
LONGEST ALTERNATING SUBSEQUENCES IN PATTERN-RESTRICTED
PERMUTATIONS

GHASSAN FIRRO, TOUFIK MANSOUR, AND MARK C. WILSON

Abstract. Inspired by the results of Stanley and Widom concerning the limiting distribu-

tion of the lengths of longest alternating subsequences in random permutations, and results of

Deutsch, Hildebrand and Wilf on the limiting distribution of the longest increasing subsequence
for pattern-restricted permutations, we find the limiting distribution of the longest alternating

subsequence for pattern-restricted permutations in which the pattern is any one of the six pat-
terns of length three. Our methodology uses recurrences, generating functions, and complex

analysis, and also yields more detailed information. Several ideas for future research are listed.

1. Introduction

Let Sn be the symmetric group of permutations of 1, 2, . . . , n and let π = π1π2 . . . πn ∈ Sn. An
increasing subsequence in π of length ` is a subsequence πi1πi2 . . . πi`

satisfying πi1 < πi2 < · · · < πi`

(note that we are not considering subwords, so the indices i1, . . . , i` need not be contiguous).
Several authors have studied properties of the length of the longest increasing subsequence isn(π)
of a permutation π and the associated random variable isn given by taking an element of Sn

uniformly at random. Logan and Shepp [10] and Vershik and Kerov [13] showed that the asymptotic
expectation satisfies E(isn) = 1

n!

∑
π∈Sn

isn(π) ∼ 2
√

n when n →∞, and the limiting distribution
of a suitably scaled and translated version of isn was determined by Baik, Deift, and Johansson
[4].

Recently, Stanley [12] developed an analogous theory for alternating subsequences, that is,
subsequences πi1πi2 . . . πi`

of π satisfying πi1 > πi2 < πi3 > πi4 < · · ·πi`
. He proved that the mean

of the random variable aln whose value is the longest alternating subsequence of an element of Sn

chosen uniformly at random is 4n+1
6 for n ≥ 2, and the variance of aln is 8

45n − 13
180 for n ≥ 4.

Furthermore, Widom [14] showed that the limiting distribution as n →∞ of the normalized random
variable (aln − 2n/3)/

√
8n/45 is the standard normal distribution.

Note that we are considering “alternating subsequences starting with a fall”. The alternative
of “alternating subsequences starting with a rise” would yield the same results in this case by
symmetry. However we will make use of both types of alternating subsequences in our situation
described below, because the results are not the same in that case.

Let π ∈ Sn and τ ∈ Sk be two permutations. We say that π avoids τ , or is τ -avoiding, if there
do not exist 1 ≤ i1 < i2 < · · · < ik ≤ n such that πi1 . . . πik

is order-isomorphic to τ ; in such
a context τ is usually called a pattern. The set of all τ -avoiding permutations in Sn is denoted
Sn(τ). It is well known that the number of τ -avoiding permutations of length n, τ ∈ S3, is given
by cn = 1

n+1

(
2n
n

)
the n-th Catalan number; see [8, 9].

Deutsch, Hildebrand and Wilf [5] connected pattern avoidance and longest increasing subse-
quences by deriving the limiting distribution of the longest increasing subsequences in τ -avoiding
permutations, for each of the possible τ ∈ S3. Inspired by the results of the above authors, we
complete the picture by studying the limiting distribution of the longest alternating subsequences
for τ -avoiding permutations, for each possible τ ∈ S3.

Our main results may be formulated as follows.

Theorem 1.1. Let τ ∈ S3. In the class of τ -avoiding permutations of length n, the length of the
longest alternating subsequence has mean µτ ∼ n/2 and variance σ2

τ ∼ n/4. The details are shown
in Table 1.
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τ 123 132, 231, 321 213, 312

µτ
2n2+5n−9
2(2n−1)

(n−1)(2n+5)
2(2n−1)

n+1
2

σ2
τ

(n+1)(8n3−50n2+101n+9)
4(2n−1)2(2n−3)

(n+1)(8n3−42n2+73n−15)
4(2n−1)2(2n−3)

(n+1)(4n2−15n+15)
4(2n−1)(2n−3)

Table 1. Statistics for aln on Sn(τ)

Moreover, the (almost normalized) random variable Xτ
n = aln−n

2
1
2
√

n
, defined for all permutations

of length n that avoid the pattern τ , converges in distribution to the standard normal distribution
as n →∞. In other words, aln satisfies a Gaussian Limit law.

We note that as in Stanley’s study, we obtain Gaussian limiting behaviour (but with a smaller
mean and larger variance). The generating functions obtained by Stanley were rational whereas
ours turn out to be algebraic but not rational. The Gaussian limit is obtained by using general
results on limit laws for combinatorial classes presented in the forthcoming work [6].

The outline of the rest of the paper is as follows. In Section 2 we set up recurrences for the
number of τ -avoiding permutations with longest alternating subsequence of a given size. This leads
to a system of functional equations that we solve using the kernel method. From the explicit form
of the generating functions we are able to derive probabilistic information including a Gaussian
limit law.

2. Derivation of the generating functions

We introduce trivariate generating functions Aτ and Bτ as follows.
Let bl(π) be the maximum length of an “alternating subsequence starting with a rise” in π. That

is, the maximum length of subsequences πi1πi2 . . . πi`
of π satisfying πi1 < πi2 > πi3 < πi4 > · · ·πi`

.
Define j(π) = π1.

Aτ (x, v, q) =
∑

π∈S(τ)

x|π|vj(π)−1qal(π) =
∑

n,m,j

aτ (n, m, j)xnvj−1qm

Bτ (x, v, q) =
∑

π∈S(τ)

x|π|vj(π)−1qbl(π) =
∑

n,m,j

bτ (n, m, j)xnvj−1qm

where aτ (n, m, j) (respectively bτ (n, m, j)) denotes the number of elements of Sn(τ) having al(π) =
m (respectively bl(π) = m) and j(π) = j.

Various refinements will be used (the reader should take care to avoid confusion, as some different
notations look similar). We write aτ (n, m) instead of aτ (n, 1,m). We then define

aτ (n) = aτ (n; q) =
n∑

m=1

aτ (n, m)qm, bτ (n) = bτ (n; q) =
n∑

m=1

bτ (n, m)qm.

More generally, let am
τ (n; j1, . . . , js) (resp. bm

τ (n; j1, . . . , js)) be the number of τ -avoiding permu-
tations π of length n such that al(π) = m (resp. bl(π) = m) and π1 . . . πs = j1 . . . js. For n ≥ m
define

aτ (n; j1 . . . , js) = aτ (n; j1, . . . , js; q) =
∑n

j=1 aj
τ (n; j1, . . . , js)qj ,

bτ (n; j1 . . . , js) = bτ (n; j1, . . . , js; q) =
∑n

j=1 bj
τ (n; j1, . . . , js)qj ,

and for n ≥ 0,

Aτ (n; v) = Aτ (n; v, q) =
∑n

j=1 aτ (n; j; q)vj−1, Aτ (x, v) = Aτ (x, v, q) =
∑

n≥0 Aτ (n; v)xn,

Bτ (n; v) = Bτ (n; v, q) =
∑n

j=1 bτ (n; j; q)vj−1, Bτ (x, v) = Bτ (x, v, q) =
∑

n≥0 Bτ (n; v)xn.

Our plan is to study the generating functions Aτ (x, v, q) and Bτ (x, v, q) for each pattern τ ∈ S3.
We first show how to reduce the number of cases by using some standard involutions.

Lemma 2.1. Let τ = τ1τ2 . . . τk ∈ Sk be any pattern. Define

τ ′ = (k + 1− τ1)(k + 1− τ2) . . . (k + 1− τk) ∈ Sk.

Then Aτ (x, v, q) = vBτ ′(xv, 1/v, q). In particular Aτ (x, 1, q) = Bτ ′(x, 1, q), and al(τ) = bl(τ ′).
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Proof. A straightforward application of the complement map

π1π2 . . . πn 7→ (n + 1− π1)(n + 1− π2) . . . (n + 1− πn).

Proposition 2.2. The following equalities hold.
(i) The number of 231-avoiding permutations π of length n having al(π) = m equals the number

of 132-avoiding permutations π of length n having al(π) = m. In other words,

A231(x, 1, q) = A132(x, 1, q).

(ii) The number of 213-avoiding permutations π of length n having al(π) = m the same as the
number of 312-avoiding permutations π of length n having al(π) = m. In other words,

A213(x, 1, q) = A312(x, 1, q).

(iii) The number of 231-avoiding permutations π of length n having al(π) = m the same as the
number of 321-avoiding permutations π of length n having al(π) = m. In other words,

A231(x, 1, q) = A321(x, 1, q).

Proof. In each case we exhibit a bijection from Sn(τ) to Sn(τ ′) which does not change the value
of al(π).

(i) Let π = π′nπ′′ be any permutation in Sn(231), where πj = n. Note that π′, π′′ avoid 231 and
πk < πl for each pair of indices with k < n < l. Define the map α recursively as follows. Let
α(π) be the permutation

(β′1 + n− j)(β′2 + n− j) . . . (β′j−1 + n− j)nβ′′,

where β′ = α(π′) and β′′ = α((π′′1 − j + 1)(π′′2 − j + 1) . . . (π′′n−j − j + 1)). For example,
α(21534) = 43521. Note that α(π) avoids 132.

(ii) Let π = π′1π′′ be any permutation in Sn(213), where πj = 1. Then, π′a > π′′b for all
1 ≤ a < j < b ≤ n. Define α(π) to be the permutation

(β′1 + 1)(β′2 + 1) . . . (β′j−1 + 1)1(β′′1 + j)(β′′2 + j) . . . (β′′n−j + j),

where β′ = α((π′1−n+ j−1)(π′2−n+ j−1) . . . (π′j−1−n+ j−1)) and β′′ = α((π′′1 −1)(π′′2 −
1) . . . (π′′n−j − 1)). For example, α(6745132) = 3425176. Note that α(π) avoids 312.

(iii) Simion and Schmidt [11] introduced a simple bijection, say f : π 7→ π′, between the Sn(123)
and Sn(132) which fixes each element of Sn(123)∩Sn(132). Essentially, the inverse of f fixes
the position of each left-right minimum, and fills the remaining positions in decreasing order.
Recall that πi is called a left-right minimum of π if there no j < i such that πj < πi. It
follows from the definition of f that if πi, πj (respectively π′i and π′j) are left-right minima
with i < j then πi+1 > πi+2 > · · · > πj−1 (respectively π′i+1 < π′i+2 < · · · < π′j−1).

Define g = r ◦ f ◦ r, where r is the reversal map (r : π1π2 · · ·πn → πn · · ·π2π1). From the
definitions we obtain that g is a bijection between Sn(321) and Sn(231). The above properties
of f imply that for each π ∈ Sn(132), the length of the longest subsequence of the form

· · · > πi4 < πi3 > πi2 < πi1 , (i1 > i2 . . . )

is preserved by f . Hence, al(r(π)) = al(r(fπ)).

Thus we need to consider in detail only the cases τ = 123 and τ = 132, which we now proceed
to do.

2.1. A system of functional equations for the generating functions. In this section we find
an explicit formula for the generating functions Aτ (x, 1, q), where τ ∈ S3. To do that we first find
recurrence relations for the generating functions aτ (n; j) by using the scanning-elements algorithm
as described in [7]. A rewriting of these relations automatically gives a system of functional
equations satisfied by the multivariate generating function Aτ (x, v, q).

The argument in each case is similar. We consider first the case τ = 123. From the above
definitions we have for all n ≥ 3,
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a123(n; j) =
j−1∑
i=1

a123(n; j, i) + a123(n; j, n)

= q

j−1∑
i=1

b123(n− 1; i) +
j−1∑
i=1

a123(n; j, n, i) + a123(n; j, n, n− 1)

= q

j−1∑
i=1

(b123(n− 1; i) + b123(n− 2; i)) + a123(n; j, n, n− 1)

= · · · = q

j−1∑
i=1

(b123(n− 1; i) + · · ·+ b123(j, i)) + a123(n; j, n, . . . , j + 1)

= q

j−1∑
i=1

(b123(n− 1; i) + · · ·+ b123(j, i)) +

{
qb123(j − 1), j > 1
q2, j = 1,

and

b123(n; j) =
j−1∑
i=1

b123(n; j, i) + b123(n; j, n)

=
j−1∑
i=1

b123(n− 1; i) +
j−1∑
i=1

b123(n; j, n, i) + b123(n; j, n, n− 1)

=
j−1∑
i=1

(b123(n− 1; i) + q2b123(n− 2; i)) + b123(n; j, n, n− 1)

= · · · =
j−1∑
i=1

(b123(n− 1; i) + q2b123(n− 2, i) + · · ·+ q2b123(j, i)) + b123(n; j, n, . . . , j + 1)

=
j−1∑
i=1

(b123(n− 1; i) + q2b123(n− 2; i) + · · ·+ q2b123(j, i)) +


q3, j = 1
q2b123(j − 1), j > 1
b123(n− 1), j = n.

Hence, for all n ≥ 4 and j = 1, 2, . . . , n,
a123(n; j)− a123(n− 1; j) = q

j−1∑
i=1

b123(n− 1; i),

b123(n; j)− b123(n− 1; j) =
j−1∑
i=1

(b123(n− 1; i) + (q2 − 1)b123(n− 2; i)).

Multiplying by vj−1 and summing over j = 1, 2, . . . , n we obtain

A123(n; v)−A123(n− 1; v)

= q
n∑

j=1

vj−1
j−1∑
i=1

b123(n− 1; i) = q
n−1∑
i=1

n−1∑
j=i

vjb123(n− 1; i) = qv
1−v

n−1∑
i=1

(vi−1 − vn−1)b123(n− 1; i)

= qv
1−v (B123(n− 1; v)− vn−1B123(n− 1; 1)),

B123(n; v)−B123(n− 1; v)

=
n∑

j=1

vj−1
j−1∑
i=1

(b123(n− 1; i) + (q2 − 1)b123(n− 2; i))

=
n−1∑
i=1

n−1∑
j=i

vj(b123(n− 1; i) + (q2 − 1)b123(n− 2; i))

= v
1−v

n−1∑
i=1

(vi−1 − vn−1)b123(n− 1; i) + (q2−1)v
1−v

n−2∑
i=1

(vi−1 − vn−1)b123(n− 2; i)

= v
1−v (B123(n− 1; v)− vn−1B123(n− 1; 1)) + (q2−1)v

1−v (B123(n− 2; v)− vn−2B123(n− 2; 1)),
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for all n ≥ 4. Multiplying the above recurrence relations by xn/vn and summing over all n ≥ 4,
we obtain

A123(x/v; v)−
3∑

i=0

A123(i; v)xi

vi − x
v A123(x/v; v) + x

2∑
i=0

A123(i; v)xi

vi

= qx
1−v

(
B123(x/v; v)−

2∑
i=0

B123(i; v)xi

vi −B123(x; 1) +
2∑

i=0

B123(i; 1)xi

)
B123(x/v; v)−

3∑
i=0

B123(i; v)xi

vi − x
v B123(x/v; v) + x

2∑
i=0

B123(i; v)xi

vi

= x
1−v

(
B123(x/v; v)−

2∑
i=0

B123(i; v)xi

vi −B123(x; 1) +
2∑

i=0

B123(i; 1)xi

)
+ (q2−1)x2

v(1−v)

(
B123(x/v; v)−

1∑
i=0

B123(i; v)xi

vi −B123(x; 1) +
1∑

i=0

B123(i; 1)xi

)
,

and using the initial conditions

A123(0; v) = 1, B123(0; v) = 1,

A123(1; v) = q, B123(1; v) = q,

A123(2; v) = q(1 + vq), B123(2; v) = q(q + v),

A123(3; v) = q2(1 + (1 + q)v + (1 + q)v2), B123(3; v) = q(q2 + q(1 + q)v + (1 + q)v2),

together with some rather tedious algebraic manipulations we conclude that

(2.1)

{(
1− x

v

)
A123(x/v, v)− xq

1−v B123(x/v, v) = 1− (1− q)x
v − q(1− q)x3

v3 − xq
1−v B123(x, 1);(

1− x+(q2−1)x2

v(1−v)

)
B123(x/v, v) = 1 + (q − 1)(1 + q x

v + q2 x2

v2 )x
v −

xv+(q2−1)x2

v(1−v) B123(x, 1).

We next consider the case τ = 132. From the definitions, for each j = 1, 2, . . . , n we have the
system of recurrences

a132(n; j) =
n∑

i=j+1

a132(n; j, i) +
j−1∑
i=1

a132(n; j, i) = a132(n− 1; j) + q

j−1∑
i=1

b132(n− 1; i),

b132(n; j) =
n∑

i=j+1

b132(n; j, i) +
j−1∑
i=1

b132(n; j, i) = qa132(n− 1; j) +
j−1∑
i=1

b132(n− 1; i).

Multiplying by vj−1 and summing over all possible j = 1, 2, . . . , n we obtain, for each n ≥ 2, the
system

A132(n; v) =
n∑

j=1

vj−1a132(n− 1; j) + q
n−1∑
j=1

vj−1
j−1∑
i=1

b132(n− 1; i)

= A132(n− 1; v) + q
n−1∑
i=1

n−1∑
j=i

vjb132(n− 1; i)

= A132(n− 1; v) + qv
1−v

n−1∑
i=1

(vi−1 − vn−1)b132(n− 1; i)

= qv
1−v (B132(n− 1; v)− vn−1B132(n− 1; 1)) + A132(n− 1; v),

B132(n; v) = q
n∑

j=1

vj−1a132(n− 1; j) +
n−1∑
j=1

vj−1
j−1∑
i=1

b132(n− 1; i)

= qA132(n− 1; v) +
n−1∑
i=1

n−1∑
j=i

vjb132(n− 1; i)

= qA132(n− 1; v) + v
1−v

n−1∑
i=1

(vi−1 − vn−1)b132(n− 1; i)

= v
1−v (B132(n− 1; v)− vn−1B132(n− 1; 1)) + qA132(n− 1; v).

Multiplying the above recurrence relations by xn/vn and summing over n ≥ 2 while using the
initial conditions A132(0; v) = B132(0; v) = 1 and A132(1; v) = B132(1; v) = q we find that

A132(x/v; v)− 1− q x
v = qx

1−v (B132(x/v; v)−B132(x; 1)) + x
v (A132(x/v; v)− 1) ,

B132(x/v; v)− 1− q x
v = x

1−v (B132(x/v; v)−B132(x; 1)) + qx
v (A132(x/v; v)− 1) ,
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which is equivalent to(
1− x

v

)
A132(x/v, v)− xq

1− v
B132(x/v, v) = 1 + (q − 1)

x

v
− xq

1− v
B132(x, 1);

−xq

v
A132(x/v, v) +

(
1− x

1− v

)
B132(x/v, v) = 1− x

1− v
B132(x, 1).

We can eliminate A132(x/v; v) from the second equation by adding xq/v times the first equation
to (1− x/v) times the second. This yields the equivalent system

(2.2)

{ (
1− x

v

)
A132(x/v, v)− xq

1−v B132(x/v, v) = 1 + (q − 1)x
v −

xq
1−v B132(x, 1),(

1− x+(q2−1)x2

v(1−v)

)
B132(x/v, v) = 1 + x(q−1)

v + x2q(q−1)
v2 − xv+(q2−1)x2

v(1−v) B132(x, 1).

2.2. Solution of the functional equations via the kernel method. In both systems (2.1)
and (2.2) the second equation can be written in the form

K(x/v, v, q)Bτ (x/v, v, q) = R(x/v, q) + (K(x/v, v, q)− 1 + x/v)Bτ (x, 1, q),

where

K(x, v, q) = 1− x + (q2 − 1)vx2

1− v

R123(x, q) = 1 + (q − 1)x(1 + qx + q2x2)

R132(x, q) = 1 + (q − 1)x(1 + qx).

This seemingly underdetermined system may be solved systematically using the kernel method,
as described in [1]. If we set K(x/v, v, q) to zero, then we have Bτ (x, 1, q) = R(x/v, q)/(1 − x/v)
where (x, v, q) are linked by the equation K(x/v, v, q) = 0. Near the origin we have

K(x, v, q) =
(v − ξ+(x, q))(v − ξ−(x, q))

v(1− v)

where

ξ±(x, q) = 1±
√

(1−2x)2−4q2x2

2 = 1±
√

(1−4x+4(1−q2)x2

2 = 1±
√

(1−2(1+q)x)(1−2(1−q)x)

2 .

We must take v = ξ+(x, q) in order to obtain a power series solution. This then yields

B132(x, 1, q) =
ξ−(x, q)

x

1 + (q − 1)x
1 + (q2 − 1)x

(2.3)

B123(x, 1, q) =
(q − 1)(x− 1)
1 + (q2 − 1)x2

+
ξ−(x, q)

x

q(1 + (q − 1)x)
(1 + (q2 − 1)x)2

.(2.4)

Using the reductions above and Proposition 2.2 we obtain the following result. Since Aτ (x, 1, q)
and Bτ (x, 1, q) each reduce to the Catalan generating function C(x) = (1 −

√
1− 4x)/(2x) when

q = 1, we expect them to be, at best, algebraic and not rational. As we now see, nothing worse
happens — we obtain a nice deformation of C.

Theorem 2.3. The generating functions for the number of τ -avoiding permutations π of length n
with al(π) = m all have the form

Aτ (x, 1, q) = a(x, q) + b(x, q)
1−

√
(1− 2x)2 − 4x2q2

2x

where a and b are as given in the table below.
τ a(x, q) b(x, q)

123 (1−q2)(q(1+q)(1−q)2x4−q(1−q)x3+x2(1−q)+x(q−2)+1)
(1−x+xq2)2

q2(1−x+qx)
(1−x+xq2)3

132, 231, 321 (1−q)(1−x)
1−x+xq2

q(1−x+xq)
(1−x+xq2)2

312, 213 0 1−x+xq
(1−x+xq2)

The corresponding results for Bτ are easily obtained from the reductions described earlier and
so are not listed here.
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3. Extraction of coefficients from the GF

A number of corollaries follow from Theorem 2.3. The first is an explicit expression for the
number of permutations π of length n having al(π) = m. To do this we require the following
lemma.

Lemma 3.1. Let fs(x, q) be the generating function 1−x+xq
2(1−x+xq2)s (1 −

√
(1− 2x)2 − 4x2q2). Let

n ≥ 3 and n ≥ m ≥ 1. Then the xnqm coefficient in the generating function fs(x, q) is

s−2∑
j=0

(−1)b
m
2 c

j+1

(
2j
j

)(bm
2 c+s−2−j

s−2−j

)( n+s−2j−4

bm−1
2 c+s−2−j

)
+

n∑
j=bm

2 c+s−1

(−1)n−j−bm+3
2 c

j+1

(
2j
j

)(
j+1−s
bm

2 c
)(j−s−bm−3

2 c
n−j−bm+3

2 c

)
.

Proof. We have

u := fs(x, q)− x(1− x + xq)
(1− x + xq2)s−1

=
(1− x + xq2)s

1− x + xq

(
u +

x(1− x + xq)
(1− x + xq2)s−1

)2

.

Hence by Lagrange inversion formula [16]

fs(x, q) = (1− x + xq)

(
s−2∑
j=0

xj+1

j+1

(
2j
j

)
1

(1−x+xq2)s−1−j +
∑

j≥s−1

xj+1

j+1

(
2j
j

)
(1− x + xq2)j+1−s

)
.

Expanding the above generating function at x = q = 0 gives the desired result.

Corollary 3.2. Fix n ≥ 1 and let 1 ≤ m ≤ n. Then

(i) The number of 123-avoiding permutations π of length n ≥ 3 satisfying al(π) = m is given by

n+1∑
j=bm+2

2 c

(−1)n−j−bm−1
2 c

j + 1

(
2j

j

)(
j − 2
bm−2

2 c

)(
j − bm+1

2 c
n− j − bm−1

2 c

)
.

(ii) The number of 132-avoiding (or of 231-avoiding or 321-avoiding) permutations π of length n
satisfying al(π) = m is given by

n+1∑
j=bm+1

2 c

(−1)n−j−bm
2 c

j + 1

(
2j

j

)(
j − 1
bm−1

2 c

)(
j − bm

2 c
n− j − bm

2 c

)
.

(iii) The number of 312-avoiding (or of 213-avoiding) permutations π of length n satisfying al(π) =
m is given by

n+1∑
j=bm−1

2 c

(−1)n−j−bm+1
2 c

j + 1

(
2j

j

)(
j

bm
2 c

)(
j − bm−1

2 c
n− j − bm+1

2 c

)
.

Proof. It is not hard to see that the generating function A123(x, 1, q) can be written as

A123(x, 1, q) = 1− x3−x
1−x q + x3−x−1

1−x q2 +
∑

m≥3

(−1)b
m+2

2 c xb
m−1

2 c(x2−x−bm
2 c)

(1−x)b
m+1

2 c

+ q2(1−x+qx)
2x(1−x+xq2)3 (1−

√
(1− 2x)2 − 4x2q2)

Lemma 3.1 yields the first formula and arguments similar to those used in the first case provide
the others.

Theorem 2.3 also provides us with the following asymptotics as n →∞.

Corollary 3.3. Fix m ≥ 3. Then for each τ we have as n →∞

alτ (n, m) ∼ 2n(n/2)mW (n)X(m)

where W and X are in Θ(1). More specifically we have the following asymptotic results.
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(i) As n → ∞, the number of 123-avoiding permutations π of length n satisfying al(π) = m
satisfies

a123(n, 1) = 0

a123(n, 2) = n

a123(n, 3) =
(

n

2

)
− 1

a123(n, m) ∼ n2bm
2 c−4

(bm
2 − 1c)!(bm

2 c − 2)!
· 2n−2bm

2 c+5 for m ≥ 4.

(ii) As n →∞, the number of 132-avoiding (also the number of 231-avoiding or of 321-avoiding)
permutations π of length n satisfying al(π) = m satisfies

a132(n, 1) = 1

a132(n, 2) = n− 1

a132(n, m) ∼ n2bm+1
2 c−4

(bm−1
2 c)!(bm−3

2 c)!
· 2n−2bm+1

2 c+4 for m ≥ 3.

(iii) As n →∞, the number of 312-avoiding (also the number of 213-avoiding) permutations π of
length n satisfying al(π) = m satisfies

a312(n, 1) = 1

a312(n, 2) = n− 1

a312(n, m) ∼ n2bm
2 c−2

(bm
2 c)!(b

m
2 c − 1)!

· 2n−2bm
2 c+1 for m ≥ 3.

Proof. Let

f = Aτ (x, 1, q) = a(x, q) + b(x, q)
1−

√
(1− 2x)2 − 4x2q2

2x
as in Theorem 2.3. Then we can rewrite f as

f = a(x, q) + b(x, q) + b(x, q)
1− 2x−

√
(1− 2x)2 − 4x2q2

2x

= a(x, q) + b(x, q) + b(x, q)
1−

√
1− 4x2q2/(1− 2x)2

2x/(1− 2x)
= a(x, q) + b(x, q)(1 + c(x, q)).

We note that the subsitution u = xq/(1− 2x) gives

c(x, q) = qu
1−

√
1− 4u2

2u2
=
∑
j≥0

cj
x2j+1q2j+2

(1− 2x)2j+1

where cj is the j-th Catalan number 1
j+1

(
2j
j

)
.

Since a(x, q) and b(x, q) are rational with denominator (1−x+xq2)s = (1−x)s(1+q2(x/(1−x))s

for some s > 0, we see by geometric series expansion that for each m the coefficient [qm]a(x, q) and
[qm]b(x, q) has a pole at x = 1 and no other singularities. Thus the above representation makes
it clear that [qm]f has dominant singularity at x = 1/2, coming only from the square root term.
Hence the exponential growth rate of [qm]f as n → ∞ is 2. In fact the leading term asymptotic
comes only from the term with highest degree j occurring.

We give more details only for the case τ = 321 as the other cases are similar. Write a = x/(1−x)
and b = x/(1− 2x) = (1/2)/(1/2− x). Then we have

A321(x, 1, q) =
q

1− x

1 + aq

(1 + aq2)2

1 + bq2
∑
j≥0

cj(b2q2)j

 .

For l ≥ 2, consider the coefficient of q2l in this last equation. The highest degree term in j occurring
is when j = l − 2, and the coefficient of q2l is equal to ab2l−3cl−2/(1 − x). A straightforward
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partial fraction argument (for example as in [6, p243]), followed by some algebraic simplification
using the explicit formula for the Catalan numbers, gives us a leading order asymptotic in n of
2n2−(l−2)n2l−4/((l − 1)!(l − 2)!).

Similarly, consider the coefficient of q2l+1. The highest degree term in j occurring is when
j = l − 1, and the coefficient of q2l+1 is then b2l−1cl−1/(1 − x). We obtain a leading order
asymptotic of 2n2−(l−1)n2l−2/(l!(l − 1)!).

We can combine the odd and even degree cases by observing that when m = 2l, l − 2 =
d(m− 3)/2e, whereas when m = 2l + 1, l − 1 = d(m− 3)/2e. This yields the displayed formula.

We might also consider different regimes for bivariate asymptotics. Robin Pemantle and coau-
thors [15] have an ongoing programme to derive asymptotics via analysis of multivariate generating
functions. Their results are particularly well suited to the case where n and m are of the same
asymptotic order, namely m = Θ(n) as n → ∞. The particular generating functions we have
derived do not fall under any of the cases which they have so far solved, however, and we proceed
no further in this paper.

3.1. Probabilistic considerations. Recall that we consider the random variable aln that gives
the length of the longest alternating subsequence of a τ -avoiding permutation chosen uniformly.
We can easily obtain the mean and variance.

Corollary 3.4. The following results on mean and variance hold.
(i) The mean and variance of the longest alternating subsequence in 123-avoiding permutations

of length n are given for all n ≥ 2 by

µ123(n) =
2n2 + 5n− 9

2(2n− 1)

σ123(n) =
(n + 1)(8n3 − 50n2 + 101n + 9)

4(2n− 1)2(2n− 3)
.

(ii) The mean and variance of the longest alternating subsequence in 132-avoiding permutations
(also the number of 231-avoiding permutations or 321-avoiding permutations) of length n are
given for all n ≥ 2 by

µ132(n) =
(n− 1)(2n + 5)

2(2n− 1)

σ132(n) =
(n + 1)(8n3 − 42n2 + 73n− 15)

4(2n− 1)2(2n− 3)
(iii) The mean and variance of the longest alternating subsequence in 312-avoiding permutations

(also the number of 213-avoiding permutations) of length n are given for all n ≥ 2 by

µ312(n) =
n + 1

2

σ312(n) =
(n + 1)(4n2 − 15n + 15)

4(2n− 1)(2n− 3)
.

Proof. The explicit formula for µ123(n) = 1
cn

∑
π∈Sn(123) al(π) can be obtained from the fact that

the generating function
∑

n≥0 µ123(n)cnxn is given by

∂

∂q
A123(x, 1, q) |q=1=

(1− 4x)(2− x)
2x

− (2− 13x + 16x2)
2x
√

1− 4x
= x +

∑
n≥2

2n2 + 5n− 9
2(2n− 1)

cnxn.

Thus, µ123(n) = 2n2+5n−9
2(2n−1) , as claimed.

The second factorial moment µ′123(n) = 1
cn

∑
π∈Sn(123) al(π)(al(π) − 1) can be obtained from

the fact that the generating function
∑

n≥0 µ′123(n)cnxn is given by

∂2

∂q2
A123(x, 1, q) |q=1 = −4x4 + 12x3 − 32x2 + 15x− 1

x
− 1− 21x + 128x2 − 292x3 + 200x4

x
√

1− 4x
3

= 2x2 +
∑
n≥3

n4 + 3n3 − 15n2 − 2n + 45
(2n− 1)(2n− 3)

cnxn.



10 GHASSAN FIRRO, TOUFIK MANSOUR, AND MARK C. WILSON

Using this expression, the variance σ123(n) is given by σ123(n) = µ′123(n) + µ123(n)− µ123(n)2 and
so we have σ123(n) = (n+1)(8n3−42n2+73n−15)

4(2n−1)2(2n−3) .
The argument is the same for any other value of τ .

We can now obtain the limiting distribution of the longest alternating subsequence for pattern-
restricted permutations in which the pattern is any one of the six patterns of length three.

Theorem 3.5. Let τ ∈ S3 and define the random variable Xτ
n on Sn(τ) by

Xτ
n =

aln − n
2

1
2

√
n

.

Then Xτ
n converges in distribution to a standard normal as n →∞.

Proof. We give the argument for τ = 123, the other cases being completely analogous. Theorem 2.3
gives that A123(x, 1, q) = V (x, q) + U(x, q)

√
1− 2x− 2xq, where

V (x, q) = (1−q2)(q(1+q)(1−q)2x4−q(1−q)x3+x2(1−q)+x(q−2)+1)
(1−x+xq2)2 + q2(1−x+qx)

2x(1−x+xq2)3 ,

U(x, q) = − q2(1−x+qx)
2x(1−x+xq2)3

√
1− 2x + 2xq.

We apply a general result [6, Thm IX.10] on limit laws for algebraic singularities (which ul-
timately relies on the so-called Quasi-Power theorem). We need to verify several conditions.
First, note that we can choose ε > 0 so that xU and V are analytic for |x| ≤ r = 1/4 + ε
and |q − 1| < ε. Next, xU(x, 1) has a unique root ρ = 1/4 < r, and ρU(ρ, 1) 6= 0. For q near 1,
there is a nonconstant root x = ρ(q) of the equation 1− 2x− 2xq = 0, namely ρ(q) = [2(1 + q)]−1,
ρ is analytic in q, and ρ(1) = ρ. Finally, the variability condition is satisfied: the quantity
(ρ/ρ(1))′′ + (ρ/ρ(1))′ − [(ρ/ρ(1))′]2 is nonzero, where ρ′ denotes the derivative with respect to q.

The result now follows from the quoted theorem (note that the details are very similar to those
in Example 17 following the theorem).

We can ask more refined questions, such as whether a local limit theorem holds (the normalized
probability density converges to the normal density). The result described in [6, Thm IX.13], and
the example following, show that a local Gaussian limit law also holds in our case. Thus the
normalized histogram of the values of aln is well approximated by the standard normal density for
large n. Similarly we could consider large deviation probabilities as in [6, Thm IX.14]. However,
this is beyond the scope of our main interest here and we omit the details.

4. Comments and ideas for future investigation

We note that the mean and variance of aln are asymptotically independent of the pattern and
the same limit law is obtained in each case. The results given in [5] for the longest increasing
subsequence show that for some patterns similar Gaussian limiting behaviour occurs, with the
same asymptotic mean and variance. However for others a quite different behaviour ensues (the
most extreme is the case τ = 123 since if π avoids τ then its longest increasing subsequence is of
length at most 2, but there are other more interesting cases). Thus, just as in the unrestricted case,
considering longest alternating subsequences always leads to Gaussian limits, and this is markedly
different from the situation with longest increasing subsequences.

The full history recurrences used to derive the functional equations for the generating functions
Aτ and Bτ are somewhat cumbersome. Ideally one would like to derive the functional equation
directly from some context-free grammar defining the combinatorial class in question (“the symbolic
method”), as in [6].

The explicit formulae for the coefficients of Aτ (x, 1, q) involving alternating multiple sums are
rather complicated. While a simpler explicit formula of this type may not be possible, a simpler
recurrence relation may be possible. Since Aτ is algebraic it is D-finite and satisfies a linear
PDE with polynomial coefficients. Thus the values aτ (n, m) also satisfy a linear recurrence with
polynomial coefficients. We have not pursued this further, but it may yield a simpler method for
calculating aτ (n, m) for moderately large values of n and m.

By Theorem 2.3 we have A123(x, 1,−1) = 1−2x
2x (1−

√
1− 4x). This implies that the number of

123-avoiding permutations of length n with odd longest alternating subsequence equals n+1
3(n−1) times

the number of 123-avoiding permutations of length n with even longest alternating subsequence.
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Similar results hold for the other values of τ but they are different: for example, when τ = 132
the corresponding fraction is n−2

2n−1 . It is not immediately obvious to us why this disparity should
occur.
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