
An MPI + GPU Implementation Case Study

Finite-Difference Time-Domain Electromagnetic Field Simulation
John Rugis

eResearch NZ 2013

• Electromagnetic Simulation: Background

• Implementation on UoA HPC

– Architect the solution

– Tool selection

– Code design

– Test

– Profile

• Opportunities and Future Work

• Conclusions and Discussion

Agenda

Electromagnetic Simulation

Maxwell's equations (curl):

Electromagnetic Simulation

The Finite-Difference Time-Domain method

• 6 field values (3 electric + 3 magnetic)

• 12 material values

• 18 total values

Numerical Methods

Finite-Difference vs Finite Element

“Yee” cell contains one each of all values

Electromagnetic Simulation

A single Yee cell (interlocked electric and magnetic fields):

Electromagnetic Simulation

Fill model space with indexed Yee cells.

Electromagnetic Simulation

The field update code:

Electromagnetic Simulation

The field update

boundary problem:

Lowest e-field update needs h-field

from outside the model space.

Highest h-field update needs e-field

from outside the model space.

Electromagnetic Simulation

The Goal: 1,000,000,000 Yee cells.

Memory requirement (double precision): 18 x 8 x 1GB = 144GB

UoA HPC - hardware

We mostly want the GPU's and memory...

(12x) GPU nodes available:

Many nodes with (12x) CPU cores each:

UoA HPC - implementation

Top-down approach: Use (8x) GPU nodes.

OpenMPI for inter-node communication.

UoA HPC - implementation

Top-down approach: (2x) GPU's in each of the (8x) MPI spaces.

NVIDIA CUDA for GPU coding and communication.

UoA HPC - implementation

1) GPU's can only access their own memory for computation.

2) Memory requirement for each MPI space:

18 x 8 x 500 x 500 x 500 = 18GB

But we only have (2x) 6GB = 12GB available GPU memory.

The GPU model space can't fill the target MPI model space.

(Consider decreasing the model size goal?)

Software Tool Selection

• Build code

– gcc (c++)

– mpicxx

– nvcc (CUDA)

– make

• IDE

– nsight (edit, debug, profile)

• Test and Debug

– python (data conversion)

– voreen (data visualization)

– nvprof (CUDA profiling)

Hardware Platforms

• UoA HPC: job queue

– large models

– more than (2x) GPU's

– not interactive

• UoA HPC: gpu build node

– interactive edit, debug, profile

– (2x) GPU's

• Local workstation

– interactive edit, debug, profile

– (1x) GPU

– data analysis

Code Design

Start with working reference code.

fdtd_100_120_ez_1x

Color and transparency settings

Test and Debug

Data visualization.

Start with non-MPI reference output.

Test and Debug

Scale-up model space.

fdtd_100_120_ez_1x

fdtd_200_120_ez_1x

Code Design - MPI

Example design consideration:

 Q. How to handle shared boundary with adjacent spaces?

 A. Surround space with “halo” and do face swapping.

Code Design - MPI

Example: MPI – swap shared faces.

Test and Debug - MPI

MPI bug and fixed.

fdtd_200_120_ez_8x_bug

fdtd_200_120_ez_8x

Test and Debug - MPI

Data conversion: non-MPI vs MPI.

Code Design - CUDA

• CUDA challenges

– Efficient data transfer between host (CPU) and device (GPU) only
in large contiguous blocks to device global memory.

– Device global memory is the only large memory space on device.

– CUDA scheduler “behind curtain”.

• CUDA paradigm features

– Very small granularity of parallel kernels.

– Informative profiling.

Code Design - CUDA

CUDA capabilities

Code Design - CUDA

CUDA “threads” and “blocks”.

Example settings:

threads = 10 x 10 x 10

blocks = 42 x 42 x 21

GPU space = 418 x 418 x 208

Code Design - CUDA

Example: CUDA kernel – update e-field.

Test and Debug - CUDA

fdtd_200_120_ez_8x_CUDA

fdtd_30_16_ex_CUDA_TEST_1x

fdtd_30_16_ez_CUDA_TEST_1x

CUDA testing and final.

Profiling - CUDA

Profiling - CUDA

Profiling - CUDA

Profiling - CUDA

Profiling - CUDA

Raw speedup ratio: 4.8 / 0.117 = 41

But the GPU space didn't quite fill the model space:

 (GPU space) / (model space) =

 (2 x 418 x 418 x 208) / (430 x 430 x 430) = 91%

And this assumes two GPU's running concurrently...

Code Design - CUDA

Concurrency and object-oriented design.

Test and Debug - CUDA

Create and use timer object.

Without CUDA.

With CUDA.

Actual speedup: 9.2 / 0.88 = 10.5

Test and Debug

Extracted slice from large model simulation.

Runtime: 550 steps at approximately 1 second per step.

Single frame output file size: 848^3 x 6 x 8 = 29.3GB

fdtd_848_550_ez_8x

Opportunities and Future Work

• Additional Performance tuning

– Shared device memory?

– Loop optimization?

– Concurrent MPI?

– CPU threads?

• Simulation features

– Load / save material & field values

– Boundary conditions

– Special material properties

– ...

Conclusions and Discussion

• MPI + GPU code functional on UoA HPC.

• ~10x speedup with GPU's.

• Implementation: non-blocking MPI.

• Implementation: CUDA usage

– Blocks and threads in cubes to minimize surface area.

– Device global memory (built-in L1 cache), not device shared.

– Concurrency using asynchronous calls and streams.

• Object oriented code design.

• Visual evaluation of output data to debug code.

• How might this experience apply to other applications?

