
Coordinating Distributed Software Development Projects with
Integrated Process Modelling and Enactment Environments

John Grundy†, John Hosking†† and Rick Mugridge††

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
{john, rick}@cs.auckland.ac.nz

Abstract

Coordinating distributed software development projects
becomes more difficult, as software becomes more
complex, team sizes and organisational overheads increase,
and software components are sourced from disparate
places. We describe the development of a range of software
tools to support coordination of such projects. Techniques
we use include asynchronous and semi-synchronous
editing, software process modelling and enactment,
developer-specified coordination agents, and component-
based tool integration.

Keywords: work coordination, distributed software
development tools, process modelling, process-centred
environments, computer-supported cooperative work

1 . Introduction

Coordinating multiple developers working on a
distributed software development project is very difficult,
and gives rise to the following management problems:

• Developers need specific tasks assigned, which
must be coordinated to ensure a working system
results.

• Developers need to, at times, communicate and
collaborate closely, while at other times can
independently work on parts of a project.

• Software artefacts (code, designs, documentation
etc.) need to be shared and kept consistent.

• Multiple tools must be used to modify artefacts,
with some tools supporting close collaborative
editing (e.g. via synchronous editing), while
others supporting looser collaboration (e.g. via
alternate version editing and subsequent merging).

• Progress towards specified goals needs to be
tracked, developers need to remain aware of others'
work, and complex software systems need to be
configured from the constituent, distributively
developed parts.

• Developers need to flexibly configure their
environments' support for artefact management,
communication, and work coordination.

Many systems have been developed which attempt to
address these issues. Computer Supported Collaborative
Work (CSCW) systems have been used to aid distributed
software development. These include ConversationBuilder
[16], wOrlds [6], Orbit [17], TeamRooms [24], Lotus
Notes [19], and BSCW [5]. Programming environments,
such as Mjølner [20], Mercury [15], and FIELD [24], may
also provide basic collaborative software development
facilities. However, while such systems may support
shared editing and artefact management, they generally
lack adequate coordination support.

Process-centred Environments (PCEs), such as Oz [3],
SPADE [1], ProcessWEAVER [7], and ADELE-TEMPO
[2], more tightly integrate software development and
software process support. Most such systems, however,
provide complex mechanisms for specifying processes,
have a limited range of work coordination strategies, and
can be difficult to integrate with third-party tools. CSCW
and process-centred environments can be usefully
integrated. Examples include Oz [4], and SPADE-
ImagineDesk [1], and some programming environments
and process-centred environments, such as Multiview-
Merlin [21]. Workflow and project planning systems,
such as TeamFLOW [27], Regatta [26], CoMo-Kit [22],
and Action Workflow [23], provide more accessible
facilities for modelling work processes but generally lack
flexibility for specifying work coordination mechanisms
and tool integration.

In the following sections we describe our recent work
addressing these problems of distributed software
development coordination. Our solutions include
annotating changes made to software artefacts and
distributed to multiple users, tightly integrated software
development and process modelling and enactment tools,
and component-based software development, process
modelling, and collaborative editing tools.

jgru001
Text Box
In Proceedings of WETICE 1998 ,USA, June© 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

2 . C-SPE

Our first attempt at supporting distributed software
development was C-SPE [8]. SPE (Snart Programming
Environment) is an integrated development environment
for object-oriented software development using Snart, an
Object-oriented Prolog [9]. SPE provides integrated OOA,
OOD and Snart code views, along with debugging and
documentation views. All are kept consistent under change
by propagating representations of changes ("change
descriptions") between views [9, 10].

C-SPE (Collaborative SPE) adds semi-synchronous
and asynchronous editing to SPE. Distributed developers
can simultaneously edit SPE views and be informed of
changes other developers are making semi-synchronously.
Developers distributed over time and space can edit
different versions of software views asynchronously, and
later merge the changes together. These modes of
collaborative development are complementary; developers
can move freely between them. A client-server architecture
supports broadcast of editing changes to support semi-
synchronous editing and provides a repository for storing
versions to support asynchronous editing.

Change descriptions inserted
into view text, dialog, and/or
icons highlighted (but only

collaborator name is shown)

Figure 1. Semi-synchronous editing in C-SPE.

Figure 1 shows an example of C-SPE being used by
two developers, John and Rick, to semi-synchronously
edit two views of a simple drawing editor program. The
screen dump, from John's perspective, shows an OOD
diagram and a Snart code view. The changes shown in the
dialogue box have been made by Rick to his version of
the OOD diagram. John is informed of these as they are
made. Likewise, the change annotations at the top of the
text view appear as Rick makes modifications that affect
the view (changing the text and reparsing it or modifying

shared information in the OOD view). The changes are
annotated with Rick's name and the version number of the
view(s) he is modifying (in this case alternate 1.1b of the
OOD view). Asynchronous editing is also supported.
Users may make changes to a view, then share the
resulting list of changes with another developer for
merging into their version of the view.

C-SPE suffers from a number of problems when
deployed on distributed software projects. There is no
"reason" why changes are made associated with change
descriptions, nor any way to group changes to different
artefacts according to what tasks different developers are
performing. It is difficult for developers to determine why
a specific change to an artefact was made by another
developer, and difficult to determine what other artefacts
were also affected to achieve a larger goal.

3 . SPE-Serendipity

To address these problems, we developed Serendipity, a
process modelling and enactment environment [13].
Serendipity provides an expressive, visual language for
describing software processes and allows these processes
to be enacted. We integrated C-SPE and Serendipity using
their underlying message-passing architectures, resulting
in an environment for distributed software development
supporting integrated software development tools and
process modelling and work coordination capabilities.

Figure 2 shows a screen dump from SPE-Serendipity
in use during a software project. The contents of each
window is a “view” into part of the software development
project. Some views share information, others describe
quite different aspects of the project. The top, left window
shows an enacted software process in Serendipity (based
on the ISPW6 software process example for system
maintenance [18]). The rounded rectangles are "stages" in
the software process, which have a unique ID, role
(performer of the work), and name. Stages describe some
subtask of the overall task of producing software, and may
be further broken down into smaller subtasks. Stages are
connected by labelled "enactment event" flows. When a
stage is completed, enactment events flow to the
connected stage(s), enacting them. Serendipity supports
the modelling of process stages hierarchically, and the
specification of artefacts, tools and roles used to perform
these stages. Artefacts are created, used or updated by
process model stages. Tools are used to access and/or
modify artefacts. Roles indicate individuals, groups or
abstract roles relevant to process model stages. The usage
of different artefacts, tools and roles by process stages is
indicated by “usage” connections between these icons.

Serendipity supports the coordination of work in SPE
in various ways. Developers share Serendipity views, so
can collaboratively plan and coordinate work on a project,
and the refinement of software process models, at a high
level of abstraction. They are also kept aware of the
enacted stages of other developers by use of colouring and
shading annotations of stage icons and enactment flows.

Figure 2. Example of the SPE-Serendipity integrated environment in use.

Figure 3. Simple work coordination specification.

Developers can also review changes made during stage
enactment, and have access to shared, annotated histories
of view and artefact changes made in SPE. These histories
of work are automatically constructed by SPE and
Serendipity. For example, the left hand dialogue in Figure

2 shows a history of modifications made while the
“aff2.1:Design Changes" stage was the "current enacted
stage" for a developer. This serves as a basic work history
record, partitioned by stage. Developers share this history
and thus can see what work others have performed on the

project. The right hand dialogue in Fig. 2 shows the
modification history of an SPE artefact (a class). The
annotated change descriptions show the stage in which the
changes were made, and are also shown in the centre,
textual SPE code view of the class.

Serendipity also incorporates a complementary visual
language which allows developers to configure the way
they are informed of changes to artefacts of interest, the
way work coordination is supported, and to specify
automatic actions triggered by interesting events (artefact
changes, or tool or process enactment events). Figure 3
shows an example of this "filters and actions" language
used for coordinating a software development project. In
this example, the project leader is informed when code
modifications or testing begins (via an email message,
broadcast message, dialogue or whatever is appropriate). In
addition, all changes made to OOA/D artefacts in SPE are
summarised and stored for the project leader to review at a
later date. We have applied our filter and action models to
many work coordination tasks for software development
[13]. The visual nature of the language allows developers
to build, reuse and modify these event-driven work
coordination schemes more readily than the approaches
used in most workflow and process modelling systems.

It is, however difficult to integrate third-party tools
into Serendipity, and environment performance is poor, as
it is implemented in Snart and only runs on Macintosh
computers. Due to these performance problems, we have
subsequently rearchitected our environment, as well as
making some capabilities, such as the filters and actions
language, useable in all of our development tools.

4 . JComposer and Serendipity-II

Our earlier environments such as Serendipity and SPE
were built using the Snart-based MViews framework,
which supports the development of integrated software
development environments [11]. We have subsequently
reimplemented MViews, using Java, to produce the
JViews framework. JViews is more platform-independent,
provides tools with better performance, and allows third-
party tools to be more easily integrated with our systems
through Java Beans component technology [12]. We have
also developed the JComposer tool for visually specifying
and generating JViews-based environments [12].
JComposer generates Java Beans-based components which
implement software development tools, and provides
reusable components with C-SPE style collaborative
editing, tool repository management, multiple view
consistency mechanisms, and user interface components.

JComposer includes a form of the Serendipity filter
and action language to specify event handling models for
JViews tools. These filters and actions can be specified at
run-time for these tools. This enables any JViews-based
tool to support the degree of flexible, developer-controlled
work coordination and user configuration Serendipity's
filter and action language affords.

Figure 4. End-user specification of work coordination

Figure 4 shows a simple example of a JComposer-
generated tool, a collaborative ER modeller. The right-
hand view shows a JViews component which is being
visualised (the "customer" entity), and a filter and action
which have been added by the developer. Whenever the
customer entity is renamed, the developer will be notified.
The action component can be configured via a dialogue to
notify the developer via an email message, broadcast
message, highlighted icon in a view or via a dialogue box.
Other work coordination schemes can be added at run-time
by developers, for example constraining which artefacts
and views can/can't be changed, automatically changing
artefacts, or initiating dialogue with a developer when a
process stage is enacted or artefact changed. [12].

Fig. 5. Collaborative editing in JComposer.

Figure 6. The Serendipity-II process modelling environment showing an enacted software process.

Figure 5 shows JComposer in use, specifying the ER
modeller repository from Figure 4. This development is
being carried out collaboratively, with C-SPE style
collaborative editing supported. Our JViews-based
environments like JComposer and Serendipity-II support a
decentralised form of user-configurable collaborative
editing. In Figure 5 user "John" is configuring the "level"
of collaborative editing with user "Mark" using a
"collaboration menu". This is a component which has
been plugged into the environment to provide a range of
asynchronous to synchronous editing capabilities [14].

JComposer has been used to specify and generate a
new, component-based version of Serendipity,
Serendipity-II. This can be used with JComposer-generated
tools to coordinate their use as with SPE-Serendipity. It
can also use Java Beans components, interfaced via filters
and actions, to be informed of third party tool events and
to send instructions to such tools. This provides a very
open architecture for coordinating the use of JViews-based
and third-party distributed software development tools.
Figure 6 shows Serendipity-II in use for coordinating
work on a software development project. The right-hand
dialogue shows other users and their enacted software
process stages, and the left hand dialogue the enactment
history of a process stage.

JComposer filters and actions are used in Serendipity-II
to specify various work coordination schemes and to
handle the automatic processing of events. This allows
local and distributed software agents to be constructed by
users of Serendipity-II to automate various tasks.

Component-based tools which have been integrated with
Serendipity-II, including all other JViews-based tools, can
be interfaced to using appropriate filters and actions. Other
tools can be interfaced to using file translation-supporting
actions, or by building custom filters and actions specific
to the data and control requirements of these tools.

Both JComposer and Serendipity-II are being used on a
7 person distributed software development project, in
addition to other development tools, to assess their
usability and functionality. To date both have performed
well, and we expect to develop new filters and actions to
integrate further tools, and develop new multiple view,
multiple user software engineering tools with JComposer.

5 . Summary

Distributed software development requires facilities to
support collaboration, communication and coordination
among software developers. We have developed a variety
of solutions to these needs, including collaborative artefact
editing mechanisms, and software process modelling tools
to support coordination of this distributed work. Our
approaches use component-based architectures, allowing
our tools to have such facilities added to them rather than
having to be built-in, and to be more readily observed and
controlled by our process modelling environment.

We are currently enhancing the process modelling
languages and software architecture of Serendipity-II to
improve its performance for coordinating distributed
software development. This includes the provision of

integrated communication tools, the management of
enactment and artefact change events via a database, and
the development of interfaces to diverse third-party tools.

References

[1] Bandinelli, S., DiNitto, E., and Fuggetta, A.,
“Supporting cooperation in the SPADE-1
environment,” IEEE Transactions on Software
Engineering, vol. 22, no. 12.

[2] Belkhatir, N., Estublier, J., and Melo, W.L., T h e
Adele/Tempo Experience, Software Process Modelling
& Technology. Research Studies Press, 1994.

[3] Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S.,
Skopp, P.D. amd Tong, A.Z., and Valetto, G.,
“Integrating Groupware and Process Technologies in
the Oz Environment,” in 9th International Software
Process Workshop, Ghezzi, C., IEEE CS Press, Airlie,
VA, October 1994, pp. 114-116.

[4] Ben-Shaul, I.Z. and Kaiser, G.E., “Integrating
Groupware Activities into Workflow Management
Systems,” in 7th Israeli Conference on Computer Based
Systems and Software Engineering, Tel Aviv, Israel,
June 1996, pp. 140-149.

[5] Bentley, R., Horstmann, T., Sikkel, K., , and Trevor,
J., “Supporting collaborative information sharing with
the World-Wide Web: The BSCW Shared Workspace
system,” in In Proceedings of the 4th International
WWW Conference, Boston, MA, December 1995.

[6] Bogia, D.P. and Kaplan, S.M., “Flexibility and Control
for Dynamic Workflows in the wOrlds Environment,”
in Proceedings of the Conference on Organisational
Computing Systems, ACM Press, Milpitas, CA,
November 1995.

[7] Fernström, C., “ProcessWEAVER: Adding process
support to UNIX,” in 2nd International Conference on
the Software Process, IEEE CS Press, Berlin, Germany,
February 1993, pp. 12-26.

[8] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Integrating the pieces, Chapter 11 in
V i s u a l O b j e c t - O r i e n t e d P r o g r a m m i n g .
Manning/Prentice-Hall, 1995.

[9] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via
discrete change description propagation,” Software -
Practice & Experience, vol. 26, no. 9, 1053-1083,
September 1996.

[10] Grundy, J.C., Venable, J.R., Hosking, J.G., and
Mugridge, W.B., “Coordinating collaborative work in
an integrated Information Systems engineering
environment,” in Proceedings of the 7th Workshop on
the Next Generation of CASE tools, Crete, 20-21 May
1996.

[11] Grundy, J.C. and Hosking, J.G., “Constructing
Integrated Software Development Environments with
MViews,” International Journal of Applied Software
Technology, vol. 2, no. 3-4, 1996.

[12] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A
Java-based toolkit for the construction of multi-view
editing systems,” in Proceedings of the Second
Component Users Conference, Munich, Germany, July
14-18 1997.

[13] Grundy, J.C. and Hosking, J.G., “Serendipity:
integrated environment support for process modelling,
enactment and work coordination,” Automated Software
Engineering, vol. 5, no. 1, 1998.

[14] Grundy, J.C., “Engineering component-based, user-
configurable collaborative editing systems,” Working
Paper, Dept. of Computer Science, University of
Waikato, 1998.

[15] Kaiser, G.E., Kaplan, S.M., and Micallef, J.,
“ M u l t i u s e r , D i s t r i b u t e d L a n g u a g e - B a s e d
Environments,” IEEE Software, vol. 4, no. 11, 58-67,
November 1987.

[16] Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia,
D.P., and Bignoli, C., “Supporting Collaborative
Software Development with ConversationBuilder,” in
Proceedings of the 1992 ACM Symposium on Software
Development Environments, ACM Press, 1992, pp. 11-
20.

[17] Kaplan, S.M., Fitzpatrick, G., Mansfield, T., and
Tolone, W.J., “Shooting into Orbit,” in Proceedings of
Oz-CSCW'96, University of Queensland, Brisbane,
Australia, August 1996.

[18] Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama,
T., Osterweil, L.J., Penedo, M.H., and Rombach, H.D.,
“Software Process Modelling Example Problem,” in
Proceedings of the 6th International Software Process
Workshop, (Ed), T.K., IEEE CS Press, Hokkaido, Japan,
28-31 October 1990.

[19] Lotus Inc., System Administration Manual, Lotus Notes
release 3, 1993.

[20] Magnusson, B., Asklund, U., and Minör, S., “Fine-
grained Revision Control for Collaborative Software
Development ,” in Proceedings of the1993 ACM
SIGSOFT Conference on Foundations of Software
Engineering, Los Angeles CA, December 1993, pp. 7-
10.

[21] Marlin, C., Peuschel, B., McCarthy, M., and Harvey,
J., “MultiView-Merlin: An Experiment in Tool
Integration,” in Proceedings of the 6th Conference on
Software Engineering Environments, IEEE CS Press,
1993.

[22] Maurer, F. Project Coordination in Design Processes, In
Proceedings of WET ICE’96, June 19-21, Stanford
University, USA, IEEE CS Press.

[23] Medina-Mora, R., Winograd, T., Flores, R., and Flores,
F., “The Action Workflow Approach to Workflow
Management Technology,” in Proceedings of
CSCW'92, ACM Press, 1992, pp. 281-288.

[24] Reiss, S.P., “Connecting Tools Using Message Passing
in the Field Environment,” IEEE Software, vol. 7, no.
7, 57-66, July 1990.

[25] Roseman, M. and Greenberg, S., “A Tour of
Teamrooms,” in Video Proceedings of ACM
SIGCHI'97, ACM Press, Atlanta, Georgia, March 22-27
1997.

[26] Swenson, K.D., Maxwell, R.J., Matsumoto, T.,
Saghari, B., and Irwin, K., “A Business Process
Environment Supporting Collaborative Planning,”
Journal of Collaborative Computing, vol. 1, no. 1.

[27] T e a m W A R E I n c , T e a m W A R E F l o w ,
http://www.teamware.us.com/products/flow/, 1996.

