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Abstract

The standard two-sided and one-sided matching problems, and the closely related school choice prob-
lem, have been widely studied from an axiomatic viewpoint. A small number of algorithms dominate the
literature. For two-sided matching, the Gale-Shapley algorithm; for one-sided matching, (random) Serial
Dictatorship and Probabilistic Serial rule; for school choice, Gale-Shapley and the Boston mechanisms.

The main reason for the dominance of these algorithms is their good (worst-case) axiomatic behaviour
with respect to notions of efficiency and strategyproofness. However if we shift the focus to fairness, social
welfare, tradeoffs between incompatible axioms, and average-case analysis, it is far from clear that these
algorithms are optimal.

We investigate new algorithms several of which have not appeared (to our knowledge) in the literature
before. We give a unified presentation in which algorithms for 2-sided matching yield 1-sided matching
algorithms in a systematic way. In addition to axiomatic properties, we investigate agent welfare using
both theoretical and computational approaches. We find that some of the new algorithms are worthy of
consideration for certain applications. In particular, when considering welfare under truthful preferences,
some of the new algorithms outperform the classic ones.

1 Introduction

The standard two-sided and one-sided matching problems, and the closely related school choice problem,
have been widely studied from an axiomatic viewpoint. A small number of algorithms dominate the litera-
ture. For two-sided matching, the Gale-Shapley algorithm; for one-sided matching, (random) Serial Dicta-
torship and Probabilistic Serial rule; for school choice, Gale-Shapley and the Boston mechanisms.

The main reason for the dominance of these algorithms is their good axiomatic behaviour with respect
to notions of efficiency and strategyproofness. However if we shift the focus to fairness, social welfare, or
tradeoffs between incompatible axioms, it is far from clear that these algorithms are optimal.

1.1 Our contribution

In Section 3] we introduce several (in our opinion) natural algorithms for one-sided matching, several of
which have not appeared (to our knowledge) in the literature before. We give a consistent derivation us-
ing specializations of the Gale-Shapley algorithm [] for two-sided matching, which includes the well-known
algorithms Serial Dictatorship [] and Naive Boston [] in a unified framework. In Section [4} in addition to
axiomatic properties such as efficiency and strategyproofness, we investigate welfare loss using a compu-
tational approach. We find that under truthful preferences, some of the new algorithms clearly outperform
the classic ones. In particular, we recommend some new algorithms for some applications.

2 Definitions and terminology

Let o ={ay,..., ay} be afinite set of agents and & = {0y, ..., 0} a finite set of items.

In general, the number of items and agents may not be equal. We focus on the case m = n in the present
article. The more general case involves substantial complications: different ways of assigning preferences
over subsets of @ or «f lead to different notions of strategyproofness, for example. However all our algo-
rithms can be modified trivially in order to work in the general case.

In the standard two-sided matching problem, each element of & has a complete strict preference order
for elements of <, and vice versa, while for 1-sided matching only the latter information is required. For
school choice the order of preference of items over agents depends on the preferences of agents over items
— the two sides are definitely not independent (schools typically must admit students who are qualified as



long as there is capacity, and use their own preferences only when a tie must be broken). We aim to unify
these three cases, and restrict to the case of strict linear orders.

Let L(O) (respectively L(<¢)) denote the set of all strict linear orders on & (resp. agents). A preference
profileis a pair of functions (m 4,7;) where 74 : A— L(O) and 7n; : G — L(&/). A matching or discrete assign-
ment is a function f : G < «. Let S be the set of all doubly stochastic n x n matrices with rows indexed by
agents and columns by items. A random assignment is an element of S. The matching problem is simply to
output a matching given an input profile. The proportional assignment is the random assignment in which
each matrix entry equals 1/n.

Of course, there are n! discrete assignments and finding one is trivial. The point is to find one with
desirable properties. A discrete assignment is efficient if there is no other assignment which improves the
outcome for some agent and does not worsen it for any agent. An algorithm for randomized assignment is
ex-post efficient if every matching occurring with positive probability is an efficient assignment.

We now review some standard algorithms from the literature.

Two algorithms for the same matching problem are equivalent if they each produce the same output
for every input. All the algorithms under study are anonymous, meaning that a permutation of the players
leads to the same permutation of the assignment. In other words, only the preferences matter, not the
agents’ identities. When discrete assignments are used, this means that whenever we have two agents with
identical preferences, one must envy the other’s assignment. A stronger condition is symmetry (also called
“equal treatment of equals”) which says that agents with the same preferences receive the same assignment.
Clearly, this can only be satisfied in the framework of random assignments.

Every algorithm that uses a fixed initial order of agents and produces a matching can yield an algorithm
that produces a random matching, simply by randomizing over the initial order. This is usually done ac-
cording to the uniform distribution, in order to preserve symmetry between agents. Thus every algorithm
discussed in Section[3|has a randomized version, which we denote by prefixing “R" to its name.

2.1 One-Sided Algorithms

One-sided matching refers to the situation where the items’ preferences over agents are ignored.
The most commonly discussed algorithm is Serial Dictatorship [].

Example 2.1. (Serial Dictatorship)

Fix an arbitrary linear ordering on A. The Serial Dictatorship algorithm (SD) with respect to this ordering
assigns items to agents as follows: at step i , allocate to agent ith its most preferred item that has not already
been allocated to a previous agent.

The randomized version is denoted RSD, as mentioned above. Serial Dictatorship satisfies important
axiomatic properties such as ex-post efficiency and strategyproofness (all axiomatic properties are defined
and discussed in Section[4).

The next algorithm was proposed by Bogolmanaia and Moulin [BMO1]. It is ordinally efficient in ad-
dition to being ex-post efficient, and has a weak strategyproofness property. It can be described using a
cake-eating analogy.

Example 2.2. (Probabilistic Serial) The Probabilistic Serial rule is inherently randomized, and generates a
random assignment as follows. We interpret an assignment of fraction x of item j to agent i to mean that i
receives fraction x of j (in other words we pretend that the items are infinitely divisible). All agents simultane-
ously begin “eating" at unit speed, each agent at each instant eating from its most preferred item among those
that have not been completely consumed. On termination we have a random assignment.

A closely related problem to one-sided matching is the housing market problem [SS74]. The difference is
that every agent is assumed to have an initial allocated item, and we seek a method for finding an allocation
that is optimal in some way.

Example 2.3. (Top Trading Cycle) When each agent is considered to be initially assigned an entire item, the
agents may trade amongst themselves as follows. Each agent i points to the agent currently owning the item
on the top of i’s preference list. By finiteness and since every node has outdegree 1, this directed graph must
contain a cycle. Reallocate items according to the arcs in the cycle, and remove these agents and items from
further consideration. Repeat (using pointers to the next level preference if necessary) until no items/agents
remain. This TTC algorithm [SS74], attributed by Shapley and Scarf to David Gale, always yields a discrete
assignment that is efficient, and the mechanism is strategyproof and individually rational. Furthermore the
algorithm runs in polynomial time.



Example 2.4. (sample execution of TTC) Consider the profile where agents 1 and 2 have preferences a> b > ¢
and agent 3 has preference b > a > c. The assignment1:c,2: b,3: a is not ex-post efficient, because 2 and 3
can trade to their mutual benefit. In the first round of TTC, agents 1 and 2 points to agent 3, while agent 3
points to agent 2. There is a cycle between agents 2 and 3. The agents swap along the cycle and are removed
from consideration. Agent 1 then points to itself in the next round, swaps along the cycle, remains with item
¢, and is removed from consideration. With no agents left, the TTC algorithm halts. The output is the ex-post
efficient assignment1:c,2:a,3:b.

When using TTC we have freedom in the choice of initial assignment. For example, choosing this uni-
formly at random and running TTC yields an algorithm equivalent to RSD [AS98], and an adaptation of TTC
to trade unit shares yields an algorithm equivalent to PS when run on the proportional endowment [Kes09].

We find it useful to run TTC on the output of some of our algorithms in Section [3| (algorithms which
satisfy ex-post efficiency gain no benefit from running TTC, which terminates immediately because there is
no cycle). The resulting combined algorithms, denoted XG where X is the name of the basic algorithm, are
ex-post efficient and appear to have considerably better overall performance than the original algorithms.

2.2 Two-sided algorithms

In this case agents have complete strict preferences over items, and vice versa. The most well-known algo-
rithm belongs to the class of deferred acceptance algorithms. Items and agents are tentatively matched, but
these “engagements” may be broken. In fact each item may attach to up to n agents in the course of the
algorithm.

In the Gale-Shapley algorithm |GS62], agents in turn approach previously unapproached items that they
prefer to their currently assigned item (every agent prefers each item to not having an item, and every item
prefers every agent to not being held by an agent). If the currently proposing agent is preferable to the agent
currently matched with the item, the item will reject its current partner for the proposing agent. No agent
may approach an item that has already rejected it (such an approach would lead to another rejection by the
above rules). This ensures termination after at most n? proposals.

Example 2.5. This is adapted from Example 2 in [GS62)].
Suppose that the proposers’ preferences are as follows:

a>b>c>d
a>d>c>b
b>a>c>d

=W N

d>b>c>a

and the proposees’ preferences are given by

4>3>1>2
2>4>1>3
4>1>2>3
3>2>1>4

QU o &

The final matchingis1:c,2:d,3: a,4:b. There are 9 proposals made during the execution of the algo-
rithm.

The Gale-Shapley algorithm has the well-known property that the output matching is stable, meaning
that there is no unmatched (agent, item) pair who each prefer each other to their current partner. Also, the
output matching is optimal for proposers, meaning that each proposer receives the best possible item it
can receive in a stable matching. It follows that the output of the algorithm does not depend on the order
of proposals made by agents. Note that, by contrast, the output of the algorithms in Section [3|will depend
strongly on the order of proposals.

We can produce one-sided matching algorithms from two-sided ones by forcing the items to have spe-
cific (fictitious) preferences. We use this idea systematically in Section[3]



2.3 School choice algorithms

A case intermediate between 1-sided and 2-sided matching, which is important for later, is that of school
choice. The Gale-Shapley algorithm is applicable to the case where the number of agents exceeds the num-
ber of items, provided items (schools) have capacity for some number of agents (students). A school accepts
a student’s proposal provisionally provided there is capacity remaining, or the student is preferable to an
already tentatively accepted student. The case where each school has capacity 1 and the numbers of schools
and students are equal is the case described in Section[2.2]

There are other algorithms for school choice that use immediate acceptance. In this case, each student
first applies to her first choice school. Each school ranks applicants and chooses as many as it can, subject
to capacity. Students not accepted already then apply to their second choice school, etc. This description
implicitly uses simultaneous proposing by all unmatched agents and is called the Boston mechanism [AS03;
MS14]. There is also a sequential version in which proposals are made one agent at a time. In that case, the
order of proposals clearly changes the final allocation, since no engagement can ever be broken.

The special case of the Boston mechanism in which each school has capacity 1 and there are equal num-
bers of agents and items is a 2-sided matching algorithm as defined above. For the same input as in Exam-
ple[2.5] the final allocation using sequential offers by 1,2,3,4 in that orderis 1:a,2:d,3: b,4: c. The final
allocation using simultaneous offersis 1:a,2:¢,3: b,4:d.

3 New algorithms

For the rest of the analysis, we construct one-sided matching algorithms by relaxing 2-sided algorithms. The
Gale-Shapley algorithm generates a stable matching using a series of proposals, based on fixed preferences
of the agents and items. Given the agent preferences over items as input to a 1-sided matching problem,
we construct fictitious preferences for the items over the agents. For example, we can assume that all items
have a fixed common preference.

Proposition 3.1. SD is equivalent to a special case of GS.

Proof. Suppose that all items have the same preference order over agents, which without loss of generality
we write 1 >2 > --- > n. We claim that Gale-Shapley will output an assignment that is the same as the output
of Serial Dictatorship with the agent order 1,2,..., n.

The proof is inductive. The base case is that agent 1 will get his first choice with GS. It is trivially true as
agent 1 will propose to its most preferred item, and since every item prefers agent 1 to any other agent, they
cannot be rejected later. Therefore agent 1 will be allocated the same item under GS or SD.

Stability of GS implies that for every item that agent i wants more than the item they are allocated, the
item must be held by an agent ranked higher by the item. If every agent before i gets its choice as per SD,
agent 7 will eventually propose to its choice under SD. As every agent after i is ranked below i by all items,
they cannot cause that item to reject i. Therefore agent i will have the same item under GS or SD. O

We can do the same thing with the (simultaneous) Naive Boston algorithm. Given an instance of 1-sided
matching, we create fictitious preferences in which each item has the same preference, say 1 >2 > --- > n.
The resulting algorithm we call the 1-sided Naive Boston algorithm. Note that we can also interpret this algo-
rithm sequentially if we ensure that agent order is 1,2, ..., n, but otherwise the sequential and simultaneous
forms will differ in general.

Below, we generalize this fictitious preference approach by allowing each item to build its fictitious pref-
erences dynamically, using some fixed rule, based only on the sequence of proposals that it receives from
agents. Recall that any order of proposals gives the same result for the Gale-Shapley algorithm with fixed
preferences, but as we see below, this is not the case in our relaxed setup.

Definition 3.2. Throughout the rest of this article, for the purposes of illustration and comparison between
algorithms we use what we call the standard profile in which agents 1,2 and 3 have preferencesa>b>c>d,
and agent 4 has preferencesb>a>c>d.

3.1 The “permanent memory" case

As the order of the agents’ proposals affects the items’ preferences, the order of proposals affects the final
allocation. This has two consequences. The first is that the treatment of rejected agents matters. After an
agent is rejected, either because the item prefers its current agent or breaks its tentative engagement, it may



not necessarily be the next agent to propose. We consider two possibilities: a stack (rejected agents go to the
top of the stack) or a queue (rejected agents go to the back of the queue). The other consequence is, as noted
above, that the initial order of agents has an impact on the final allocation. For the purpose of the analysis,
the algorithms will fix an arbitrary initial order.

We consider two rules for building preferences dynamically. These are early-proposal preference (or
Accept-First) and late-proposal preference (or Accept-Last). Accept-First means that the first agent to ap-
proach an item is accepted, and subsequent proposals are rejected. Using Accept-Last, an item always
breaks an engagement in favour of a new proposer, if it has not yet been held by the new proposer. In
terms of the marriage interpretation often used to describe the Gale-Shapley algorithm, for Accept-First al-
gorithms the proposees stick faithfully to their first suitor, whereas for Accept-Last algorithms the proposees
are always more satisfied with a new suitor than their current fiancé.

These two dichotomies (stack/queue, Accept-First/Accept-Last) when combined with the distinction
between permanent and temporary memory (explained in Section[3.2) yield 8 algorithms. We denote them
by three-letter abbreviations. For example, PFS refers to permanent memory, Accept-First, stack.

Sample executions on the standard profile of all 8 algorithms introduced below can be found in Ap-
pendix[A] The results are summarized in Table([T}

We consider the Accept-First algorithms. The algorithm PFS is equivalent to Serial Dictatorship. Interest-
ingly, switching the stack to a queue results in an algorithm that is equivalent to the Naive Boston algorithm,
so we obtain no new inequivalent algorithms in this case, just a unified presentation of old ones. We give the
details below.

Proposition 3.3. PFS with order of agents 1,2,..., n is equivalent to Serial Dictatorship with the same order
of agents.

Proof. By definition PFES is a special case of GS in which there is a common preference order 1 >2>--->n
for items over agents, because engagements are never broken (by Accept-First and the permanent memory).
By Propositionthe latter is equivalent to SD with the agent order 1,2,..., n. O

Proposition 3.4. PFQ with order of agents1,2,..., n is equivalent to the 1 -sided Naive Boston algorithm where
the common preference order of items is1 >2>---> n.

Proof. Itis useful to consider the above algorithm as occurring in rounds. Round i ends precisely when all
the remaining agents have proposed to their ith choice. We show by induction that during round i:

» the agents proposing are precisely those who have not been matched previously;
¢ each such agent makes exactly one proposal, to its ith choice.

Since this is exactly the behaviour of the (simultaneous) 1-sided Boston algorithm and since assignments
are never changed in either algorithm, the proposition follows.

When i =1, all agents have proposed to their first choice. Thus each agent has made exactly one pro-
posal, because any agent that is accepted never makes another proposal, and any agent that is rejected must
go to the back of the queue and wait until all other agents have made their first proposal.

Assuming the result holds for all rounds before 7, then all remaining agents have proposed to and been
rejected by all items down to rank i — 1. In round i they must then propose to their ith choice. This happens
exactly once because of the queue discipline. O

Example 3.5. (Accept-Last permanent memory algorithms versus accept-first)

For the standard profile, the final assignment using PFSis1: a,2: b,3: c,4:d, while using PLS it is 1:
d,2:c¢,3:a,4:b. If we change the stack to a queue, the final assignment is1:a,2:c,3:d,4:b for PFQ and
1:d,2:¢,3:b,4: a for PLQ. Note that with these preferences, some agent must receive its 4th choice and no
more than two agents can receive their 1st choice. Only PFQ achieves the latter condition.

Although the Accept-Last algorithms are not ex-post efficient, empirical results show that (among other
things) their output, when used as an initial endowment for TTC, leads to better welfare performance than
the ex-post efficient Accept-First algorithms. We discuss this in details in Section[4}



Table 1: Behaviour of algorithms on standard profile where 1 = 4
Algorithm  Output matching Number of proposals

PFS 1:a, 2:b, 3:c, 4:d 10
PFQ 1:a, 2:c, 3:d, 4:b 9
PLS 1:d, 2:c, 3:a, 4:b 9
PLQ 1:d, 2:c, 3:b, 4:a 10
TES 1:d, 2:a, 3:c, 4:b 18
TFQ 1:a, 2:b, 3:d, 4:c 33
TLS 1:b, 2:a, 3:d, 4:c 18
TLQ 1:a, 2:b, 3:d, 4:c 21

3.2 The “temporary memory" case

The previous algorithms assume that each item retains its preferences throughout the execution of the al-
gorithms. Other interesting algorithms can be generated by relaxing that requirement. Whenever the item
resets its memory, it make sense for the agents to propose to items that rejected them before. Any rules
that uses temporary memory for items must ensure that the algorithm will halt with a matching. To ensure
the algorithm halts, we only allow the item to reset its memory when the number of tentative matchings
has increased. As items do not go from matched to unmatched, this happens precisely when a new item is
matched.

Whenever an agent proposes to an unmatched item, all items, including the new item, lose their mem-
ory of preferences. When an agent proposes to a matched item with no preferences, the item prefers the
proposing agent instead of the matched agent. As the number of tentative matchings increases through-
out the execution of the algorithm, there can only be n resets of the preferences, and thus the number of
proposals is bounded by n3.

Using the above rule, four new algorithms analogous to those in Section[3.1]can be constructed.

We first present the Accept-First algorithms. The temporary memory analogue of Serial Dictatorship,
namely TFS, is interesting. Each round of this algorithm operates like a Serial Dictatorship in which a subset
of the agents repeatedly “steal" items in chains until some agent chooses an unmatched item, whereupon
a new round begins with a new agent beginning the stealing. The order of agent choices in a round is not
fixed, but determined by the stealing process. We suggest the alternative name “Iterative Dictatorship” for
this algorithm. The algorithm TFQ is the temporary memory analogue of the 1-sided Boston algorithm. Like
all queue-based algorithms it is harder to interpret than a stack-based algorithm.

The Accept-Last algorithms are harder to understand (but see the party interpretation below, which was
the inspiration for our entire research program).

Example 3.6. (Temporary memory, Accept-First versus Accept-Last) For the standard profile, the final as-
signment under TFS is 1: d,2 : a,3 : ¢,4 : b and the final assignment using TFQ is1:a,2: b3 :d,4: c.
By contrast, the final assignment using TLS is1: b,2 : a,3 : d,4 : ¢ while the final assignment under TLQ is
l:a,2:b,3:d,4:c.

3.3 Further comments

We have presented 8 algorithms in a unified framework, corresponding to the dichotomies memory/no
memory, stack/queue, Accept First/Accept Last. Basic description of their behaviour on the standard pro-
file is shown in Table|l} Note that all give different outputs on this input, except TFQ and TLQ, which are
of course different in general. A stronger statement, namely that all randomized versions are inequivalent
algorithms, is shown by example in Appendix[A.9} Also note that on this input, only PLQ fails to give an
efficient allocation. Running TTC on the output of PLQ yields the allocation1:a,2:¢,3: b,4:d.

All algorithms can be interpreted in terms of a party game, with the host providing a stash of presents. As
each person arrives at the party (say though a narrow door), they take a present from the stash or (in some
cases) from another person. Permanent memory algorithms have a single round, and temporary memory
algorithms begin a new round every time a new present is taken. For Accept-First algorithms, in each round
each present can be taken at most once. For Accept-Last algorithms, in each round each (person, present)
pair can occur at most once. The queue or stack discipline determines what happens to a partygoer when it
loses its present: choose a replacement present immediately, or go to the back of the queue. The Accept-First
queue-based algorithms would be uninteresting, as would PFS, but the others seem to us worth trying.



The TLS algorithm is closely related in this interpretation to the party game Yankee Swap or White Ele-
phant [Con17], which was the inspiration for our research program. In the real game, presents are con-
tributed by partygoers and are wrapped, so no person has full information on their own preference. We are
not aware of any other real-life party games based on the other algorithms.

4 Properties of the algorithms

Most of our algorithms fail to satisfy any of the common axiomatic properties. However, some have good
average-case behaviour. Interestingly, they behave quite differently from each other.

4.1 Ex-post Efficiency
Proposition 4.1. All Accept-First algorithms are ex-post efficient.

Proof. We show by induction on the round number that the partial allocation constructed so far is ex-post
efficient (in each case a round ends every time a previously unmatched item is chosen — note that this is a
different usage of “round" to that in Section[3.3} where permanent memory algorithms have a single round).
The first round always terminates with the first agent taking its top choice, and this is obviously an ex-post
efficient outcome. Suppose that the result holds for all rounds before i and consider round i. The entering
agent chooses an item and retains it throughout the round (by Accept-First policy). Each agent taking an
unmatched item or stealing an item during this round (an “active agent") chooses the best item available.
Such an agent j would only wish to trade with an agent k who has chosen since the last memory reset (in
the permanent memory case, since the beginning of the algorithm; in the temporary memory case, since
the beginning of the round). However in this case k will not wish to trade with j. Thus there can be no
mutually beneficially trading cycle within the group of active agents. By inductive hypothesis there is also
no such cycle within the group of inactive agents. Each agent in the active group prefers its current item to
everything held by the inactive group because such items were available to steal. The result follows because
TTC will terminate with no trades. O

Example 4.2. All Accept-Last algorithms fail ex-post efficiency. To see this, consider the profile where agents
1,2,3 have respective preference orders a> b > c,a> b > c,b > a > c. Direct computation shows that for each
algorithm X, there is some initial agent order such that algorithm XG formed by running TTC on the output of
X gives a different result. Thus X cannot be ex-post efficient.

4.2 Ordinal Efficiency

A random allocation S is ordinally efficient if there is not another random allocation, S’ that each agent i
SD-prefers S to S;, with at least 1 agent strictly SD-preferring their allocation under S'. Ordinal efficiency
implies ex-post efficiency, but not vice versa [BMO1].

Example 4.3. All Accept-First algorithms fail ordinal efficiency. A counterexample (details omitted): suppose
that agents 1, 2 prefer a > b > ¢ > d, while agents 3, 4 have preference a > b > d > c. This same counterexample
also works for the ex-post efficient algorithms PLSG and PLQG. A different counterexample with n = 4 works
for TLSG and TLQG, and ordinal efficiency seems to be violated less often for these two algorithms.

4.3 Strategyproofness

An assignment algorithm is strategyproof if no agent has incentive to misreport its preferences, irrespective
of what other agents do. In other words, truthful reporting is a strictly dominant strategy for each agent. This
condition is of course rather strong, but is known to be satisfied by Serial Dictatorship and hence by PFS. All
other algorithms discussed here fail to satisfy it as we show below. For random allocation algorithms, the
incentive is understood to be expressed in terms of expected utility in the usual way.

The algorithm Probabilistic Serial satisfies weak strategyproofness [BMO01], which says that no agent
has incentive to deviate, where the incentive is expressed in terms of first-order stochastic dominance. In
other words, for each profile and each agent, there is some consistent choice of utility function for that
agent for which deviation from truthfulness is unprofitable. Note that this is weaker than strategyproofness,
which says that for each profile and agent, and for every consistent choice of utility function for that agent,
deviation from truthfulness is unprofitable.

Clearly, if algorithm X is strategyproof for every initial order of agents, so is RX.



Figure 1: Utilitarian welfare loss of our 8 basic algorithms
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We show by examples that none of the randomized versions of our algorithms are weakly strategyproof.
Consider the case where agents 1,2,3,4 all have preference a > b > ¢ > d. If some agent submits instead a >
¢ > b > d while the others remain truthful, algorithms TLS, TLG, PLS, PLQ, TLQ, TLQG obtain a preferable
outcome for that agent.

Similar examples show that PLQG, PLSG, TFS and TFQ, and PFQ all fail weak strategyproofness.

4.4 Utilitarian welfare

We give a basic analysis here, and refer the reader to our more extensive analysis [LW16]. We analyse here
only the average-case performance of the randomized versions of the algorithms under truthful behaviour.
We impute utility values of agents by requiring them to all have the same (Borda) utility function, whereby
the ith choice corresponds to utility n — 1 + i. We consider the utilitarian social welfare, which is the sum
over all agents of the utility of their allocation. The optimal value of the utilitarian social welfare is efficiently
computable, for example using the Hungarian algorithm []. This allows us to quantify the fraction of the
maximum possible social welfare that is lost, on average, by each algorithm. We use a Java implementation
by K. Stern [Ste].

Results are shown in Figure[I} They show that RSD is outperformed substantially by PFQ, TFQ and TFS,
but is better than the Accept-Last algorithms. In Figure 2] we show how the welfare improves substantially
when TTC is run on the output of our Accept-Last algorithms. In Figure[3|we show how our best-performing
algorithms, namely TLQG and TLQS, compare with the standard algorithms RSD, PS and Naive Boston. In
fact all the Accept-Last algorithms with TTC outperform those standard algorithms.

4.5 Egalitarian welfare

We also consider the egalitarian welfare, namely the welfare of the worst-off agent. Since exact computation
of the optimum is difficult [], we scale by n instead of the exact optimum.

Results are similar to the utilitarian case and show the non-competitiveness of RSD and Naive Boston,
the positive effect of GTTC, and the overall superiority of TLSG and TLQG. In Figure[4the lines for TLSG and
TLQG are indistinguishable. We do not compare with PS because it is inherently random and so comparison
would be unfair to the other algorithms — the expectation of the minimum welfare is less than the same as
the minimum of the expectations. Note that welfare increases with n for the new algorithms, but decreases
for the old ones.
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Figure 2: Utilitarian welfare improvement for Accept-Last with TTC
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Figure 3: Utilitarian welfare loss comparison
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Figure 4: Normalized egalitarian welfare comparison
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4.5.1 Egalitarian welfare bounds

Say that an algorithm satisfies a conditional egalitarian welfare bound of k if every agent receives one of
its top k choices, whenever that is possible under some allocation. If k happens to be the minimal possible
value, this says that the algorithm yields optimal egalitarian Borda welfare on that input. All reasonable
algorithms (including all those in this paper) satisfy a bound of 1, because if all agents have different top
choices, each receives its top choice. We investigated the case k = 2 and found that none of our algorithms
satisfy it in general (details omitted). However, TLS satisfies the bound with k = 2 when n = 3, as does its
queue-based counterpart TLQ, while none of the other algorithms does. Thus for n = 3 these algorithms are
egalitarian-optimal.

4.6 Order bias

In the case where all agents have the same preferences over items, some algorithms (such as serial dictator-
ship) are clearly biased toward the first agent while others (accept-last algorithms) are clearly biased toward
the last agent. We define the order bias of an algorithm to be the maximum over all pairs of agents of the
difference of the expected (under the uniform distribution on preferences) Borda welfare gained, and nor-
malize by n.

Results show that the order bias of queue-based algorithms is markedly smaller than that for stack-based
algorithms. Our best welfare algorithms, namely TLSG and TLQG, have almost zero order bias (PS has zero
order bias by definition), but the randomized Serial Dictatorship and Naive Boston algorithms have sub-
stantial order bias, with the former being clearly more biased than all other algorithms. Adding TTC to the
Accept-Last algorithms substantially reduces order bias (not shown).

5 Conclusion

5.1 Summary of results

We have introduced 10 new algorithms for 1-sided matching, none of them equivalent to each other or to
any algorithms in the literature, to our knowledge. Their derivation using the Gale-Shapley framework gives
a unified description. Each algorithm runs in worst-case time of order n? (permanent memory) or n° (tem-
porary memory). Although they lack strong axiomatic foundations, several of the algorithms perform well
on criteria such as egalitarian welfare, utilitarian welfare, and order bias, in sharp contrast to the standard
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Figure 5: Normalized order bias of our 8 basic algorithms
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Serial Dictatorship or Boston algorithms. The algorithms TLSG and TLQG perform better overall than the
standard algorithms Serial Dictatorship, Naive Boston, and Probabilistic Serial on such measures.

In this article we have introduced a new (to our knowledge) performance criterion related to symmetry,
namely order bias. The queue-based algorithms perform better overall than the stack-based ones by this
measure. The algorithm TLQ (and TLQG) has remarkably small order bias. Our intuition is that the queue
simulates randomization of the order of choosing by agents.

The approach we use of considering algorithms that are not ex-post efficient, and then running TTC on
their output, seems new to us. Ex-post efficiency is, roughly speaking, a local optimum criterion. By avoiding
prematurely locking in efficiency, our new Accept-Last + TTC algorithms seem to be able to achieve efficient
outcomes with higher global welfare.

The benefits of using temporary versus permanent memory are relatively small compared to the gains
made by using TTC, for example. However they are real and for situations where solution quality is substan-
tially more important than runtime, we recommend its use. The best overall algorithms in terms of solution
quality are arguably TLSG and TLQG. The latter has lower order bias and the former higher welfare, although
the differences between the algorithms are small.

Some of our new algorithms may be useful for specialized situations (in addition to party games). For
example, TFS seems to treat all agents equally in welfare except the last, who has a definite advantage —
this may be useful, for example, when one agent is a small child. Having (almost) zero order bias is a strong
fairness condition that may be very important in some applications. Our 1-sided Naive Boston algorithm
PFQ maximizes the number of agents receiving their first choice.

Enlarging the stock of basic algorithms has more benefits than simply allowing us 10 more algorithms to
choose from. The concept of hybridization has been used by Mennle & Seuken [MS13]. This simply forms a
new algorithm (1 — p) A+ pB from random allocation algorithms A and B and a fixed p € [0, 1] by taking the
convex combination (1 — p) M4 + pMjp of the stochastic matrices output A and B. This allows us to trade off
desirable properties such as strategyproofness and efficiency in a controlled way. Mennle & Seuken consid-
ered only RSD, PS, Naive Boston and the algorithm maximizing utilitarian welfare as their basic algorithms.
We believe that our new algorithms will prove useful as building blocks for hybrid algorithms with good
overall behaviour.

5.2 Future work

The Adaptive Boston school choice algorithm improves over Naive Boston by allowing agents to skip pro-
posals that will obviously be rejected because a school has reached capacity. It satisfies a property interme-
diate between weak strategyproofness and strategyproofness, called partial strategyproofness by Mennle &
Seuken [MS14]. Although we found a sequential interpretation of Naive Boston that avoided discussion of
simultaneous proposals, we have not yet done this for Adaptive Boston.

Each of our algorithms extends to the school choice situation. The “memory" component and the “data
structure" component translate directly with no changes required. The aceptance policy if more compli-
cated. In school choice, schools accept applicants provisionally until capacity is reached, and then each
new temporary enrolment requires an existing enrolment to be cancelled. Our Accept-Last and Accept-First
policies in the capacity 1 case described above could also be termed “Reject-Current” or “Reject-New". In
the general school choice situation we would need to create fictitious prefernces for schools to enable them
to decide which current student to reject. Some obvious ways to do that include FIFO or LIFO.

The case where the number of items exceeds the number of agents, and agents receive bundles of items
chosen one at a time, is complicated. The order in which agents should choose in each round (here a round
ends when all agents have incremented their previous total of items by 1) must be specified. For example,
when we have 2 agents with preferences a > b > ¢ > d over 4 items, and the picking sequence 1221, Serial
Dictatorship awards a,d to agent 1 and b, ¢ to agent 2. However under PFQ agent 2 attempts to get item
a and fails, going to the back of the queue and hence missing that turn. In the next turn it is allocated b,
then agent 1 tries for b and fails. Thus the picking sequence must be extended. Accept-Last algorithms work
better in this situation.

We leave further exploration of these interesting cases with m # n to future work.
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Appendices

A Sample executions of algorithms

For a profile where agent 1, 2 and 3 have preferences a > b > ¢ > d, and agent 4 have preferences b > a >

c¢>d, and

the initial ordering of agents being in ascending numerical order, the sequence of proposal and

rejection using the various algorithms will be as follows.

A.1 Permanent Memory, Early-Proposal preferred, Stack

Proposal Outcome Order of Remaining Agents | Current Partial Matching
a; =>a | tentatively matched az, as, ay a:a
ap=>a a rejected ay, as, as ap:a
a» =>b | tentatively matched as, dy a:a, a:b
ag=>a as rejected as, a, a:a, az:b
az=>b as rejected as, ay ay:a, a:b
as =>c | tentatively matched ay ai:a, az:b, as:c
a,=>b ay rejected a, ai:a, az:b, as:c
as =>a ay rejected a ay:a, a:b, az:c
a,=>c¢c ay rejected a ay:a, a:b, az:c
ay=>d | tentatively matched ay:a, ax:b, as:c, as:d
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A.2 Permanent Memory, Early-Proposal preferred, Queue

Proposal Outcome Order of Remaining Agents | Current Partial Matching
a; =>a | tentatively matched az, as, ay a:a

a)=>a a rejected as, ay, ap ap:a

asz =>a as rejected ay, ap, as ap:a

as =>b | tentatively matched az, as ap:a, az:b
a,=>b ap rejected as, a ay:a, as:b
az=>b as rejected az, as ay:a, asg:b

ap =>c | tentatively matched as aj:a, ax:c, as:b
az=>c as rejected as ap:a, ax:c, as:b
as=>d | tentatively matched ay:a, ax:c, as:d, as:b

A.3 Permanent Memory, Last-Proposal preferred, Stack

Proposal Outcome Order of Remaining Agents | Current Partial Matching
a; =>a | tentatively matched az, as, ay a:a

ap=>a ay rejected ay, as, as az.a

a; =>b | tentatively matched as, dy a;:b, ar:a
ag=>a ap rejected ay, ay ap:b, as:a
a,=>b a; rejected a, ay ay:b, as:a

a; =>c | tentatively matched a, ai:c, ax:b, az:a
a;=>b ap rejected a ai:c, as:a, as:b
ap=>c¢ a) rejected a ax:.c, as:a, as:b

a; =>d | tentatively matched ay:d, as:c, as:a, as:b

A.4 Permanent Memory, Last-Proposal preferred, Queue

Proposal Outcome Order of Remaining Agents | Current Partial Matching
a; =>a | tentatively matched az, as, ay a:a
a=>a a rejected as, as, 4 as:a
az=>a a rejected as, ay, a as:a
as =>b | tentatively matched a, ay as:a, as:b
ap=>b a, rejected az, ay ap:b, as:a
a,=>b a; rejected as, M a:b, az:a
a,=>a as rejected a, as ax:b, as:a
a; =>c | tentatively matched as ap:c, ax:b, as:a
az=>c a; rejected a ax:b, as:c, as:a
a; =>d | tentatively matched a1:d, ax:c, as:b, as:a
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A.5 Temporary Memory, Early-Proposal preferred, Stack

Proposal Outcome Order of Remaining Agents | Current Partial Matching | Item Preferences
a; =>a | tentatively matched az, as, ay a:a none
a)=>a ay rejected ay, as, s az:a ia:ag > ay
a; =>b | tentatively matched as, ay a;:b, ay:a none
as=>a ap rejected ay, ay a:b, az:a ig:as > ap
a,=>a ap rejected az, ay ap:b, az:a ig:as > ap
a,=>b a; rejected a, ay a:b, az:a ig:as > ap
ip:ax>m
ap=>a a; rejected a, ay a:b, az:a ig:az > a, > a;
ip:as>m
a,=>b ay rejected ai, ay a:b, asz:a igias > ax>m
ib:ag > ay
a; =>c | tentatively matched ay ai:c, ax:b, az:a none
as=>b ap rejected a ai:c, as:a, as:b ip:ay> ay
a,=>a as rejected as aj:c, as:a, dg:b igiap > as
ip:as > ay
az=>a as rejected as ai:c, az:a, as:b ig:ap > ag
ib:a4 > ap
az=>b as rejected a, ap:c, az:a, as:b ig:ap > as
ip:as > ax > as
as=>c a) rejected a ax:a, as:c, as:b ig:ar > as
ip:as > ay
iciag >
a;=>a a) rejected a ax:a, as:c, as:b ig.ap > az > ap
ip:as > ax
ic:as > ay
ap=>b ay rejected a a»:a, as:c, as:b igcap>az > a
ib:a4 >ap > a;
icidg >
a;=>c a; rejected a ax:a, as:c, as:b ig:ap > az > a;
ipiag>ax>a
ic:as > ay
a; =>d | tentatively matched ai:d, ay:a, as:c, as:b none

A.6 Temporary Memory, Early-Proposal preferred, Queue
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Proposal Outcome Order of Remaining Agents | Current Partial Matching | Item Preferences
a; =>a | tentatively matched a, as, ay a:a none
ap=>a a) rejected as, ag, ay a.a ig:as > a;
as =>a as rejected aq, ay, as az:a igiax > ay > as
as =>b | tentatively matched ap, as ap:a, as:b none
ap=>a ap rejected as, a ai:a, as:b ig:a1 > ap
az=>a as rejected az, as ap:a, az:b ig:a1 > ap > as
a,=>a ap rejected as, ap ai:a, az:b ig:a1 > ap > as
az=>b ay rejected az, ay ay:a, az:b ig:ap > a; > as

ip:as > ay
a,=>b ap rejected Ay, a:a, az:b ig:ar > ay > as
ip:as>ag > ay
as=>a ay rejected az, ay ap:a, az:b ig:ap>a;>as> ay
ib:ag > ay > ap
ap, =>c | tentatively matched a, aj:a, ax:c, as:b none
a;=>b as rejected as ap:a, ax:c, as:b ip:ay > as
ag=>a a) rejected a ay:.c, as:a, dg:b ig:as > a;
ib:a4 > as
a;=>a a; rejected a ax:c, as:a, as:b ig.az > a;




ay =>b
a) =>cC
ap=>a
a,=>b
ax =>cC
a2:>d
a3:>b
a4=>b
ay =>cC
ay =>b
a3 =>a
a) =>a
Clg=>b
as=>a
as=>b
a3z =>C
ay=>a
ajs=>C
az=>d

a; rejected

ap rejected

ap rejected

ap rejected

ap rejected
tentatively matched

a; rejected

a, rejected
tentatively matched

as rejected

ap rejected

ap rejected

ay rejected

as rejected

as rejected

a; rejected

ay rejected

as rejected

tentatively matched

ay
ap

az

a

az

a.c, ax:d, as:a, as:b

ay, a)

ay, a4

ay

as

az

ap

ay

a4

as

ay

ay

as

ax:c, as:a, as:b
ai:c, as:a, as:b
ai:c, as:a, as:b
ap:c, as:a, as:b
ai:c, as:a, as:b
none
ar:a, az:b
ax:a, az:b
ap:c, as:b, as:a
ai:c, ax:a, as:b
ai:c, as:a, as:b
ai:c, as:a, as:b
ap:c, ax:b, as:a
ai:c, ax:b, as:a
ai:c, ax:b, as:a

ax:b, az:c, as:a

ay:a, a:b, az:c

aj:a, az:b, as:c

ap:a, az:b, az:d, az:c

ib:a4 > as
iuiag >
ip:as>as>m
ig:as > aa
ip:ag > as > ay
ic:a1 > ap
ialdg >a) > apy
ip:as>as>m
ic:ay > ap
ig:as > ay > ay
ip:as>as>a) > ap
ic:al >y
ia1a3 >a) > ay
ip:ags>as>a; > a
ic:ay > ap

ialdg >a) > das
ib:ag >a) > ay
igiax > ay > as
ip:as>a; > ay
none
ip:as > as
iaiag > ap
in614 > as
ig:as > a»
ip:as > as
ig.as > ay
ib:ag >ay > as
ia:a4 >dasz > dy
ip:ax > ay > as
igiQq > as > ay
ip:as > ay > as
iald4 >daz > day
ib:ag > ay > as
ic:as > ay
ia:al >aq>dads > ap
ip:ap > ay > as
ic:as > ay
ia:al >ag>dads>ay
ip:ax > ay > as
ic:aq > as>m
none
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A.7 Temporary Memory, Last-Proposal preferred, Stack

Proposal Outcome Order of Remaining Agents | Current Partial Matching | Item Preferences
a; =>a | tentatively matched az, as, ay a:a none
ap=>a a) rejected a, as, ay a:a ig:as > a
a; =>b | tentatively matched as, ay a;:b, ay:a none
as=>a ap rejected ay, ay a:b, az:a ig:as > ap
a,=>b ay rejected a, ay ax:b, az:a ig:az > ay
ibiaz > ay
a;=>a as rejected as, day ay:a, az:b ig:a; > as > ap
ip:ax>a
az=>b ap rejected ay, ay a:a, az:b ig:a; > as > a
ipaz>ay>m
ap =>c | tentatively matched ay ay:a, a:c, as:b none
a,=>b as rejected as ai:a, ax:c, as:b ip:ay > as
az=>a a; rejected a ap:c, as:a, as:b ig.az > a;
ib:a4 > as
ap=>a a) rejected a ay.c, as:a, dg:b ig:as > a;
ib:a4 > as
ap=>b ay rejected ay ar:b, az:c, az:a ig.az > a;
ip:ay > aq > as
as=>a as rejected as ar:b, ax.c, as:a ig:as > as > ap
ip:ay > aq > as
a3 =>b as rejected as ar:b, ax:c, as:a ig:as > as > a;
ib:al > ay > as
a3 =>c ap rejected a ar:b, as:c, as:a ig:ag > az > ap
ip:ay > aq > as
ic:as > ap
ap=>a a, rejected ay ar:b, ay:a, as:c ig:Gy > ag > as > ay
ib:al > ay > as
iciag >y
as=>c as rejected as ar:b, az:a, as:c igiap > ay > az > a
ip:ay > ay > as
ic:as > ay
as =>d | tentatively matched ay:b, ax:a, as:d, as:c none
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A.8 Temporary Memory, Last-Proposal preferred, Queue

Proposal Outcome Order of Remaining Agents | Current Partial Matching | Item Preferences
a; =>a | tentatively matched az, as, ay a:a none
ap=>a a) rejected as, ayg, ay a:a ig:as > a
as=>a ap rejected ag, ai, a as:a ig:as > as > m
as =>b | tentatively matched a, ay as:a, as:b none
a;=>a as rejected az, as ap:a, az:b ig:a; > ag
a,=>a a; rejected as, a as:a, az:b ig:ap > a; > as
az=>a as rejected a, as ay:a, as:b ig:ap > a; > as
a;=>b ay rejected as, dy a;:b, ax:a ig:ar > ay > as
ip:a; > ay
az=>b ay rejected as, 4 ap:a, as:b igiax > ay; > as
ib:ag >a) > ay
a,=>b a, rejected ap, ay ax:a, az:b ig:ap > a; > as
ih:ag >a) > ay
a; =>c | tentatively matched a ap:c, as:b, as:a none
a,=>b as rejected as aj:c, ax:a, dg:b ip:as > as
az=>a ap rejected a ai:c, as:a, as:b ig.az > ap
ib:a4 > as
a=>a ap rejected a ai:c, as:a, as:b ig.as > ap
ip:aq > as
a=>b ay rejected a ap:c, ax:b, as:a ig:as > ap
ip:ax > ay > as
as=>a as rejected ay ai:c, ax:b, as:a ig:as > as > ap
ip:ax > ay > as
az=>b as rejected as ap:c, ax:b, as:a ig:as > as > ap
ip:as > ay > as
asz=>c¢c ay rejected a ay:b, as:c, as:a igiaq > as > ay
ib:ag > ay > as
iciag >
a;=>a ay rejected a, ai:a, az:b, as:c ig:a; > ag>as> ap
ip:as > ay> as
ic:as > ap
a,=>c as rejected as aj:a, az:b, as:c igca1>ay>as> ap
ib:ag > ay > as
icid4 >das > a
as=>d | tentatively matched ap:a, az:b, az:d, az:c none
A9

Proposition A.1. The randomized versions of each of the 8 algorithms introduced in this article are all in-

equivalent.

Proof. For a profile where agents 1, 2 and 3 have preferences a > b > ¢ > d, and agent 4 has preferences
a > c>d > b, the algorithms make the following allocations.
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Alias

Memory

Item Preference

Data Structure

Probabilistic Allocation

Random Serial
Dictatorship

Naive Boston

Iterative Dictatorship

Yankee Swap

Permanent

Permanent

Memory

Memory

Temporary

Temporary

Temporary

Temporary

Accept-First

Accept-First

Accept-Last

Accept-Last

Accept-First

Accept-First

Accept-Last

Accept-Last

Stack

Queue

Stack

Queue

Stack

Queue

Stack

Queue

1/4,1/3,1/6,1/4
1/4,1/3,1/6,1/4
1/4,1/3,1/6,1/4
1/4, 0,1/2,1/4
1/4,1/3,1/12,1/3
1/4,1/3,1/12,1/3
1/4,1/3,1/12,1/3
1/4, 0,3/4, 0
1/4,1/3,1/4,1/6
1/4,1/3,1/4,1/6
1/4,1/3,1/4,1/6
1/4, 0,1/4,1/2
1/4,1/3,1/3,1/12
1/4,1/3,1/3,1/12
1/4,1/3,1/3,1/12
1/4, 0, 0,3/4
1/4,1/3,1/4,1/6
1/4,1/3,1/4,1/6
1/4,1/3,1/4,1/6
1/4, 0,1/4,1/2
1/3,1/3,1/4,1/12
1/3,1/3,1/4,1/12
1/3,1/3,1/4,1/12
0,0,1/4,3/4
1/12,1/3,1/3,1/4
1/12,1/3,1/3,1/4
1/12,1/3,1/3,1/4
3/4,0,0,1/4
1/12,1/3,1/3,1/4
1/12,1/3,1/3,1/4
1/12,1/3,1/3,1/4
3/4,0,0,1/4
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