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We begin by considering the possible existence of two bijective integer valued
functions where the sum of the functions is also bijective. An example of two
such functions is produced. Some interesting properties of these functions, as
well as the algorithm that is used to produce them, are both explored.

1 Preliminaries

Given two functions f : Z→Z and g : Z→Z, define a new function (f+g) : Z→Z
by (f+g)(n) = f(n) + g(n). Is it possible that f and g as well as f+g could all
be bijective? We will prove that it is possible by producing an example.

We begin by sequentially selecting and plotting points (f(n), g(n)) on a
graphic grid that represents Z2. We will work our way through all of Z by
considering n’s in the sequence 0, +1,−1, +2,−2, +3,−3, . . . and impose three
sufficient conditions:

SELECTION CONDITIONS.

1. We will select points (f(n), g(n))∈Z2 such that, for all n∈Z, f(n)+g(n) =
n. This will ensure that (f+g)(n) is bijective.

2. If we are careful in our selection of points (f(n), g(n)), making sure that
f(n) never maps to the same value twice and g(n) never maps to the same
value twice, then both f(n) and g(n) will be injective.

3. And finally, if we are also careful in our selection of points (f(n), g(n))
making sure that f(n) and g(n) map to all elements of Z, then f(n) and
g(n) will be surjective.

In the next section we produce an example that meets these conditions.
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Figure 1: Beginning the point plot of f(n), g(n) in Z2 on the left. The first
dashed keep off lines are shown on the right.

2 A Mapping Algorithm

Starting with n=0, we note that, to meet condition 1, the point (f(0), g(0)) will
need to be on the line labeled “n=0 ” in Figure 1. Let’s (somewhat arbitrar-
ily) start off selecting the point (0, 0). Next we draw two dashed keep-off lines
f(n)=0 and g(n)=0. If we make sure that no other points that are selected lie
on a keep-off line, then we will have met condition 2.

As we work our way through values of n, we note that the points we select
need to lie on their respective diagonal line as shown in the evolving plot Fig-
ure 2. In a systematic effort to meet condition 3, we will select points that are
as close to (0, 0) as possible. So, for n = 1 we select the point (2,−1) and for
n =−1 we select the point (−2, 1) as shown in Figure 2. And then, following
the same rule, for n=2 we select the point (−1, 3) and for n=−2 we select the
point (1,−3). As we continue systematically plotting points (see Figure 3), we
make the side observation that the plotted points appear to closely fit two lines
passing through zero.

In an attempt to discover an algebraic (as opposed to geometric) definition
for our sequence of f(n) and g(n) values, we continue with a list of values in
a tabular form. Note that because of the symmetries f(−n) = −f(n) and
g(−n) = −g(n), we can, without loss of generality, use a table that gives values
only for n ≥ 0 as shown in Table 1. The table has been split into columns for
odd and even values of n. Note that when n is odd, f(n) is positive and g(n) is
negative. For all even values of n greater than zero, f(n) is negative and g(n)
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Figure 2: Evolving point selection.
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Figure 3: Plotted points up to n = ±6.
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n odd n even
f(n) g(n) n f(n) g(n)

0 0 0
2 -1 1

2 -1 3
5 -2 3

4 -3 7
9 -4 5

6 -4 10
12 -5 7

8 -6 14
15 -6 9

10 -7 17
19 -8 11

12 -9 21
22 -9 13

14 -10 24
26 -11 15

16 -11 27
29 -12 17

Table 1: Tabulated values for 0 ≤ n ≤ 17.
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is positive.

Observation of the evolving pattern leads to the following algorithm for spec-
ifying the sequence of values for f(n) and g(n):

MAPPING ALGORITHM 1. (A strongly recursive definition.)

1. Initialize n equal to zero.

2. If n is even, set f(n) equal to −1 times the smallest non-negative integer
value not in the set of the absolute values of already used f(n)’s. Then
assign g(n) such that f(n) + g(n) = n.

3. If n is odd, set g(n) equal to −1 times the smallest non-negative integer
value not in the set of the absolute values of already used g(n)’s. Then
assign f(n) such that f(n) + g(n) = n.

4. Increment n by one and loop to step 2.

Of course, by the previously mentioned symmetry conditions, to complete
the mapping, for all negative n, f(n) = −f(−n) and g(n) = −g(−n).

The algorithm guarantees that both f(n) and g(n) are surjective (selection
condition 3) by virtue of the criteria “smallest non-negative integer value not in
the set”. All values of f(n) and g(n) will eventually get filled-in.

To show that f(n) and g(n) are both injective (selection condition 2), we
first note that and no duplicate values will be assigned by the “smallest non-
negative integer value not in the set” criteria. Thus, for f(n) when n is odd, we
need to show that, in algorithm step 3, f(n) is always assigned a larger target
value than the previous odd n and also that a smaller value hole is left unused
for algorithm step 2 to subsequently fill-in.

To do this it will suffice to show that for all n, f(n + 2) > f(n) + 2.

PROOF.

1. Assume n is odd.

2. By algorithm 1, step 3, f(n) = n− g(n).

3. Therefore, f(n + 2) = (n + 2)− g(n + 2).

4. By algorithm 1, step 3, g(n + 2) < g(n).

5. Therefore, −g(n + 2) > −g(n).

6. Adding (n + 2), (n + 2)− g(n + 2) > (n + 2)− g(n).
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n f(n) g(n) g(n)/f(n)
9999 17069 -7070 -0.414201183432

10000 -7071 17071 -2.41422712488
10001 17073 -7072 -0.41422128507
99999 170709 -70710 -0.414213661846

100000 -70711 170711 -2.41420712478
100001 170712 -70711 -0.414212240499
999999 1707105 -707106 -0.414213536953

1000000 -707107 1707107 -2.41421312475
1000001 1707108 -707107 -0.414213394817
9999999 17071066 -7071067 -0.414213558778

10000000 -7071068 17071068 -2.41421352475
10000001 17071070 -7071069 -0.414213578879

Table 2: Some values generated by Mapping Algorithm 1.

7. Regrouping, (n + 2)− g(n + 2) > (n− g(n)) + 2.

8. Substituting from (3) and (2), f(n + 2) > f(n) + 2.

A similar argument can be applied to g(n). Thus, we have an algorithm that
meets the selection conditions, thereby generating an instance of the bijective
mapping that we set out to find.

3 Further Exploration

The fact that, as observed previously, the plotted points in Figure 3 appear to
closely fit two lines, leads us to consider the possibility of an equivalent non-
recursive definition for f(n) and g(n). With the assistance of a computer, we
calculated the values of f(n) and g(n) for 0 ≤ n ≤ 10000001. Some of the
results are shown in Table 2.

The values of f(n) and g(n), especially when n is a power of 10, look famil-
iar! Based on these observations, we make the conjecture that:

For even n,

lim
n→∞

f(n)
n

= − 1√
2
, (1)

lim
n→∞

g(n)
n

= 1 +
1√
2
, (2)
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lim
n→∞

g(n)
f(n)

= −
(
1 +

√
2
)

, (3)

and for odd n,

lim
n→∞

f(n)
n

= 1 +
1√
2
, (4)

lim
n→∞

g(n)
n

= − 1√
2
, (5)

lim
n→∞

g(n)
f(n)

= −
(

1
1 +

√
2

)
. (6)

This suggests the following non-recursive equivalent to Mapping Algorithm
1:

MAPPING ALGORITHM 2. (A non-recursive definition.)

1. If n is even,

f(n) = −d( 1√
2
)nc,

g(n) = d(1 + 1√
2
)nc.

2. If n is odd,

f(n) = d(1 + 1√
2
)nc,

g(n) = −d( 1√
2
)nc,

Note that the operator pair dc means “round to the nearest integer value”.

4 A Variation

Let’s leave the original problem as stated in the Introduction behind and con-
sider a variation to Mapping Algorithm 1 in which f(n)+g(n) = 2n rather than
n. Of course f(n) + g(n) is no longer surjective and thus not bijective.

MAPPING ALGORITHM 3. (A recursive definition.)

1. Initialize n equal to zero.

2. If n is even, set f(n) equal to −1 times the smallest non-negative integer
value not in the set of the absolute values of already used f(n)’s. Then
assign g(n) such that f(n) + g(n) = 2n.
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n f(n) g(n) g(n)/f(n)
9999 26178 -6180 -0.23607609443

10000 -6180 26180 -4.23624595469
10001 26183 -6181 -0.236069205209
99999 261801 -61803 -0.236068617003

100000 -61803 261803 -4.236088863
100001 261806 -61804 -0.236067928161
999999 2618031 -618033 -0.236067869326

1000000 -618034 2618034 -4.23606791859
1000001 2618037 -618035 -0.236068092239
9999999 26180337 -6180339 -0.236067969637

10000000 -6180340 26180340 -4.23606791859
10000001 26180343 -6180341 -0.236067991928

Table 3: Some values generated by Mapping Algorithm 3.

3. If n is odd, set g(n) equal to −1 times the smallest non-negative integer
value not in the set of the absolute values of already used g(n)’s. Then
assign f(n) such that f(n) + g(n) = 2n.

4. Increment n by one and loop to step 2.

Some calculated results are shown in Table 3. Again the values of f(n) and
g(n), look familiar! This time we see the golden ratio. Based on this observa-
tion, we make the conjecture that, when using mapping algorithm 3:

For even n,

lim
n→∞

f(n)
n

= − 1
φ

, (7)

lim
n→∞

g(n)
n

= 1 + φ, (8)

lim
n→∞

g(n)
f(n)

= −φ2 − φ, (9)

and for odd n,

lim
n→∞

f(n)
n

= 1 + φ, (10)

lim
n→∞

g(n)
n

= − 1
φ

, (11)

lim
n→∞

g(n)
f(n)

=
1

−φ2 − φ
, (12)

where φ = (1 +
√

5)/2.
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n f(n) g(n) g(n)/f(n)
9999 135179 -5192 -0.0384083326552

10000 -5192 135192 -26.0385208012
10001 135206 -5193 -0.038408058814
99999 1351907 -51920 -0.0384050086286

100000 -51920 1351920 -26.0385208012
100001 1351934 -51921 -0.0384049813083
999999 13519189 -519202 -0.0384048185139

1000000 -519202 13519202 -26.0384243512
1000001 13519216 -519203 -0.0384048157822

Table 4: Some values generated when k = 13.

5 A Generalization

Consider the following parameterized generalization, for positive integers k, in
which f(n) + g(n) = kn. Of course f(n) + g(n) is only bijective when k = 1.

MAPPING ALGORITHM 4. (A recursive definition parameterized by k ∈
Z+.)

1. Initialize n equal to zero.

2. If n is even, set f(n) equal to −1 times the smallest non-negative integer
value not in the set of the absolute values of already used f(n)’s. Then
assign g(n) such that f(n) + g(n) = kn.

3. If n is odd, set g(n) equal to −1 times the smallest non-negative integer
value not in the set of the absolute values of already used g(n)’s. Then
assign f(n) such that f(n) + g(n) = kn.

4. Increment n by one and loop to step 2.

Using Mapping Algorithm 4, by extension, and supported by additional
calculated observations (such as shown for k = 13 in Table 4), we make the
conjecture that:

For all k ∈ Z+, and n even,

lim
n→∞

f(n)
n

=
−k

(k − 1) +
√

k2 + 1
=

1
ψ1

, (13)

lim
n→∞

g(n)
n

= k − 1
ψ1

, (14)
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lim
n→∞

g(n)
f(n)

=
−1

k +
√

k2 + 1
=

1
ψ2

, (15)

and for odd n,

lim
n→∞

f(n)
n

= k − 1
ψ1

, (16)

lim
n→∞

g(n)
n

=
1
ψ1

, (17)

lim
n→∞

g(n)
f(n)

= ψ2, (18)

We can use ψ1 to show a connection between the two rather special numbers√
2 and the golden ratio:

When k = 1, √
2 = −ψ1 (19)

and when k = 2,
φ = −ψ1. (20)

Note that ψ2 has the property that:

ψ2 = −2k +
1
ψ2

. (21)

which is equivalent to saying that the fractional part of ψ2 is equal to 1/ψ2.
This certainly appears to be supported by examining the g(n)/f(n) column in
each of the previous mapping tables.

There is also a connection between the generalized limits and solutions to
certain quadratic equations. Note that we have

ψ1 =
−(k − 1)−√k2 + 1

k
, (22)

ψ2 = −k −
√

k2 + 1. (23)

These ψ1 and ψ2 are clearly solutions, respectively, to the following quadratic
equations:

kx2 + (2k − 2)x− 2 = 0, (24)

x2 + 2kx− 1 = 0. (25)
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6 Conclusion

We have produced a parameterized algorithm that generates functions which
map integers to integers. These functions give sequences, that, in the infinite
limit, are conjectured to give some interesting results. The results are related
specifically to two special numbers:

√
2 and the golden ratio. The results also

generally relate a special case of a fractional part to its multiplicative inverse,
as well as generally to the solution of certain quadratic equations.
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