Realistic 3D Cell Modeling for FEM Simulation

John Rugis University of Auckland

Interdisciplinary research group

John Rugis
Computer Science

James Sneyd
Shawn Means
Mathematics

David YulePhysiology

Project funding

The goal:

Physically accurate modeling, simulation and visualisation of biological cell function.

Salivary glands

Salivary acinii

• Three types: serous, mucous and mixed

Data Acquisition: Confocal microscopy

2D image stacks

32 slices in Z direction.

Cells & Lumen

red: Na-KATPase green: Cl Channel

Real dimensions used: 70.7µm², 2.2µm spacing

TIFF files: 1024x1024

3D reconstruction

Cells

1) Trace the outline of each cell in the image stack.

NURBS circles.

3D reconstruction

Cells

2) Interpolate connections between the "level-set" outlines for each cell.

Results in a parametric NURBS surface.

3D reconstruction

Cells

For FEM:
Refine the mesh surface triangulation.

Octree remesh. STL files. Harmonic maps.

3D reconstruction Cells

For FEM: Volumetric meshing with tetrahedrons.

Harmonic maps. MSH files.

3D reconstruction

Lumen

1) Place spheres on the lumen in each2D image slice.

J. Rugis, D. Yule

3D reconstruction

Lumen

2) Collect all of the spheres together in 3D space.

Procedural "meta-balls".

3D reconstruction

Lumen

3) "Shrink-wrap" the spheres together.

Constructive Solid Geometry.
Octree remesh.
STL files.

Reconstructed 3D Model

Cells & Lumen

Each cell is held by a lumen "claw".

The lumen has a tree-like branching structure.

Reconstructed 3D Model

Cells & Lumen

The cells are grouped in tight clusters.

Each lumen has a central trunk.

Solid Volumetric Mesh

Tetrahedral mesh for finite element simulation

Nodal view

Imprint of the lumenal "claw".

Solid Volumetric Mesh

Tetrahedral mesh for finite element simulation

Nodal view (cut-away)

Imprint of the lumenal "claw".

FEM Simulation

Calcium waves

Partial differential equations model the cell calcium dynamics.

Reaction-Diffusion

$$\frac{\partial c}{\partial t} = D_{c} \nabla^{2} c + (J_{IPR} + J_{leak})(c_{e} - c) - J_{serca}$$

$$\frac{\partial p}{\partial t} = D_{p} \nabla^{2} p + V_{PLC}(\vec{x}) - V_{deg} \left(\frac{c^{2}}{K_{3K}^{2} + c^{2}}\right) p$$

$$\frac{\partial h}{\partial t} = \frac{h_{\infty} - h}{\tau}$$

$$J_{\rm serca} = V_{\rm s} \frac{c^2}{K_{\rm s}^2 + c^2}$$

$$J_{\rm IPR} = k_{\rm IPR}(\vec{x}) P_O$$

$$P_O = \phi_c \phi_p h$$

$$\phi_c = \frac{c^3}{K_{\rm a}^3 + c^3}$$

$$\phi_p = \frac{p^4}{K_{\rm p}^4 + p^4}$$

$$h_{\infty} = \frac{K_{\rm i}^2}{K_{\rm i}^2 + c^2}$$

$$c_{\rm e} = (c_{\rm t} - c)/\gamma$$

FEM Simulation Results

Calcium waves

Wave-fronts propagate between the apical and basal ends of each cell.

What's next?

- Model and simulate interaction between cells (i.e. gap junctions)
- Include fluid flow in lumen (computational fluid dynamics)
- Scale up to a larger number of cells

More to come...

Questions & Answers?

www.nesi.org.nz