compact subset of the positive orthant).

Thus generically we have 4 candidates for contributing points. Precisely one of these is minimal
and in the first quadrant. The others do not contribute for generic r, which may easily be checked
for any given r; a verification for all r simultaneously would require more computer algebra.

Finally, from Corollary 3.21 we see that

C =
xy(1− x)3√

2π

√
y (−x (1− x− x2 + x3 + x2y)− x3y)

Q
.

The minimal polynomial for
√

2πC can be computed as in previous sections; it turns out to have
degree 8 for generic λ. Of course, given floating point approximations for x and y, we may simply
compute an approximation for C directly.

As an example, suppose that n = 2k so that λ = 1/2. In this case we have simplification and
the minimal polynomials for x and y respectively are 3x2 + 18x − 5 and 75y2 − 288y + 256. Note
that there is a single element

(x0, y0) :=

(√
32
3
− 3,

48−
√

512
25

)
≈ (0.265986, 1.397442)
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of crit in the positive quadrant. By Theorem 3.16 this belongs to contrib, so by Proposition 3.8,
contrib is the singleton {(x0, y0)}. We obtain (by naive floating point computation in Maple)
an,n/2 ∼ (0.237305 . . . )(3.18034 . . . )nn−1/2. For n = 60, the relative error in this first order ap-
proximation is about 1.5%. Contrast the exponential growth rate with the exponential growth rate
3.20557 for the number of HCPs with n cells and any number of rows.

4.7. Symmetric Eulerian numbers. The symmetric Eulerian numbers Â(r, s) [Com74, page 246]
count the number of permutations of the set [r + s+ 1] := {1, 2, . . . , r + s+ 1} with precisely r de-
scents. By reading backwards, this equals the number with exactly s descents, hence the symmetry
in r and s. The symmetric Eulerian numbers have exponential generating function [GJ04, 2.4.21]

F (x, y) =
ex − ey

xey − yex
=
∑
r,s

Â(r, s)
r! s!

=:
∑
r,s

arsx
rys . (4.19)

The denominator in this representation is singular at the origin and has a factor of (x−y) in common
with the numerator. We factor this out of the numerator and denominator, writing F = G/H with
G = (ex− ey)/(x− y) and H = (xey − yex)/(x− y). In this representation, both the numerator and
the denominator are entire functions. We quickly check that in the positive real quadrant, V is the
graph of a monotone deceasing function as in the left-hand side of Figure 4.5 and that the quantity
Q (see the Maple code fragment in Section 4.6) does not vanish on V:

first check that F is not entire but is analytic in a neighborhood of the origin;
next, L’Hôpital’s rule shows us that H never vanishes on {x = y} except at (1, 1);
rearranging terms then shows that H vanishes when x and y are two positive real numbers
with the same height h(t) := t− log t (see the right-hand side of Figure 4.5);
the exact symbolic expression for Q has limit e3/12 at (1, 1) and this is the minimum value
of Q on V.

V

y

2.5

0.5

3

2

x

31.5

1

1.5

0.5 2 2.51

Fig. 4.5. the positive real points of V and their description by height-pairs

The symmetric Eulerian numbers are nonnegative, so we can find minimal points of V in the
first quadrant. It is easy to check that the gradient of H never vanishes on V, so V is smooth. At
the point x = y = 1, we have ∂H/∂x = ∂H/∂y = 1, so dir(1, 1) = 1. For any other point of V, we
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may work with the representation of H having (x− y) in the denominator. We set

α =
x∂H/∂x

x∂H/∂x+ y∂H/∂y

so that (x, y) ∈ r ⇔ r̂ = (α, 1 − α). The expression for α does not look all that neat but on V
we may substitute (y/x)ex for ey, after which the expression for α reduces to (1 − x)/(y − x). We
see therefore from Theorem 3.19 that Â(r, s) is asymptotic to Cα(r + s)−1/2r!s!γr+s, where for a
given value of α = r/(r + s), the value of γ is given by x−αy−(1−α) after solving the following
transcendental equations for (x, y):

1− x

y − x
= α ; (4.20)

xey = yex .

We do not know whether there is a closed form expression for γ in terms of α, though we note that
by using (4.20) several times, one may simplify somewhat: γ = (y/x)αy−1 = exp(α(y − x))/y =
exp(1− x)/y.

The fact that the equations (4.20) have a unique positive real solution is possible to verify
directly, but also follows from nonnegativity of the coefficients and the fact that the positive real part
of V lies along the boundary of the domain of convergence. One must still check that T(x(α), y(α))
contains no other points of V. This is true for generic r and can easily be checked for a given r, but
a general proof that it works for all r is not obvious.

4.8. Smirnov words. Given an integer d ≥ 3 we define a Smirnov word in the alphabet
{1, . . . , d} to be a word in which no letter repeats consecutively. The number of Smirnov words of
length n is of course easily seen by a direct counting argument to be d(d− 1)n−1. If we count these
words according to the number of occurrences of each symbol, we get the multivariate generating
function

F (z) =
∑

arzr =
1

1−
∑d

j=1
zj

1+zj

(4.21)

where ar is the number of Smirnov words with rj occurrences of the symbol j for all 1 ≤ j ≤ d.
This generating function may be derived from the generating function

E(y) =
1

1−
∑d

j=1 yj

for all words as follows. Note that collapsing all consecutive occurrences of each symbol in an
arbitrary word yields a Smirnov word; this may be inverted by expanding each symbol of a Smirnov
word into an arbitrary positive number of identical symbols, whence F (

y1
1− y1

, . . . ,
yd

1− yd
) = E(y).

Substituting yj = zj/(1 + zj) yields the formula (4.21) for F ; see [FS, II.7.3, Example 23] for more
on this old result.
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When we write F as a rational function, we see that

G =
∏d

j=1(1 + zj) =
∑d

j=0 ej(z)
H =

∑d
j=0(1− j)ej(z)

where ej is the jth elementary symmetric function of z1, . . . , zd and e0 = 1 by definition. Thus when
d = 3 for example, one obtains H = 1−(xy+yz+xz)−2xyz. The expression for H may be denoted
quite compactly by

H = g − u
∂g

∂u

∣∣∣∣
u=1

where g(z, u) :=
∏d

j=1(1+uzj) is the polynomial in u whose coefficients are the elementary symmetric
functions in z. When d ≥ 3, the denominator is of the form 1−P for an aperiodic polynomial P with
nonnegative coefficients, so by Proposition 3.17, contribr will always consist of one strictly minimal
point in the positive orthant.

The typical statistics of a Smirnov word of length n are not in doubt, since it is clear that each
letter will appear with frequency 1/d. This may be formally deduced from Theorem 3.28, which also
shows the variation around the mean to be Gaussian. We may, perhaps, be more interested in the
so-called large-deviation probabilities: the exponential rate at which the number of words decreases
if we alter the statistics. Let ŝ denote some frequency vector. Then as |r| → ∞ with r̂ → ŝ, we have

1
|r|

log ar → −r · log |z|

where z ∈ Od satisfies dir(z) = r.

To solve for z in terms of r, we use the symmetries of the problem. It is evident that zj is
symmetric in the variables {ri : i 6= j}. For example, when d = 3, if we refer to z as (x, y, z) and r̂
as (r, s, t), then the equations (3.5) have the solution

x =
r2 − (s− t)2

2r(s+ t− r)

where the values of y and z are given by the same equation with r, s and t permuted. When d ≥ 4,
the solution is not a rational function and it is difficult to get Maple to halt on a Gröbner basis
computation. This points to the need for computational algebraic tools better suited to working
with symmetric functions.

4.9. Alignments of sequences. The problem of sequence alignment is of interest in molec-
ular biology [Wat95; RT], since a given string may evolve via substitutions, insertions, and deletions.
We seek to place several strings of varying lengths in parallel, which may necessitate adding some
spaces. A basic problem underlying design of algorithms which seek the best alignment in the sense
of minimizing some score function is simply to count such alignments. Note that for this problem
the elements of the string are irrelevant — we only care whether there is a letter or a space.
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Mathematically, given positive integers k and a k-tuple n = (n1, . . . , nk), we may define a (k;n)-
alignment as a k × n binary matrix for some n, such that no columns are identically zero and the
ith row sum is ni. Column j is aligned if it has no zero entry, and a block of size b is a k × b

submatrix, with contiguous columns, all of which are aligned. For example, Figure 4.6 shows an
alignment of 3 strings, and the corresponding matrix. The generating function giving the number
of (k,n)-alignments with the ith row having sum ni is given by

F (z1, . . . , zk) =
1

2− p(z)

where p(z) =
∏k

j=1(1 + zj).

C C A G T C A G C T A
C A G T C C C T G
G T A G T C T T C

1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1

Fig. 4.6. A (3; 11, 9, 9)-alignment and its corresponding binary matrix.

The special case where all sequences involved have the same length (all rows have the same
sum) is easily dealt with. By Proposition 3.17, there is a single strictly minimal point in the
positive orthant that controls asymptotics in the diagonal direction. By symmetry of F and of
the equation dir(z) = 1, this point has the form z = z1 for some positive z. Thus we have
z = 21/k − 1 and hence the asymptotic has the form C(z−k)nn−

k−1
2 . This result was derived by

Griggs, Hanlon, Odlyzko and Waterman in [GHOW90] using a saddle point analysis. Note that for
large k, z−k ∼ 2−1/2kk(log 2)−k.

To compute the constant C, we use the formula of Theorem 3.20. It is readily computed that
−zk∂H/∂zk = 2z/(1+z). To compute the Hessian determinant, we need only consider the Hessian in
θ1, . . . , θd−1 of− log

∏
j<k(1+z exp(iθj))+log(2−

∏
j<k(1+z exp(iθj)). Direct computation using the

fact that
∏

j<k(1+z exp(iθj)) takes the value 2/(1+z) when θ = 0 shows that the Hessian matrix has
diagonal elements 2/(1+z) and off-diagonal elements 1/(1+z). Thus H = k(1+z)−(k−1) = k21/k/2
and this yields

C =
2(1−k2)/2k

(21/k − 1)
√
kπk−1

.

This yields the result of [GHOW90] (note that there is an error in the displayed formula on [Wat95,
p. 1989] – the factor rk should read r, and the factor 2(k2−1)/(2k) should be 2(1−k2)/(2k)).

A more important case for biological applications is when the minimum block size is bounded
below, by b, say. The generating function in this case is shown in [RT], by means of standard
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operations on generating functions of formal languages, to have the form

F (z1, . . . , zk) =
A

1 + (1− p)A+ (A− 1)t
=

1− t+ tb

(1− t)(1− g)− tbg
=

1 + tb

1−t

1− g
(
1 + tb

1−t

)
where t =

∏
j zi, g = p− 1− t and A = 1− t+ tb. Note that when b = 1 then A = 1, and we recover

the unrestricted case analysed above. In this case, asymptotics for the case where all sequences have
equal length have been derived (as far as we know) only for the case k = 2, using the “diagonal
method” discussed in Section 8. However, we can readily deal with general k using the methods of
this paper.

Again, by symmetry we need only look for a contributing minimal point of the form z = z1.
Let H = 1 + (1 − p)A + (A − 1)t. Since t = zk and p = (1 + z)k we must find the root(s) ρ of
smallest modulus of h(z) := H(z, z, . . . , z). Note that the third formula above shows that we may
take h = 1 − P where P is aperiodic with nonnegative coefficients, so there will be a unique root
ρ of smallest modulus, and it will be positive real. The exponential growth rate is then ρ−k with
polynomial correction of order n(1−k)/2 as above.

We note that in the case k = 2, such a result was proved in [GHW86], but stated slightly
differently. The value τ = ρ2 is given as the minimal positive root of the polynomial (1 − x)2 −
4x(1 − x + xb)2. Setting x = z2 and factoring the difference of squares yields ρ as the minimal
positive root of H(z, z) = 1− 2z − z2 + 2z3 − 2z2b+1.

To better estimate ρ := ρb, note that ρb < 1 so it is reasonable to consider the approximation
obtained by setting all powers involving zb to zero. The minimal real zero ρ1 of (1 − t)(1 − g) is
asymptotically of order 1/k (and equals 21/k−1). Now ρb > ρ1 but ρb should be close to ρ1. Indeed,
it appears that an iteration scheme based on the fixed point equation

z =
(

1 + zk +
1− zk

1− zk + zkb

)1/k

− 1

given by h(z) = 0 converges rapidly to ρb from starting point ρ1.

4.10. Probability that there is an edge in an induced subgraph. From the n-set [n] :=
{1, . . . , n}, a collection of t disjoint pairs is named. Then a k element subset, S ⊆ [n], is chosen
uniformly at random. What is the probability p(n, k, t) that S fails to contain as a subset any of the
t pairs? This question is posed in [LPŠ+] as a step in computing the diameter of a random Cayley
graph of a group of cardinality n when k elements are chosen at random (the diameter is infinite if
the k elements do not generate G).

There are a number of ways of evaluating p(n, k, t), one of which is by inclusion-exclusion on
the number of pairs contained. This leads to

p(n, k, t) =
t∑

i=0

(−1)i

(
t

i

)(
n− 2i
k − 2i

)(
n

k

)−1

=
t∑

i=0

(−1)i

(
t

i

)(
n− 2i
n− k

)(
n

k

)−1

. (4.22)
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Here, we define the binomial coefficient
(
p
q

)
to be zero unless 0 ≤ q ≤ p.

The numbers a(n, k, t) :=
(
n
k

)
p(n, k, t) are simpler to analyse via generating functions; since for

most purposes only a first-order asymptotic is sought, we lose nothing in considering a(n, k, t). Note
that from the description above, a(n, k, t) = 0 if k + t > n, by the pigeonhole principle (since the
complement of S has size less than t, S must contain at least t+ 1 of the 2t chosen elements). From
the statement of the problem, a(n, k, t) is not defined if 2t > n; however, formula (4.22) still makes
sense in that case, even though it does not define the probability of any event. In fact, a(n, k, t) can
be negative for large t.

The most direct approach to finding a trivariate generating function of a(n, k, t) is to use some
well-known bivariate generating functions

∑
i,j aijx

iyj . If aij =
(
i+j
j

)
then the GF is (1− x− y)−1,

while that for aij =
(

i
j

)
is (1− x(1 + y))−1. We now compute

∑
n,k,t,i

xnykztwi

(
t

i

)(
n− 2i
k − 2i

)
=

∑
N,K,i,j

xN+2iyK+2izi+jwi

(
i+ j

i

)(
N

K

)

=

∑
i,j

(
i+ j

i

)
(zwx2y2)izj

∑
N,K

(
N

K

)
xNyK


=

1
1− z(1 + wx2y2)

1
1− x(1 + y)

,

which yields the trivariate generating function

F (x, y, z) =
∑
n,k,t

a(n, k, t)xnykzt =
1

1− z(1− x2y2)
1

1− x(1 + y)
. (4.23)

Note that if we impose the restriction 2t ≤ n, then the sum over N,K is restricted to N ≥ 2j.
Now summing over N,K, t, i as above we obtain the restricted trivariate generating function

F2(x, y, z) =
∑

{n,k,t : 2t≤n}

a(n, k, t)xnykzt =
1

1− x(1 + y)
1

1− zx2(1 + 2y)
.

The advantage of F2 is that all its coefficients are nonnegative.

We show how to give asymptotics for a(n, k, t) in an arbitrary direction for which n > k+ t. For
the specific case of k = bcnc, t = (n− 4)/12 with 0 < c < 1, such an analysis was posed as an open
question at the end of an early draft of [LPŠ+].

It turns out that the computations can be carried out equally well with F or F2. However, with
F2 we can use Theorem 3.16 if we are only interested in the behaviour of a(n, k, t) for 2t ≤ n.

The denominator of F factors into two smooth pieces, call them H1 := 1− x(1 + y) and H2 :=
1− z(1−x2y2). There is a corresponding stratification of V into two surfaces, V1 := {H1 = 0 6= H2}
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and V2 = {H2 = 0 6= H1}, and a curve, V0 := {H1 = H2 = 0}. For z ∈ V1, lack of dependence on
z means that dir(z) ⊥ (0, 0, 1), so dir cannot be in the strictly positive orthant; hence for r ∈ O,
there are no points of critr in V1. It turns out there are no points of critr in V2 either. This is
discovered by computation. If z ∈ V2 ∩ critr and r = (r, s, 1), then z satisfies the equations

H2(z) = 0 ;

x
∂H2

∂x
− rz

∂H2

∂z
= 0 ;

y
∂H2

∂y
− sz

∂H2

∂z
= 0 .

These equations turn out to have no solutions: Maple tells us in an instant that the ideal generated
by the left-hand sides of the three above equations in C[x, y, z, r, s] contains r − s; thus V2 may
contain points of critr only when r = s, that is, only governing asymptotics of a(n, k, t) for which
n = k, which are not interesting.

Evidently, critr ⊆ V0. Two equations are H1 = H2 = 0, that is,

(x, y, z) =
(

1
1 + y

, y ,
(1 + y)2

1 + 2y

)
.

The last equation is that r is in the linear space spanned by ∇logH1 and ∇logH2. Setting the
determinant of (r,∇logH1,∇logH2) equal to zero gives the equation

2(r − s− 1)y2 + (r − 3s)y − s = 0. (4.24)

Note that exactly the same equations are obtained for x, y, z when using F2.

If r > s+ 1, the discriminant (r + s)2 − 8s of the quadratic in (4.24) is positive, and (4.24) has
one positive and one negative root, the positive root being

y+ :=

√
(r + s)2 − 8s− (r − 3s)

4(r − s+ 1)
.

Plugging into for x+ and z+ yields expressions for these which are also quadratic over Z[r, s].
The expression for (x−, y−, z−) is just the algebraic conjugate of (x+, y+, z+), but is negative in the
second and third coordinates.

Having identified critr as these two conjugate points, which we will call z+ and z−, it remains
to find contribr. Since the two elements lie on different tori, we may conclude from Theorem 3.16
that contribr = {z+}.

The form of the leading term asymptotic is then given by Theorem 3.26:

a(n, k, t) ∼ C

(
k

n
,
t

n

)
n−1/2x−n

+ y−k
+ z−t

+ .
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For example, in the direction (12, 12c, 1) with c < 11/12, we can compute the exponential growth
rate and compare with that of

(
n

bcnc
)
, and thereby show that certain random Cayley graphs have

diameter 2 with very high probability. For details, see [LPŠ+].

Analysis in the unrestricted case where we may have 2t > n is more difficult. In fact [xnykzt]F
need not be zero when k + t > n and 2t > n, and may be negative.

4.11. Integer solutions to linear equations. Let ar be the number of nonnegative integer
solutions to Ax = r where A is a d×m integer matrix. Denote by b(k) the kth column of A. Then

F (z) =
∑
r

arzr =
m∏

k=1

1
1− zb(k)

This enumeration problem has a long history. We learned of it from [DLS03] (see also [Sta97, Sec-
tion 4.6]). One special case is when A = Am,n is the incidence matrix for a complete bipartite graph
between m vertices and n vertices. Solutions to Ax = r count nonnegative integer m × n matrices
with row and column sums prescribed by r; enumerating these is important when constructing sta-
tistical tests for contingency tables. Another special case is when A = An is the incidence matrix of
a complete directed graph on n vertices, directed via a linear order on the vertices. Here solutions
are counted in various cones other than the positive orthant and the function enumerating them is
known as Kostant’s partition function.

It is known that ar is piecewise polynomial, and it has been a benchmark problem in computation
to determine these polynomials, and the regions or chambers of polynomiality, explicitly. Indeed,
several subproblems merit benchmark status. Counting the chambers for Kostant’s partition function
is one such problem. Another is to evaluate the leading term for the diagonal polynomial an1 in the
case where A = Ak,k, the so-called Ehrhart polynomial, which counts k × k nonnegative integer
matrices with all rows and columns summing to n. Equivalently, this counts integer points in the
n-fold dilation of the Birkhoff polytope, defined as the set in R(k

2) of all doubly stochastic k × k

matrices; the leading term of an1 is the volume of the Birkhoff polytope.

Our methods do not improve on the computational efficiency of previous researchers: our ending
point is a well known representation, from which other researchers have attempted to find efficient
means of computing. Our methods do, however, give an effective answer, which illustrates that this
class of problems can be put in the framework for which our methods give an automatic solution.
The remainder of this section is devoted to such an analysis.

Our examination of the pole variety V begins with an answer rather than a question: we see that
1 ∈ V and realize that life would be easy if contribr = {1} for all r. In order for 1 to be a singleton
stratum it is necessary and sufficient that the columns b(k) span all of Rd. For the remainder of the
section we assume this to be the case. This satisfies our standing assumption 3.6.

The variety V is the union of the smooth sheets Vk, where for 1 ≤ k ≤ m, Vk is the binomial
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variety {z : Hk(z) := zb(k) − 1 = 0}. On each of these varieties, dirk(z) = ∇log(Hk)(z) is constant
and equal to b(k). If a stratum S is bigger than a singleton, then at any z ∈ S, the vectors ∇logHk

span a proper subspace of Rd; but these vectors do not vary as z varies in S, so the union over
z ∈ S of L(z) is this same proper subspace of Rd. Consequently, the union over all points of all
non-singleton strata of L(z) is a union of proper subspaces, which we denote Ξ′. For r /∈ Ξ′, then,
contribr consists of one or more singleton strata.

Taking logs, we see that logVk is a hyperplane normal to b(k) and is central (passes through
the origin). We see that K(0) is the positive hull of the vectors b(k); this hull is Ξ and outside
of the closure of this, ar vanishes. Forgetting about the logs, we see that 1 ∈ contribr for all
r ∈ Ξ0 := Ξ \Ξ′: this follows from Theorem 3.23 since r ∈ K(1).

If the intersection of all the surfaces Vk contains any other points on the unit torus T(1) then
these too are in contribr for all r ∈ Ξ0. This is easy to check, since it is equivalent to the integer
combinations of the columns of A spanning a proper sublattice of Zd. For instance, in the example
of counting matrices with constrained row and column sums, the columns of A span the alternating
sublattice of Zd, corresponding to the fact that contribr = {1,−1} for all r ∈ Ξ0.

There may be singleton strata given by intersections of subfamilies of {Vk : 1 ≤ k ≤ m}, that
lie on the unit torus, but in computing the leading term asymptotics these may be ignored because
they yield polynomials in r of lower degree.

In summary, for any r ∈ Ξ0, the leading term asymptotics are given by summing (3.12) over
a set containing 1, and isomorphic to the quotient of Zd by the integer span of the columns of A.
Our a priori knowledge that ar are integers, teamed with (3.11) as in the last part of Theorem 3.23,
shows that in fact ar are piecewise polynomial, at least away from Ξ′. Thus, except on a set of
codimension 1, we recover the well known piecewise polynomiality of ar.

In their paper, de Loera and Sturmfels use as a running example the matrix

A =

 1 0 0 1 1
0 1 0 1 0
0 0 1 0 1

 .

In this example we see that the columns of A span Z3 over Z, so the only contributing point is
1. The first three b vectors, in the order given, are the standard basis vectors, so the cone Ξ is
the whole positive orthant of RP2, which is a 2-simplex. The other two b vectors are two of the
three face diagonals of this cone, which are two midpoints of edges of the 2-simplex in RP2. In
addition to the boundary of Ξ, there are three projective line segments in Ξ′, corresponding to the
one-dimensional strata V4 ∩ V5, V4 ∩ V3 and V5 ∩ V2. The complement of these three line segments
(two medians of the simplex RP2 and the line segment connecting two midpoints of edges) divides
RP2 into five chambers, and on each of these chambers ar is a quadratic polynomial. Algorithms for
computing these polynomials are given, for example, in [DLS03] or [BP, Section 5].
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4.12. Queueing theory. Queuing theory describes the evolution of a collection of jobs that
enter the system, exit the system and change types stochastically as they are worked on by one or
more servers. There are many variations on this model. The example we consider here is a closed
network with no class-hopping, meaning that no jobs enter, leave or change type. The model is
defined in terms of the parameters J,K, {λj : 1 ≤ j ≤ J}, {µjk : 1 ≤ j ≤ J, 1 ≤ k ≤ K}, and
{pj;kl : 1 ≤ j ≤ J, 0 ≤ k, l ≤ K} as follows.

Let J be the number of types of jobs. Let K + 1 be the number of servers. In our example,
server k (1 ≤ k ≤ K) distributes its resources evenly among all jobs in its queue, serving jobs of type
j at rate µjk/n when there are n jobs in its queue, while server 0 is an infinite server, which serves
all waiting jobs simultaneously, serving a job of type j at rate λj independent of how many jobs it
is serving. A job of type of type j at a station k ∈ {0, . . . ,K} waits to be at the front of the queue
(if k ≥ 1), then waits to be served, then moves to server l with probability pj;kl. All service times
are independent exponential random variables and the movement between servers is Markovian and
independent of the service times.

The entire model is Markovian if one takes the state vector to be the J×(K+1) matrix Q = Q(t)
giving the number of jobs of each type waiting at each server. Let nj = nj(t) =

∑K
k=0Qjk(t) be the

number of jobs of type j present in the system at time t. The assumptions of our model (closed, with
no class-hopping) imply that the vector n = (n1, . . . , nJ) is constant. Assuming also that enough
of the pj;kl are nonzero that any job at any server can get to any other server, the process started
from any n = n(0) will be an ergodic Markov chain on the set of states S(n) of J × (K+1) matrices
with row sums n. There will be a unique stationary distribution πn. Explicit product formulae exist
for πn(Q) of the form πn(Q) = 1

G(n)Pn(Q), where P is a large product and G(n) is the normalizing
constant or partition function. Typically, Pn is easier to estimate than G(n), so much of the work
in analyzing this sort of queueing network is in estimating G(n).

It turns out that there is a relatively simple generating function for the quantities G(n). One
must first derive quantities ρji, which are stationary probabilities for a single job migrating through
the network. The partition generating function is then given by

F (z) :=
∑
n

G(n)zn =
exp(z1 + · · ·+ zj)∏K

i=1

(
1−

∑J
j=1 ρjizj

) . (4.25)

This equation is given in [Kog02, Equation (44)] (though the definition of ρji here is sketchy) or
in [BM93, Equation (2.26)] for a slightly more general model (more than one infinite server).

Evidently, the denominator of F decomposes into linear factors. A general analysis of this case,
including an algorithm for identifying contrib, is provided in [BP]. Here, we work the simplest
nontrivial case, J = K = 2. Thus

F (x, y) =
exp(x+ y)

(1− ρ11 x− ρ21 y)(1− ρ12 x− ρ22 y)
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for positive constants ρji. This example is worked in [BM93] but without the infinite server.

Assume that ρ11 > ρ12, which loses no generality except for allowing ρ11 = ρ12. The most
interesting case is then ρ22 > ρ21. The singular variety V consists of two lines with negative slopes,
and we have assumed order relations implying that the lines intersect in the positive quadrant. This
is exactly what is shown in Figure 3.2.

To recall the information from that figure, let

D := ρ11ρ22 − ρ12ρ21

denote the determinant of the matrix [ρji]. The set V has three strata, one being the point

(x0, y0) :=
(
ρ22 − ρ21

D
,
ρ11 − ρ12

D

)
where the lines meet and the others being the two lines, each with the point (x0, y0) removed.
Whenever a stratum is linear, there is a unique solution to the critical point equations (3.5) on the
stratum (use concavity of the logarithm to see this), hence critr has cardinality 3 unless two of the
critical points coincide. One of the critical points is always the point (x0, y0). Figure 4.7 shows the
location of all three critical points as r varies from near horizontal to near diagonal to near vertical.

Fig. 4.7. The three possible configurations of critical points

The three configurations correspond to a division of the positive orthant of RP1 into three
regions. Transitions between the regions occur when r is equal to

λ1 :=
ρ11(ρ22 − ρ21)
ρ21(ρ11 − ρ12)

or

λ2 :=
ρ12(ρ22 − ρ21)
ρ22(ρ11 − ρ12)

.

The middle region is the K(x0, y0) of directions between λ1 and λ2. In the interior of this cone,
asymptotics are given by Corollary 3.24. The determinant of the Hessian of the denominator of F ,
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evaluated at (x0, y0), is equal to −D2. The corollary therefore yields

ars ∼ x−r
0 y−s

0

exp(x0 + y0)
x0 y0D

.

To be completely explicit, consider the denominator from Figure 3.2. Here ρ11 = ρ22 = 2/3 and
ρ12 = ρ21 = 1/3. The boundaries of the cone have slopes 1/2 and 2. Both x0 and y0 are equal to 1,
so for (r, s) →∞ in a compact subcone of K(x0, y0),

ars =
e2

1/3
= 3e2 ≈ 22.1671 .

The actual value for r = s = 80 is a80,80 ≈ 22.1668 and the the relative error is 1.7 × 10−5. Even
at r = s = 40, the error is only one quarter of one percent. As in Section 4.4, there is a Gaussian
scaling window at the boundary of K(x0, y0). Thus, for example, an,2n ∼ 3

2e
2 ≈ 11.083 . The error

decays more slowly on the boundary (order n−1/2, though our treatment here does not extend to
this depth), so for instance a40,80 ≈ 10.893 differs from the limiting value of 3

2e
2 by 1.7%. The

standard deviation in the scaling window is a little under
√
n: for example, when n = 80 the

standard deviation is around 8. Checking a48,80 we see a value of roughly 18.45, which is 83% of
the interior value of 3e2 while at two standard deviations above we get a56,80 ≈ 21.49 or 97% of the
interior value; at one and two standard deviations below we have a32,80 ≈ 3.018 and a24,80 ≈ 0.241
which are respectively 13.6% and 1% of the interior value.

5. Transfer matrices. Suppose we have a class C of combinatorial objects that may be put
in bijective correspondence with the collection of paths in a finite directed graph. For example,
it is shown in [Sta97, Example 4.7.7] that the class C of permutations π ∈

⋃∞
n=0 Sn such that

|π(j) − j| ≤ 1 for all j in the domain of π is of this type. Specifically, the digraph has vertices
V := {−1, 0, 1}2 \ {(0,−1), (1, 0)}, with a visit to the vertex (a, b) corresponding to j for which
π(j) = a and π(j + 1) = b; the vertices (0,−1) and (1, 0) do not occur because this would require
π(j) = π(j + 1), which cannot happen; the edge set E is all elements of V 2 except those connecting
(1, x) to (y,−1) for some x and y, since this would require π(j) = π(j + 2); the correspondence is
complete because once π(j), π(j + 1) and π(j + 2) are distinct, no more collisions are possible.

The transfer-matrix method is a general device for producing a generating function which
counts paths from a vertex i to a vertex j according to a vector weight function W such that
W (v1, . . . , vn) =

∑n
j=1 w(vi, vj) for some function w : V × V → Nd.

Proposition 5.1 (Theorem 4.7.2 of [Sta97]). Let A be the weight matrix, that is, the matrix
defined by Aij = δi,jzw(i,j), where z = (z1, . . . , zd) and δi,j denotes 1 if (i, j) ∈ E and 0 otherwise.
Let Cij be the subclass of paths starting at i and ending at j and define F (z) =

∑
γ∈Cij

zW (γ). Then

F (z) =
(
(I −A)−1

)
ij

=
(−1)i+j det(I −A : i, j)

det(I −A)

where (M : i, j) denotes (i, j)-cofactor of M , that is, M with row i and column j removed. �
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Thus any class to which the transfer-matrix method applies will have a multivariate rational
generating function. It is obvious, for example, that the transfer-matrix method applies to the class
of words in a finite alphabet with certain transitions forbidden. The examples discussed in [Sta97,
pages 241–260] range from restricted permutations to forbidden transition problems to the derivation
of polyomino identities including (4.17), and finally to a very general result about counting classes
that factor when viewed as monoids. Probably because techniques for extracting asymptotics were
not widely known in the multivariate case, the discussion in [Sta97] centers around counting by a
single variable: in the end all weights are set equal to a single variable, x, reducing multivariate
formulae such as (4.18) to univariate ones such as (4.17). But the methods in the present paper
allow us to handle multivariate rational functions almost as easily as univariate functions, so we are
able to derive joint asymptotics for several statistics at once, which is useful to the degree that we
care about joint statistics.

5.1. Restricted switching. Some of the examples we have already seen, such as enumeration
of Smirnov words, may be cast as transfer-matrix computations. A simpler example of the method
is the following path counting problem.

Let G be the graph on K + L + 2 vertices which is the union of two complete graphs of sizes
K + 1 and L + 1 with a loop at every vertex and one edge xy between them. Paths on this graph
correspond perhaps to a message or task being passed around two workgroups, with communication
between the workgroups not allowed except between the bosses. If we sample uniformly among paths
of length n, how much time does the message spend, say, among the common members of group 1
(excluding the boss)?

We can model this efficiently by a four-vertex graph, with vertices C1, B1, B2 and C2, where
B stands for boss (so x = B1 and y = B2) and C refers to the workgroup. We have collapsed K

vertices to form C1 and L to form C2, so a path whose number of visits to C1 is r and to C2 is s
will count for KrLs actual paths.

Let F (u, v, z) =
∑

ω u
N(ω,C1)vN(ω,C2)z|ω| where N(ω,Cj) denotes the number of visits by ω

to Cj and |ω| is the length of the path ω. By Proposition 5.1, the function F is rational with
denominator H = det(I −A), where

A =


uz uz 0 0
z z z 0
0 z z z

0 0 vz vz


and the states are ordered C1, B1, B2, C2. Subtracting from the identity and taking the determinant
yields

H = uz2 + uz2v − uz − uz4v + z2v − 2 z − zv + 1 + z3v + uz3 .
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Giving each visit to C1 weight K corresponds to the substitution u = Ku′ and similarly, v = Lv′.
Applying Theorem 3.27 and reframing the results in terms of the original u and v shows that the
proportion of time a long path spends among C1 tends as n→∞ to

u∂H/∂u

z∂H/∂z

∣∣∣∣
(K,L,z0)

where z0 is the minimum modulus root of H(K,L, z). In the present example, this yields

K
(
−z − zL+ 1 + z3L− z2

)
−2Kz − 2KzL+K + 4Kz3L− 2 zL+ 2 + L− 3 z2L− 3Kz2

∣∣∣∣∣
z=z0

for the proportion of time spent in C1, where z0 is the minimal modulus root of H(K,L, z). Trying
K = 1, L = 1 as an example, we find that H(1, 1, z) = 1−4z+2z2+3z3−z4, leading to z0 ≈ 0.381966
and a proportion of just over 1/8 for the time spent in C1. There are 4 vertices, so the portion of
time the task spends at the isolated employee is just over half what it would have been had bosses
and employees had equal access to communication. This effect is more marked when the workgroups
have different sizes. Increasing the size of the second group to 2, we plug in K = 1, L = 2 and find
that z0 ≈ 0.311108 and that the fraction of time spent in C1 has plummeted to just under 0.024.

5.2. Connector matrices. For a more substantial example, we have chosen a further refine-
ment of the transfer-matrix method, called the connector matrix method. The specific problem
we will look at is the enumeration of sequences with forbidden substrings, enumerated by the compo-
sition of the sequence. This is a problem in which we are guaranteed (by the general transfer matrix
methodology) to get a multivariate rational generating function, but for which a more clever analysis
greatly reduces the complexity of the computations. Our discussion of this method is distilled from
Goulden and Jackson’s exposition [GJ04].

Let S be a finite alphabet and let T be a finite set of words (elements of
⋃

n S
n). Let C be the

class of words with no substrings in T , that is, those (y0, . . . , yn) ∈ C such that (yj , . . . , yj+k) /∈ T

for all j, k ≥ 0. We may reduce this to a forbidden transition problem with vertex set V := Sk with
k the maximum length of a word in T . This proves the generating function will be rational, but is
a very unwieldy way to compute it, involving a |S|k by |S|k determinant.

The connector matrix method of [GO81], as presented in [GJ04, pages 135–136], finds a much
more efficient way to solve the forbidden substring problem (see also an elementary proof of these
results via martingales [Li80]). They discover that it is easy to enumerate sequences containing at
least vi occurrences of the forbidden substring ωi. By inclusion-exclusion, one can then determine
the number containing precisely yi occurrences of ωi, and then set y = 0 to count sequences entirely
avoiding the forbidden substrings.

To state their result, let T = {ω1, . . . , ωm} be a finite set of forbidden substrings in the alphabet
[d] := {1, . . . , d}. We wish to count words according to how many occurrence of each symbol 1, . . . , d
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they contain and how many occurrences of each forbidden word they contain. Thus for a word η, we
define the weight τ(η) to be the d-vector counting how many occurrences of each letter and we let σ(η)
be the m-vector counting how many occurrences of each forbidden substring (possibly overlapping)
occur in η. Let F be the (d + m)-variate generating function with variables x1, . . . , xd, y1, . . . , ym

defined by

F (x,y) :=
∑

η

xτ(η)yσ(η) .

Proposition 5.2 (Theorem 2.8.6 and Lemma 2.8.10 of [GJ04]). Given a pair of finite words,
ω and ω′, let connect(ω, ω′) denote the sum of the weight of α over all words α such that some
initial segment β of ω′ is equal to a final segment of ω and α is the initial unused segment of ω.
Formally,

connect(ω, ω′) =
∑

α:(∃β,γ) ω=αβ,ω′=βγ

τ(α) .

Let V be the square matrix of size m defined by Vij = connect(ωi, ωj), denote the diagonal matrices
Y := diag (y1, . . . , ym), L := diag (xτ(ω1), . . . ,xτ(ωm)), and let J to be the m by m matrix of ones.
Then

F (x,y) = [1− (x1 + · · ·+ xd)− C(x,y − 1)]−1

where

C(x,y) = trace
(
(I−YV)−1YLJ

)
.

In particular, setting y = 0, the generating function for the words with no occurrences of any
forbidden substring is

F (x,0) =
[
1− (x1 + · · ·+ xd) + trace

(
(I + V)−1LJ

)]−1
. (5.1)

�

Remark. The function C is the so-called cluster generating function, whose (r, s)-coefficient counts
strings of composition r once for each way that the collection of sj occurrence of the substring ωj

may be found in the string.

5.3. Forbidden substring example. Goulden and Jackson apply the results of the previ-
ous subsection to an example. Let S = {0, 1} be the binary alphabet, and let T = {ω1, ω2} =
{10101101, 1110101}. The final substrings of length 1 and 3 of ω1 are initial substrings of ω1 with
corresponding leftover pieces 1010110 and 10101. Thus V11 = x3

1x
4
2 + x2

1x
3
2. Computing the other

three entries similarly, we get

V =

[
x3

1x
4
2 + x2

1x
3
2 x3

1x
4
2

x2
1x

4
2 + x1x

3
2 + x2

2 x2
1x

4
2

]
.
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We also obtain

L =

[
x3

1x
5
2 0

0 x2
1x

5
2

]
.

Plugging into (5.1), denoting (x1, x2) by (x, y), finally yields

F (x, y) =
1 + x2y3 + x2y4 + x3y4 − x3y6

1− x− y + x2y3 − x3y3 − x4y4 − x3y6 + x4y6
. (5.2)

We make the usual preliminary computations on F . Write G and H for the numerator and
denominator in (5.2). A Gröbner basis computation in Maple quickly tells us H has no singularities
and that H = G = 0 does not occur in the positive quadrant of R2 (the last command finds real
roots of the relevant polynomial):

> Basis([H , diff(H,x) , diff(H,y)] , plex(x,y));

[1]

> gb:=Basis([G,H],plex(x,y));

4 3 2 3 2

[y + y - 2 y + 1, y + x - y + y + 1]

> fsolve(gb[1], y);

-1.905166168, -0.6710436067

Similarly, we see that Q and H vanish simultaneously only at (1, 0) and at (0, 1). Using our a
priori knowledge that the coefficients of F are nonnegative, we apply Corollary 3.18 and look for
minimal points on the lowest arc of the graph of V in the first quadrant. The plot of this is visually
indistinguishable from the line segment x + y = 1, which is not surprising because the forbidden
substrings only affect the terms of the generating function of order 7 and higher. More computer
algebra shows the point (x, y) ∈ contribr to be algebraic of degree 21.

One question we might ask next is to what degree the forbidden substrings bias the typical word
to contain an unequal number of zeros and ones. One might imagine there will be a slight preference
for zeros since the forbidden substrings contain mostly ones. To find out the composition of the
typical word, we apply Theorem 3.28. Setting y = x gives the univariate generating function

f(x) = F (x, x) =
1 + x5 + x6 + x7 − x9

1− 2x+ x5 − x6 − x8 − x9 + x10
=
∑

n

N(n)xn

for the number N(n) of words of length n with no occurrences of forbidden substrings. The root of
the denominator of minimum modulus is x0 = 0.505496 . . ., whence N(n) ∼ C(1/x0)n.
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The direction associated to the point (x0, x0) is given by the projective point

r =
(
x
∂H

∂x
, y
∂H

∂y

)
(x0, x0) . (5.3)

The ratio λ0 = r/s of zeros to ones for this r is a rational function of x0. We may evaluate x0

numerically and plug it into this rational function, but the numerics will be more accurate if we reduce
algebraically first in Q[x0]. Specifically, we may first reduce the rational function to a polynomial
by inverting the denominator modulo the minimal polynomial for x0 (Maple’s gcdex function) then
multiplying by the numerator and reducing again. Then, from the representation λ0 = P (x0), we
may produce the minimal polynomial for λ0 by writing the powers of λ0 all as polynomials of degree 9
in x0 and determining the linear relation holding among the powers λ0

0, . . . , λ
10
0 . We find in the end

that λ0 = 1.059834 . . .. Thus indeed, there is a slight bias toward zeros.

Suppose we wish to know how long a string must be before the count of zeros and ones tells
us whether the string was sampled from the measure avoiding 10101101 and 1110101 versus the
uniform measure. We may answer this by means of the local central limit behavior described in
Theorem 3.28. We may verify that the proportion of zeros is distributed as

λ0

λ0 + 1
+ cn−1/2N(0, 1)

where N(0, 1) denotes a standard normal. Once we have computed the constant c, we will know

how big n must be before
λ0

λ0 + 1
− 1

2
� cn−1/2 and the count of zeros and ones will tip us off as to

which of the two measures we are seeing.

6. Lagrange inversion. Suppose that a univariate generating function f(z) satisfies the func-
tional equation f(z) = zφ(f(z)) for some function φ analytic at the origin and not vanishing there.
Such functions often arise, among other places, in graph and tree enumeration problems. If φ is a
polynomial, then f is algebraic, but even in this case it may not be possible to solve for f explic-
itly. A better way to analyse f is via the Lagrange inversion formula. One common formulation
states [GJ04, Thm 1.2.4] that

[zn]f(z) =
1
n

[
yn−1

]
φ(y)n (6.1)

where [yn] denotes the coefficient of yn.

To evaluate the right side of (6.1), we look at the generating function

1
1− xφ(y)

=
∞∑

n=0

xnφ(y)n

which generates the powers of φ. The xnyn−1 term of this is the same as the yn−1 term of of φ(y)n.
In other words,

[zn]f(z) =
1
n

[xnyn]
y

1− xφ(y)
. (6.2)
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This is a special case of the more general formula for ψ(f(z)):

[zn]ψ(f(z)) =
1
n

[xnyn]
yψ′(y)

1− xφ(y)
. (6.3)

These formulae hold at the level of formal power series, and, if ψ and φ have nonzero radius of
convergence, at the level of analytic functions.

We can now apply the analysis leading to (4.10) (taking note that the series v(x) in that equation
is presently called φ(y), while the series φ(x) there is here called yψ′(y)). Assume φ has degree at
least 2 – the easy case φ(z) = az + b may be handled directly.

Recall the definitions of µ and σ2 from Subsection 4.3. We are interested only in coefficients
of xnyn, that is, the diagonal direction. Set µ(φ; y) := yφ′/φ equal to 1; geometrically, we graph
φ(y) against y and ask that the secant line from the origin to the point (y, φ(y)) be tangent to the
graph there. Letting y0 denote a solution to this, we then have a point (1/φ(y0), y0) in the set

y
0

φ(    )

y
0

crit1 and at this point the quantity x−ny−n is equal to (φ(y0)/y0)n = φ′(y0)n. In equations (4.5)
and (4.6) we have µ(φ; y0) = 1 and consequently σ2(φ; y0) simplifies to y2

0φ
′′(y0)/φ(y0). Putting this

together with the asymptotic formula (4.10), setting r = s = n and simplifying leads to the following
proposition. Note that it is easily shown that f is aperiodic if and only if φ is.
Proposition 6.1. Let φ be analytic and nonvanishing at the origin, aperiodic with nonnegative
coefficients, with degree at least 2 at infinity. Let f be the nonnegative series satisfying f(z) =
zφ(f(z)). Let y = y0 be the positive solution of yφ′(y) = φ(y). Then if ψ has radius of convergence
strictly greater than y0, we have

[zn]ψ(f(z)) ∼ φ′(y0)nn−3/2
∑
k≥0

bkn
−k (6.4)

where b0 =
y0ψ

′(y0)√
2πφ′′(y0)/φ(y0)

. �

A variant of Proposition 6.1, proved by other means, is found in [FS, Thm VI.6]. That result,
proved by univariate methods, is stronger than Proposition 6.1 in some ways. For example, it can
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handle the estimation of [zn]T (z)(1− T (z))−2 where T (z) = z exp(T (z)), which occurs in the study
of random mappings, whereas an attempt to use Proposition 6.1 directly runs into the problem that
y0 = 1 and ψ(z) = (1− z)−2 has radius of convergence 1.

6.1. Bivariate asymptotics. We now discuss bivariate asymptotics. In the special case
ψ(y) = yk, for fixed k, the above results on Lagrange inversion yield the first order asymptotic

[zn]f(z)k ∼ k

n
φ′(y0)n yk

0√
2πnφ′′(y0)/φ(y0)

where y0φ′(y0) = φ′(y0). We can also derive an asymptotic as both n and k approach ∞. We sketch
an argument here (see [Wil05] for details). The formula (4.10) supplies asymptotics whenever n/k
belongs to a compact set of the interior of (A,B), where A is the order of f at 0 and B the order at
∞. In the present case we have A = 1 and B = ∞. We may then use the defining relation for f(z)
to express the formula in terms of φ only, leading to the following result.
Proposition 6.2. Let φ be analytic and nonvanishing at the origin, with nonnegative coefficients,
aperiodic and of order at least 2 at infinity. Let f be the positive series satisfying f(z) = zφ(f(z)).
For each n, k, set λ = k/n and let y = yλ be the positive real solution of the equation µ(φ; y) = (1−λ).
Then

[zn]f(z)k ∼ λφ(yλ)nyk−n
λ

1√
2πnσ2(φ; yλ)

= λ(1− λ)−nφ′(yλ)n yk
λ√

2πnσ2(φ; yλ)
. (6.5)

Here µ and σ2 are given by equations (4.5) and (4.6) respectively. The asymptotic approximation
holds uniformly provided that λ lies in a compact subset of (0, 1). �

The similarity between (6.4) and (6.5) seems to indicate that a version of Proposition 6.2 that
holds uniformly for 0 ≤ k/n ≤ 1−ε should apply. This is consistent with a result of Drmota [Drm94]
but is seemingly more general, and warrants further study. Such a result can very likely be obtained
using the extension by Lladser [Lla03] of the methods of [PW02], as can results of Meir and Moon
[MM90] and Gardy [Gar95] related to Proposition 6.2.

6.2. Trees in a simple variety. We now discuss a well-known situation [FS, VII.2] in which
the foregoing results can be applied.

Consider the class of ordered (plane) unlabelled trees belonging to a so-called simple variety,
namely a class W defined by the restriction that each node may have a number of children belonging
to a fixed subset Ω of N. Some commonly used simple varieties are: regular d-ary trees, Ω = {0, d};
unary-binary trees, Ω = {0, 1, 2}; general plane trees, Ω = N. The generating function f(z) counting
trees by nodes satisfies f(z) = zω(f(z)) where ω(y) =

∑
t∈Ω y

t.

Provided that ω is aperiodic, Proposition 6.1 applies. The form of ω shows that the equation
yω′(y) = ω(y) always has a unique solution strictly between 0 and 1. As a simple example, we
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compute the asymptotics for the number of general plane trees with n nodes (the exact answer
being the Catalan number Cn−1). The equation yφ′(y) = φ(y) has solution y = 1/2, corresponding
to φ′(y) = 1/4. Thus we obtain

[zn]f(z) ∼ 4n−1 1√
πn3

in accordance with Stirling’s approximation applied to the expression of Cn−1 in terms of factorials.

Proposition 6.1 does not directly apply to the case of regular d-ary trees. Rather, we use a version
where the contribution from several minimal points on the same torus must be added. The details
are as follows. The equation µ(φ; y) = 1 has solutions ωρ where ρ = (d− 1)−1/d and ωd = 1. Each
of these is a contributing critical point and the corresponding leading term asymptotic contribution
is Cω(n−1)αnn−3/2 where C = ρ2(2π(d − 1))−1/2 and αd = dd/((d − 1)d−1). Thus the asymptotic
leading term is 0 unless d divides n− 1, in which case it is dCαnn−3/2.

We note in passing that one can avoid the last computation as follows [FS, I.5, Example 13].
There is a bijection between the class of d-ary trees and the class C of trees with vertices of degree
at most d but allowing for

(
d
j

)
types of nodes of degree j. The pruning map removes all external

nodes (nodes of degree 0) from a d-ary tree, then labelling each node of the pruned tree with the
set of children that were removed. Pruning always maps a tree of 1 + dm nodes to a tree of m
nodes. The extension of the above asymptotics to a multiset of degrees (allowing for different types
of children) is straightforward. Thus we can compute using the degree enumerator g(z) = (1 + z)d

of C in Proposition 6.1, and [zn]f(z) = [zm]g(z).

Now we consider the mean degree profile of trees in W. Let ξk(t) be the number of nodes of
degree k in the tree t, and |t| the total number of nodes in t. A standard calculation [FS, VII.2.2,
Example 5] shows that the cumulative generating function is∑

t∈W
z|t|ξk(t) = z2φkf(z)k−1φ′(f(z))

where φk = [yk]φ(y). Thus we have

F (z, u) :=
∑
k≥0

∑
t∈W

ξk(t)z|t|uk = µ(f ; z)zφ(uf(z)) .

The mean number of nodes of degree k in a uniformly randomly chosen tree of size n from W is
then given by

Mnk =
[znuk]F (z, u)

[zn]f(z)
.

Consider again the simplest case, general plane trees, with φ(y) = (1 − y)−1. Then F (z, u) corre-
sponds to a Riordan array. A simple variant of Proposition 6.2 shows that

[znuk]F (z, u) ∼ ykφ′(y)n−1 1√
2πnσ2(φ; y)
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where µ(φ; y) = 1− k/n. This is easily solved to obtain y = (n− k)/(2n− k) and hence we obtain
routinely:

Mnk ∼ n

(
2n− k

2n

)2n−2(
n− k

2n− k

)k
√

n2

2(n− k)(2n− k)
(6.6)

uniformly as long as k/n is in a compact subset of (0, 1). The mean number of leaves (nodes of degree
0) in such a tree is well known [FS, III.5, Example 12] to be n/2, which is obtained by substituting
k = 0 in the right side of (6.6). Thus it again seems likely that the approximation is in fact uniform
on [0, 1− ε].

6.3. Cores of planar graphs. A rooted planar map is a graph with a distinguished edge
(the root) that can be embedded in the plane. A rooted planar map is completely specified by a
planar graph, a distinguished edge, and a cyclic ordering of edges around each vertex. The core
of a map (henceforth always a rooted planar map) is the largest 2-connected subgraph containing
the root edge. The problem of the typical core size (cardinality of the core) of a map is considered
in [GW99; BFSS01]. They obtain a functional equation for the generating function

M(u, z) =
∑
n,k

an,kz
nuk

where an,k is the number of maps with n edges and core size k (that is, the core has cardinality
k). They are interested in computing the probability distribution of the core size of a map sampled
uniformly from among all maps of with n edges. Applying the general inversion formula (6.3) to
their functional equations, they are able to compute

p(n, k) :=
an,k∑
j an,j

=
k

n
[zn−1]ψ′(z)ψ(z)k−1φ(z)n (6.7)

where ψ(z) = (z/3)(1 − z/3)2 and φ(z) = 3(1 + z)2 are the operators that arise in the functional
equation for M(u, z).

The mean size of the core was computed in [GW99]. For this it sufficed to prove a specialized
result about coefficients of powers of functions asymptotic to (1− z)−3/2 as z → 1. The problem of
finding a limit law for the distribution about the mean was taken up in [BFSS01]. One may arrive
directly at an asymptotic formula for p(n, k) if one rewrites (6.7) as

p(n, k) =
k

n
[xkynzn]

xzψ′(z)
(1− xψ(z))(1− yφ(z))

.

The analysis of the resulting trivariate generating function is, however, quite challenging. In partic-
ular, there is a point where Q vanishes; a generalization of Theorem 3.19 [PW02, Theorem 3.3] tells
us that the asymptotics in this precise direction, but does not answer the more interesting question
of asymptotics in a scaling window near that direction, which turns out to be k = n/3± n−2/3. An
answer, in the framework of [PW02], is given in the doctoral work of M. Lladser [Lla03, Section 5.5].
A complete answer is given in [BFSS01] by reductions to a one-variable generating function, on
which a coalescing-saddle approximation is used. We will not go into details here.
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7. The kernel method. The kernel method is a means of producing a generating function for
an array {ar : r ∈ Nd} of numbers satisfying a linear recurrence

ar =
∑
s∈E

csar−s . (7.1)

Here E is a finite subset of Zd \ {0} which is not necessarily a subset of Nd but whose convex
hull must not intersect the closed negative orthant. The numbers {cs : s ∈ E} are constants and
the relation (7.1) holds for all r except those in the boundary condition, which will be made
precise below. As usual, let F (z) =

∑
arzr. In one variable F is always a rational function, but in

more than one variable the generating function can be rational, algebraic, D-finite, or differentially
transcendental (not D-finite). A classification along these lines, determined more or less by the
number of coordinates in which points of E can be negative, is given in [BMP00], which is a very
nice exposition of the kernel method at an elementary level.

We are interested in the kernel method because it often produces generating functions to which
Theorem 3.19 may be applied. Because the method is not all that well known, we include a detailed
description, drawing heavily on [BMP00]. We begin, though, with an example.

7.1. A random walk problem. Two players move their tokens toward the finish square,
flipping a fair coin each time to see who moves forward one square. At present the distances to the
finish are 1 + r and 1 + r + s. If the second player passes the first player, the second player wins;
if the first player reaches the finish square, the first player wins; if both players are on the square
before the finish square, it is a draw. What is the probability of a draw?

Let ars be the probability of a draw, starting with initial positions 1+r and 1+r+s. Conditioning
on which player moves first, one find the recursion

ars =
ar,s−1 + ar−1,s+1

2

which is valid for all (r, s) ≥ (0, 0) except for (0, 0), provided that we define ars to be zero when
one or more coordinate is negative. The relation ars − (1/2)ar,s−1 − (1/2)ar−1,s+1 = 0 suggests
we multiply the generating function F (x, y) :=

∑
arsx

rys by 1 − (1/2)y − (1/2)(x/y). To clear
denominators, we multiply by 2y: define Q(x, y) = 2y− y2 − x and compute Q ·F . We see that the
coefficients of this vanish with two exceptions: the x0y1 coefficient corresponds is 2a0,0−a0,−1−a−1,1

which is equal to 2, not 0, because the recursion does not hold at (0, 0) (a00 is set equal to 1); the
y0xj coefficients do not vanish for j ≥ 1 because, due to clearing the denominator, these correspond
to 2aj,−1 − aj,−2 − aj−1,0. This expression is nonzero since, by definition, only the third term is
nonzero, but the value of the expression is not given by prescribed boundary conditions. That is,
we have

Q(x, y)F (x, y) = 2y − h(x) (7.2)

where h(x) =
∑

j≥1 aj−1,0x
j = xF (x, 0) will not be known until we solve for F .
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This generating function is in fact a simpler variant of the one derived in [LL99] for the waiting
time until the two players collide, which is needed in the analysis of a sorting algorithm. Their
solution is to observe that there is an analytic curve in a neighborhood of the origin on which Q

vanishes. Solving Q = 0 for y in fact yields two solutions, one of which, y = ξ(x) := 1 −
√

1− x,
vanishes at the origin. Since ξ has a positive radius of convergence, we have, at the level of formal
power series, that Q(x, ξ(x)) = 0, and substituting ξ(x) for y in (7.2) gives

0 = Q(x, ξ(x))F (x, ξ(x)) = 2ξ(x)− h(x) .

Thus h(x) = 2ξ(x) and

F (x, y) = 2
y − ξ(x)
Q(x, y)

=
1

1 +
√

1− x− y
.

As is typical of the kernel method, the generating function F has a pole along the branch of
the kernel variety {Q(x, y) = 0} that does not pass through the origin. The function F is not
meromorphic everywhere, having a branch singularity on the line x = 1, but it is meromorphic
in neighborhoods of polydisks D(x, y) for minimal points (x, 1 +

√
1− x) on the pole variety for

0 < x < 1. For 0 < x < 1, dir(x, 1 +
√

1− x) = (2
√

1− x+ 2− 2x)/x. If we set this equal to λ and
solve for x we find x = 4(1 + λ)/(2 + λ)2 and 1 +

√
1− x = (2 + 2λ)/(2 + λ). In other words,

contribr =
(

4(1 + λ)
(2 + λ)2

,
2(1 + λ)
2 + λ

)
where λ = s/r. Plugging this into (3.6) gives

ars ∼ C(r + s)−1/2

(
4r(r + s)
(2r + s)2

)−r (2(r + s)
2r + s

)−s

=
C

22r+s

(2r + s)2r+s

rr(r + s)(r+s)
.

One recognizes in this formula the asymptotics of the binomial coefficient
(
2r+s

r

)
and indeed the

binomial coefficient may be obtained via a combinatorial analysis of the random walk paths.

7.2. Explanation of the kernel method. Because of the applicability of Theorem 3.19 to
generating functions derived from the kernel method, we now give a short explanation of this method.
We adopt the notation from the first paragraph of this section.

Let p be the coordinatewise infimum of points in E ∪ {0}, that is the greatest element of Zd

such that p ≤ s for every s ∈ E ∪ {0}. Let

Q(z) := z−p

(
1−

∑
s∈E

cszs

)
,
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where the normalization by z−p guarantees that Q is a polynomial but not divisible by any zj .
Partition Nd into two sets, Z and B, and assume that the relation (7.1) holds for all r ∈ Z; the set B
must be closed under ≤ and the values {ar : r ∈ B} are specified explicitly by constants {br : r ∈ B}
rather than by (7.1).

If E ⊆ Nd then p = 0, B can be arbitrary, F is a function of the form G/Q, and G is rational
if the boundary conditions are rational. The analysis in this case is straightforward and the kernel
method yields only what may be derived directly from the recursion for ar in terms of {as : s ≤ r}.
For examples of this, see Sections 4.1 and 4.2. We concentrate instead on the case where d = 2 and
the second coordinate of points in E may be negative. It is known in this case [BMP00, Theorem 13]
that if the generating function for the boundary conditions is algebraic then F is algebraic. On the
other hand, we shall see that an outcome of the kernel method is that F will have a pole variety,
and will usually satisfy the meromorphicity condition in the remark after Theorem 3.16.

To apply the kernel method, one examines the product QFZ , where for convenience we have let
FZ :=

∑
r∈Z arz

r be the generating function for those values for which the recursion (7.1) holds. If
we assume that the generating function FB :=

∑
r∈B brz

r for the prescribed boundary conditions is
known, then since F = FZ + FB , finding FZ is equivalent to finding F .

There are two kinds of contribution to QFZ . Firstly, for every pair (r, s) with s ∈ E, r ∈ Z and
r − s ∈ B, there is a term csbr−szr−p: the corresponding coefficient of QF vanishes, but FZ has
been stripped of the boundary terms that cause the cancellation. Let

K(z) :=
∑

r∈Z,s∈E,r−s∈B

csbr−szr−p

denote the sum of these terms. The “K” stands for “known”, because the coefficients of K are
determined by the boundary conditions, which are known. Secondly, for every pair (r, s) with
s ∈ E, r− s ∈ B and r /∈ Z there is a term −csar−szr−p due to the fact that the recursion does not
hold at r.

U(z) =
∑

r−s∈Z,s∈E,r/∈Z

csar−szr−p

denote these terms. The “U” stands for “unknown”, because these coefficients are not explicitly
determined from the boundary conditions. It is not hard to show that for any dimension d and any
E whose convex hull does not contain a neighborhood of the origin, the following result holds.
Proposition 7.1 ([BMP00, Theorem 5]). Let E, {cs}, p, B, Z, {bs : s ∈ B}, FZ and K be
as above. Then there is a unique set of values {ar : r ∈ Z} for such that (7.1) holds for all r ∈ Z.
Consequently, there is a unique pair (F,U) of formal power series such that

QFZ = K − U .

�
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In other words, the unknown power series U is determined from the data along with FZ . Another
way of thinking about this is that FZ is trying to be the power series K/Q but since Q vanishes
at the origin, one must subtract some terms from K to cancel the function Q0 where Q = Q0Q1

and Q0 consists of the branches of Q passing through the origin. The kernel method, as presented
in [BMP00] turns this intuition into a precise statement.
Proposition 7.2 ([BMP00, equation (24)]). Suppose d = 2, p = (0,−p) and FB = 1. There
will be exactly p formal power series ξ1, . . . , ξp such that ξj(0) = 0 and Q(x, ξj(x)) = 0, and we may
write Q(x, y) = −C(x)

∏p
j=1(y − ξj(x))

∏r
j=1(y − ρj(x)) for some r and ρ1, . . . , ρr. The generating

function FZ will then be given by

FZ(x, y) =
K(x, y)− U(x, y)

Q(x, y)
=

∏p
j=1(y − ξj(x))
Q(x, y)

=
1

−C(x)
∏r

j=1(y − ρj(x))
.

�

We turn to some examples.

7.3. Dyck, Motzkin, Schröder, and generalized Dyck paths. Let E be a set {(r1, s1), . . . , (rk, sk)}
of integer vectors with rj > 0 for all j and minj sj = −p < 0 < maxj sj = P . The generalized Dyck
paths with increments in E to the point (r, s) in the first quadrant are the paths from (0, 0) to (r, s),
with increments in E, which never go below the horizontal axis.

Fig. 7.1. a generalized Dyck path of length nine with E = {(1, 2), (1,−1)}

Let F (x, y) =
∑

r,s arsx
rys where ars is the number of generalized Dyck paths to the point

(r, s). We will have B = {(0, 0)}, FB = 1, Q(x, y) = yp(1−
∑

i x
riysi), and C(x) =

∑
i:si=P x

ri . We
now discuss three well known instances of such paths taken from [BMP00].
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Fig. 7.2. legal steps for three types of paths

Dyck paths: When E = {(1, 1), (1,−1)} we have the original Dyck paths. We have Q(x, y) =
y−xy2−x. Here C(x) = x, and Q(x, y) = −x(y−ξ(x))(y−ρ(x)) where ξ(x) = (1−

√
1− 4x2)/(2x)

and ρ(x) = (1 +
√

1− 4x2)/(2x) is the algebraic conjugate of ξ. Note that ρ is a formal Laurent
series and ρξ = 1.

Thus we have, following the discussion above,

F (x, y) =
1

−x(y − ρ(x))
=

ξ(x)/x
1− yξ(x)

.

Setting y = 0 recovers the fact that the Dyck paths coming back to the x-axis at (2n, 0) are counted
by the Catalan number Cn.

Asymptotics are readily obtained either using the explicit or implicit form of ξ (noting the
periodicity of ξ). Let us use the implicit form in this example, since we will be illustrating use of
the explicit form below in the case of Schröder paths, where Lagrange inversion does not apply. The
vanishing of Q(x, y) = y − xy2 − x occurs when y = xφ(y) with φ(y) = 1 + y2. Thus ξ = xφ(ξ). We
use a slight variant of (6.5), namely

[zn]ξ(z)k+1/z ∼ λφ(yλ)n+1yk−n
λ

1√
2πnσ2(φ; yλ)

where λ = k/n and µ(φ; yλ) = 1− λ.

The chain rule yields µ(φ; y) = yφy/φ = yφtty/φ = (yty/t)(tφt/φ) = µ(y2; y)µ(1 + t; t) with
t = y2. Thus we solve 1 − λ = 2t/(1 + t), or y2 = (1 − λ)/(1 + λ) = (r − s)/(r + s). The
two contributing points yλ cancel out if r − s is odd and reinforce if r − s is even. We compute
φ(yλ) = 2/(1 + λ) = 2r/(r + s) and σ2(φ; yλ) = 1− λ2 = (r2 − s2)/r2. We obtain

ars ∼ 2
s

r

(
2r
r + s

)r+1(
r − s

r + s

) s−r
2

√
r√

2π(r − s)(r + s)

=
2s

(r + s)
rr

( r+s
2 )

r+s
2 ( r−s

2 )
r−s
2

√
r√

2π( r−s
2 )( r+s

2 )
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provided r − s is even, and 0 otherwise. This is uniform for 0 < δ ≤ s/r ≤ 1− ε < 1.

Of course, in this simple example Lagrange inversion also gives an exact formula involving
binomial coefficients, namely

ars = [xr+1]ξ(x)s+1 =
s+ 1
r + 1

[yr−s](1 + y2)r+1 =
s+ 1
r + 1

(
r + 1

(r − s)/2

)
=

2(s+ 1)
r + s+ 2

r!
( r−s

2 )!( r+s
2 )!

(7.3)

when r − s is even, and 0 otherwise. If we had instead computed [zr+1]ξ(z)s+1 using (6.5), we
would have obtained a correct leading order asymptotic of a slightly different form (r, s replaced by
r+ 1, s+ 1 in some places). In each case these asymptotics are consistent with what is obtained by
applying Stirling’s formula to the factorials in (7.3).

Motzkin paths: Let E = {(1, 1), (1, 0), (1,−1)}. In this case the generalized Dyck paths are known
as Motzkin paths. Again we have case Q(x, y) = y − xy2 − x − xy. Now ρ and ξ are given by
(1− x±

√
1− 2x− 3x2)/(2x) and again

F (x, y) =
ξ(x)/x

1− yξ(x)
=

2
1− x+

√
1− 2x− 3x2 − 2xy

.

This time ξ is given implicitly by ξ = x(1+ ξ+ ξ2) and the coefficients are not binomial coefficients,
but the asymptotics are no harder to compute. Here, with λ = s/r, we have that contrib1−λ is a
singleton {yλ} by aperiodicity. The critical point equation is

(1 + λ)y2 + λy − (1− λ) = 0.

The solution is

yλ =
√

4− 3λ2 − λ

2(1 + λ)
.

The minimal polynomial for σ2(φ; yλ) is found as in earlier sections to be

3S2 + (6λ2 + 12λ− 2)S + 3λ4 − 24λ3 + 65λ2 − 68λ+ 24.

This polynomial has two positive solutions for S for each given λ. The correct one is found by noting
that σ2 approaches 0 as λ approaches 0.

Schröder paths: Here E = {(1, 1), (2, 0), (1,−1)}. We have C(x) = x,Q(x, y) = y − xy2 − x2y −
x, and ρ and ξ are given by (1 − x2 ±

√
1− 6x2 + x4)/(2x). This time Lagrange inversion does

not obviously apply. We perform an explicit computation, noting the periodicity of F . We have
dir(x, y) = r with

λ :=
s

r
=
√

1− 6x2 + x4

1 + x2
.

Then λ decreases from 1 to 0 as x increases from 0 to the smaller positive root of 1 − 6x2 + x4,
namely

√
2− 1. We also have

x2 =
3 + λ2 − 2

√
(2 + 2λ2)

1− λ2
.
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Choosing the positive value of x, we see that asymptotics are given by

ars ∼ 2Cx−ry−ss−1/2

where y = 1/ξ(x), when r + s is even, and 0 otherwise. Any particular diagonal (with a value of λ
between 0 and 1) can be extracted easily. For example, with λ = 1/3, we obtain a3s,s ∼ 2Cγss−1/2,
with x = (3−

√
5)/2, y = (1 +

√
5)/2, γ = (11 + 5

√
5)/2 ≈ 11.09016992, and C ≈ 0.1526195310. For

s = 12 this approximation underestimates by about 2.9%, and for s = 24 by about 1.5%.

7.4. Pebble configurations. Chung, Graham, Morrison and Odlyzlo [CGMO95] consider the
following problem. Pebbles are placed on the nonnegative integer points of the plane. The pebble
at (i, j) may be replaced by two pebbles, one at (i + 1, j) and one at (i, j + 1), provided this does
not cause two pebbles to occupy the same point. Starting from a single pebble at the origin, it is
known to be impossible to move all pebbles to infinity; in fact it is impossible to clear the region
{(i, j) : 1 ≤ i+ j ≤ 2} [CGMO95, Lemma 2].

They consider the problem of enumerating minimal unavoidable configurations. More specifi-
cally, say that a set T is a minimal unavoidable configuration with respect to some starting
configuration S if it is impossible starting from S to move all pebbles off of T , but pebbles may be
cleared from any proper subset of T . Let St denote the starting configuration where (i, j) is occupied
if and only if i+j = t. Let ft(k) denote the number of sets in the region {(i, j) : i, j ≥ 0 ; i+j ≥ t+1}
that are minimal unavoidable configurations for the starting configuration St.

They derive the recurrence

ft(k) = ft−1(k) + 2ft(k − 1) + ft+1(k − 2)

which holds whenever t ≥ 3 and k ≥ 2. Let

F (x, y) =
∑

t,k≥0

ft(k)xkyt .

According to the kernel method, we will have F = η/Q for some η vanishing on the zero set of Q
near the origin, where Q(x, y) = x − (x + y)2. Using some more identities, Chung et al. are able
to evaluate F explicitly. They state that they are primarily interested in f0(k), so they specialize
to F (x, 0) and compute the univariate asymptotics. It seems to us that the values ft(k) are of
comparable interest, and we pursue asymptotics of the full generating function.

The formula for F is cumbersome, but its principal features are (i) a denominator of P ·Q where
P is the univariate polynomial 1 − 7x + 14x2 − 9x3, and (ii) F is algebraic of degree 2 and is in
C[x, y][

√
1− 4x]. The minimum modulus root of P is x0 ≈ 0.2410859 . . .. The algebraic singularity

of F occurs along the line x = 1/4, so conveniently, the branching is completely outside the closure of
the domain of convergence and the meromorphicity assumption of the remark following Theorem 3.16
is satisfied.
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Fig. 7.3. the domain of convergence and the algebraic singularity

The boundary of the domain of convergence in the first quadrant is composed of pieces of
two curves, namely x = x0 and y = (x + y)2. These intersect at the point (x0, y0) where y0 =
(1 − 2x +

√
1− 4x)/2 ≈ 0.3533286. We are in the combinatorial case, so we know that minimal

points will be found along these curves. Along the curve y = (x + y)2 the direction dir(x, y) is
given by λ = r/s = (2− 2

√
y)/(2

√
y − 1). As (x, y) travels from (0, 1) down the curve to (x0, y0), λ

increases from 0 to λ0 ≈ 4.295798 . . .. At the point (x0, y0), the cone K(x0, y0) is the convex hull of
the positive x-direction the direction (λ0, 1).

We then have two sorts of asymptotics for ft(k). When t < k/λ0, the asymptotics are given by
Corollary 3.25. In this case we may evaluate G(x0, y0) ≈ 0.00154376 and

√
−x2

0y
2
0H ≈ 0.02925688

so that

ft(k) ∼ Cx−k
0 y−t

0 with C = 0.05276 . . .

uniformly as t/k varies over compact subsets of (0, 1/λ0). It is interesting to compare to the asymp-
totics for f0(k). Setting y = 0 gives the univariate generating function [CGMO95]

f(x) =
∑

anx
n = x2 (1− 4x)1/2(1− 3x+ x2)− 1 + 5x− x2 − 6x3

P (x)
.

We may compute

lim
n→∞

anx
k
0 = lim

x→x0
(x0 − x)f(x)

and we find that

f0(k) ∼ cx−k
0 with c = 0.016762 . . . .
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In fact, one may calculate lim ft(k)xk
0 for any fixed t by computing

ft(x) := (t!)−1

(
∂

∂y

)t

F (x, 0) (7.4)

and again computing c(t) := limx→x0(x0−x)ft(x). The pole at x = x0 in F is removable: replacing
the denominator PQ of F by (P/(x−x0))Q we see that g(y) := limx→x0(x0−x)F (x, y) has a simple
pole at y = y0 and that limt→∞ yt

0c(t) = limy→y0(y0 − y)g(y) is equal to C. In other words, we
see that the asymptotics known to hold uniformly as t/k varies over compact subsets of (0, 1/λ0)
actually hold over [0, 1/λ0) as long as t→∞, while for k →∞ with t fixed we use (7.4).

On the other hand, when t/k > 1/λ0 we may solve for x and y to get

contribr = (x, y) :=
{(

k(2t+ k)
(2t+ 2r)2

,
(2t+ k)2

(2t+ 2k)2

)}
.

We now use Theorem 3.19 to see that

ft(k)C(
t

k
)t−1/2 ∼ (2t+ 2k)2t+2k

kk(2t+ k)2t+k
.

The asymptotics in this case appear similar to those for the binomial coefficient
(
2t+2k

k

)
. As opposed

to the situation with Dyck paths, one may check that ft(k) is not equal to a binomial coefficient.

8. Discussion of other methods.

8.1. GF-sequence methods. The benchmark work in the area of multivariate asymptotics
is still the 1983 article of Bender and Richmond [BR83]. Their main result is a local central limit
theorem [BR83, Corollary 2] with the exact same conclusion as Theorem 3.29. Their hypotheses
are:

(i) ar ≥ 0;
(ii) F has an algebraic singularity of order q /∈ {0,−1,−2, . . .} on the graph of a function

zd = g(z1, . . . , zd−1);
(iii) F is analytic and bounded in a larger polydisk, if one excludes a neighborhood of Im (zj) = 0

for each j;
(iv) B is nonsingular.

Comparing this to the results presented herein, we find both methodological and phenomeno-
logical differences. One methodological difference is that they view a d-variate generating function
F as a sequence {Fn} of (d− 1)-variate generating functions. Their main result on coefficients of F
is derived as a corollary of a result [BR83, Theorem 2] on sequences satisfying Fn ∼ Cngh

n for some
appropriately smooth g and h. As we have remarked, this approach is natural for some but not all
applications, and leads to some asymmetry in the hypotheses and conclusions.
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A more important methodological difference is that while we always work in the analytic cate-
gory, Bender and Richmond use a blend of analytic and smooth techniques6. This manifests itself in
the hypotheses: where we require meromorphicity in a slightly enlarged polydisk, they require that
the function g be in C3, that the residue (1 − z/g)qF be in C0, and that F be analytic away from
the real coordinate planes. While our hypotheses are stronger in this regard, we know of no appli-
cations where their assumptions hold without (1 − z/g)qF being analytic. Bender and Richmond
gain generality by allowing q to be nonintegral. This is further exploited by Gao and Richmond,
where the singularity is allowed to be algebraico-logarithmic [GR92, Corollary 3]. On the other
hand, their methods entail estimates and therefore cannot handle cancellation, such as occurs when
ar have mixed signs and the dominant singularity lies beyond the domain of convergence of F (see
subsections 4.10 and 4.3).

Phenomenologically, there is a significant difference in generality between our methods and
those of Bender, Richmond, Gao, et al. Their results govern only the case where a local central limit
theorem holds – indeed it seems they are interested mainly or only in this case. Other behaviors of
interest, which have been analyzed in the literature by various means, include Airy-type limits (see
Section 6.3), polynomial growth (see Section 4.11), and elliptic-type limits. Central limit behavior
results from smooth points z(r) with nondegenerate quadratic approximations to hr(z(r)), while
Airy-type limits result from degenerate quadratic approximations, polynomial growth or corrections
result when z(r) is a multiple point, and elliptic-type limits result from bad points. By restricting
our exposition to the simplest cases, we have stayed mainly within the smooth point case, where
{ar} obeys a LCLT and the methods of Bender et al. apply, in most cases equally well as the
results in Section 3.3. But the advantage of multivariate analytic methods is that they can in
principle be applied to any case in which F is meromorphic or algebraic. Thus, in addition to the
further generality covered in Section 3.4 of this paper, the same general method has been used to
produce Airy limit results [PW02; Lla03], and is being applied to algebraic generating functions
and meromorphic functions with bad point singularities, the simplest of which are quadratic cones.
While this work is not yet published, it appears that it will provide another proof of the elliptic
limit results for tiling statistics on the Aztec Diamond [CEP96] that is capable of generalizing
to any quadratic cone singularity. This would prove similar behavior in two cases where such
behavior is only conjectured, namely cube groves [PS05] and quantum random walks (Chris Moore,
personal communication), as well as unifying these results with the analyses of the coefficients of the
generating function 1/(1− x− y− z+ 4xyz) that arise in the study of super ballot numbers [Ges92]
and Laguerre polynomials [GRZ83].

8.2. The diagonal method. There is a third method for obtaining multivariate asymptotics
that deserves mention, namely the so-called “diagonal method”. This derives a univariate generating
function f(z) =

∑
n an,nz

n for the main diagonal of a bivariate generating function F (x, y) =∑
rs arsx

rys. The asymptotics of an,n may then be read off by standard univariate means from

6Analyticity is used only once, when they rotate the quadratic form B.
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the function f . The method may be adapted to compute a generating function for the coefficients
anp,nq along any line of rational slope. This method, long known in various literatures, entered the
combinatorics literature in [Fur67; HK71]; our exposition is taken from [Section 6.3][Sta99].

While this elegant method produces an actual generating function, which is more informative
than the diagonal asymptotics, its scope is quite limited. First, while asymptotics in any rational
direction may be obtained, the complexity of the computation of anp,nq increases with p and q.
Thus there is no continuity of complexity, and no way to obtain uniform asymptotics or asymptotics
in irrational directions. Secondly, the result is strictly bivariate. Thirdly, even when the diagonal
method may be applied, the computation is typically very unwieldy.

As an example, consider the generating function

F (x, y) =
∑
m,n

amnx
myn =

1 + xy + x2y2

1− x− y + xy − x2y2

which [MZS04] enumerates binary words without zig-zags (a zigzag is defined to be a subword 010 or
101 — the terminology comes from the usual correspondence of such words with Dyck paths, where
0, 1 respectively correspond to the steps (1, 1), (1,−1)). Here m,n respectively denote the number
of 0’s and 1’s in the word. The main diagonal enumerates zigzag-free words with an equal number
of 0’s and 1’s. The solutions to H = 0, xHx = yHy are given by x = y = 1/φ, φ = (1 +

√
5)/2,

and x = y = (1 +
√

3i)/2. Thus contrib is a singleton {(1/φ, 1/φ)} and the first order asymptotic is
readily computed to be

ann ∼ φ2n 2√
nπ
√

5
.

The computation for any other diagonal is analogous, with the same amount of computational
effort, and the asymptotics are uniform over any compact subset of directions keeping away from
the coordinate axes.

To obtain the same result via the diagonal method requires the following steps. For each fixed
t near 0, we compute the integral

D(z) :=
∑

n

annz
n =

1
2πi

∫
Ct

F (z, t/z)
dz

z
=

1
2πi

∫
Ct

1 + t+ t2

−z2 + (1 + t− t2)z − t

where the contour is a circle that encloses all the poles of F (z, t/z)/z satisfying z(t) → 0 as t→ 0.
Since F (z, 0)/z has a single simple pole at z = 0, the same is true of F (z, t/z)/z for sufficiently
small t. In this simple example we can explicitly solve for the pole z(t) and compute its residue so
that we obtain the result ∑

n

annz
n =

√
1 + z + z2

1− 3z + z2
.

77



In other cases, after some manipulation we obtain
∑

n annz
n implicitly as the solution of an algebraic

equation. We are then faced with the problem of extracting asymptotics, which can probably
be done using univariate techniques. However, we have left the realm of meromorphic series and
this can complicate matters. In the example above, the branching occurs outside the domain of
convergence, and the asymptotics are controlled by the dominant pole at φ−2 (the minimal zero of
the denominator). Thus one obtains the same asymptotic as above, after some effort.

If we want to repeat this computation with
∑

n apn,qnz
n, we are required to find all small poles

of the function F (zq, t/zp). It is unlikely that these may be found explicitly, which complicates the
task of finding which ones go to zero and computing the residues there.

Finally, another serious problem faced by the diagonal method is that while the diagonal of
a rational series in d = 2 variables is always algebraic, a fact which can itself be proved by the
diagonal method, in d ≥ 3 variables, the diagonal of a rational series must be D-finite but may not
be algebraic [Lip88]. Thus a description of the diagonal generating function is more challenging.
For example, consider the generating function F (x, y, z) = (1− x− y− z)−1 =

∑
arstx

ryszt, whose
diagonal coefficient an,n,n is the multinomial coefficient

(
3n

n,n,n

)
. This is known not to be algebraic,

since its asymptotic leading term Cαnn−1 is not of the right form for an algebraic function. It
is completely routine to derive this asymptotic using the methods of the present article, but any
method that relies on an exact description of the diagonal will clearly require substantial extra work.

Acknowledgment. Many thanks to Manuel Lladser and Alex Raichev for a number of com-
ments on preliminary drafts.
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[Hör90] Lars Hörmander. An introduction to complex analysis in several variables, volume 7 of
North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, third
edition, 1990.

[HR17] G.H. Hardy and S. Ramanujan. Asymptotic formule for the distribution of integers of

80



various types. Proceedings of the London Mathematical Society, 16:112–132, 1917.
[Hwa96] Hsien-Kuei Hwang. Large deviations for combinatorial distributions. I. Central limit

theorems. Ann. Appl. Probab., 6(1):297–319, 1996.
[Hwa98] Hsien-Kuei Hwang. Large deviations of combinatorial distributions. II. Local limit

theorems. Ann. Appl. Probab., 8(1):163–181, 1998.
[Kog02] Yaakov Kogan. Asymptotic expansions for large closed and loss queueing networks.

Math. Probl. Eng., 8(4-5):323–348, 2002.
[Ler59] Jean Leray. Le calcul différentiel et intégral sur une variété analytique complexe.
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Birkhäuser, Basel, 2000.
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