

A Visual Language and Environment for Specifying Design Tool Event Handling

Na Liu1, John Hosking1 and John Grundy1, 2

1Department of Computer Science and 2Department of Electrical and Computer Engineering,
University of Auckland, New Zealand

{karen, john, john-g}@cs.auckland.ac.nz

Abstract
We describe a new visual language for event handling

specification and its incorporation into Pounamu, a meta-
tool for building diverse visual design environments. Our
visual language provides end users ways to express event
handling mechanisms via visual specifications.
Keywords: Visual Language, Event Handling, Meta Tool

1 Introduction

Visual design tools have many applications, including

software design, engineering product design, E-learning,
data visualisation, and tourism. We have used the event-
driven nature of visual design tools as a vehicle to provide
end users with a domain specific visual language, we call
Kaitiaki 1 , with which to specify behaviours for their
diagramming tools. We have incorporated this visual
language into our Pounamu meta-tool [9] to provide end
users with little programming background, a mechanism to
detect events and specify simple or complex actions to take.

A variety of approaches have been used to support
reconfiguration of diagramming tools, including direct
modification of tool code using an API [4], scripting [7],
programming by demonstration [8], and Event-Condition-
Action rule based languages [1, 5, 6]. The approach we
describe here extends from the latter. Pounamu currently
adopts the first approach through user defined Java event
handlers which are compiled on the fly.

2 Kaitiaki

By analysing Pounamu event handlers from a range of

tools key requirements identified for our Kaitiaki visual
event handler designer were:
• A need to represent key “building blocks” of state

query, data filtering and state modification (actions).
• A need to represent and query event objects/attributes;

Pounamu tool state objects
• A need to represent “data” propagation between event,

query, filter and action representations.
• A need to represent iteration and conditional data flow.

1 Kaitiaki is the Maori word for handler, or guardian

The metaphor used by Kaitiaki is thus an Event-Query-
Filter–Action (EQFA) model articulated as “When this
event happens, I want these changes made to these things”.
This is loosely based on the Serendipity process modelling
language [3]. An overview of the main constructs and the
predefined primitives of Kaitiaki is shown in Table 1 with
example Kaitiaki event handlers shown in Figure 1.

Event
representation
Abstract
Pounamu state
representation

 Single Data Element

Collection of Data
Elements

Filter

 Select all shapes
connected to a shape

Select shapes of given
or test type of single
data element input

Query on a tool’s
state

Obtain all connectors
connected to a shape

 Obtain all the shapes in
the modeller panel

Set a value to a
named property

Create a new shape

state changing
action

Horizontally/verticall
y align a shape with
other aligned shapes

Connect two shapes
using a connector

Iteration

Data propagation
link
Data flow ports
in and out

Concrete
specification of
Pounamu model
elements (state)

Table 1. Key visual constructs and building blocks

jgru001
Text Box
In Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centgric Computing, Texas,USA, © 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

A single event or a set of events is the starting point for
a Kaitiaki event handler specification. From this event
various data flows out (event type, affected object(s),
property values changed etc). Queries, filters and actions
are parameterized with data propagated through incoming
connectors. Queries retrieve elements and output one or
more data elements; filters select elements from their input;
actions apply operations to elements passed to them.
Queries and actions are invoked immediately parameter
values are available (data push), but if no data flows to a
construct, it is invoked on demand when all parameters to a
subsequent flow element have a value (data pull).

Figure 1: Work breakdown tool (top), Kaitiaki event
handler (centre), and packaged query (bottom)

Figure 1 (top) shows a Pounamu implemented work
breakdown tool. Users create a new task by a right-click on
an existing task; the new task is made a child of the existing
task and a link drawn between the old and new tasks. The
new subtask and its siblings are then aligned. The Kaitiaki
event handler specification for this task is shown in the
centre. This event handler responds to a user defined menu
trigger event called AddNewTask. The getSubTasks query
(a packaged query, also defined using Kaitiaki, and shown
at the bottom) locates existing subtasks of the currently
selected project/task shape (parent input); the newShape
action creates the new task shape; the alignV action does a
vertical alignment of the new task shape with the other
existing subtasks; the setProps primitive then sets default
properties for the newly created task shape; and the connect
primitive connects the new task shape with its parent shape
using a specified connector type, now the event handler
leads to a final stage, i.e. the end of the event handler
specification.

The packaged getSubTasks query, shown at the bottom
of Figure 1, is composed of a number of primitives. We
explicitly specify start (data flow in) and end (data flow
out) ports for a package. Starting with a parent shape
flowing in from the start to the connectedFrom filter, the
getShapes query which gathers all available shapes (data
pull) is invoked. The TaskShape filter selects all shapes that
are of the TaskShape type. The connectedFrom filter then
selects only those that are connected from the specified
parent shape. The end flow of the composed query indicates
that on termination, this query flows out a set of subtasks of
the parent task. This query is invoked in the event handler
in the centre, but can be reused by other event handlers.
Actions and filters can similarly be specified and reused.

Figure 2: Visualizing execution of a visual event handler

We have also developed a visual debug viewer which
dynamically annotates an event handler specification
view during execution as shown in

Figure 2. This includes the visualization of EQFA
element invocation (by flashing the corresponding graph

node) and visualization of data propagation (by highlighting
the dataflow path). The traditional “debug and step into”
metaphor is used and step-by-step visualization controlled
by menu command.

3 Evaluation

We have carried out a Cognitive Dimensions [2]

evaluation of our visual event specification language and
prototype environment to gauge its effectiveness. Key
issues seen include Kaitiaki’s Abstraction Gradient,
Closeness of Mapping, Error Proneness, Progressive
Evaluation support, Viscosity, requirement for Hard mental
operations and use of Secondary Notation.

An informal evaluation of the visual event handler
specification tool has been carried out with experienced
Pounamu users and some novice users. Feedback suggests
the visual specification approach is greatly favoured for
most event handler specification tasks. We plan a more
formal evaluation with novice users to better gauge this.

With respect to requirements, our EQFA metaphor
captures event generation, Pounamu state querying,
filtering and iteration over query results, and state change
actions to describe event handler specifications. The
dataflow metaphor describes the composition of these event
specification building blocks and seems to map well onto
users’ cognitive perception of the metaphor. Packing
complex parts of a specification into reusable building
blocks allows very complex event handlers to be defined
with the model. A proof of concept support tool has
demonstrated the approach is feasible permitting both
simple and complex Pounamu event handlers to be defined
visually, code generated and visual debugging supported.

A potential weakness of Kaitiaki is the abstract
representation of all events, queries, filters and actions. We
have attempted to mitigate this with the addition of concrete
iconic representations and are experimenting with elision
techniques that allow concrete icons and Kaitiaki elements
to be collapsed into a single meaningful icon.

4 Summary

We have developed a prototype visual language and

proof-of-concept support environment for specifying
diagramming tool event handlers. This uses a metaphor of
generating event, tool state queries, filters over query
results and state changing actions, with dataflow between
these building blocks. The support environment allows
users to compose handlers from these constructs and relate

them to concrete diagramming tool objects. A debugger
uses the visual notation to step through a specification,
animating constructs and affected diagram objects. We
have added this tool to the Pounamu meta-diagramming
tool and specified and generated event handlers for example
tools, demonstrating the feasibility of the approach.

We are exploring a programming by example extension
to allow users to make several changes to an existing
modelling tool view and generate actions and data flow
connections between actions in an event specification view.
These would then be tailored and abstracted via the addition
of queries and filters to make a generic event handler. The
dataflow metaphor used to compose a specification results
in interesting potential concurrency issues if parallel flows
are defined. We are examining extra synchronisation
constructs to manage this. In addition, automatic layout of a
event handler specifications may be useful to improve a
users ability to show/hide/ collapse parts of a specification
to manage size and complexity.

References

1. Costagliola, G., Deufemia, V., Ferrucci, F., Gravino, C.: The
Use of the GXL Approach for Supporting Visual Language
Specification and Interchanging. Proc HCC’02, Arlington,
Virginia, 2002, pp131-138.

2. Green, T. R. G., Burnett, M. M., A Ko, J., Rothermel, K. J.,
Cook, C. R., and Schonfeld, J., Using the Cognitive
Walkthrough to Improve the Design of a Visual
Programming Experiment, Proc VL2000, 172-179

3. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley,
M.D. An architecture for decentralised process modelling
and enactment, IEEE Internet Computing, 2:5, 53-62, 1998.

4. Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A Fully
configurable Multi-User and Multi-Tool CASE
Environment, in Proceedings of CAiSE'96, LNCS 1080,
Springer-Verlag, Crete, Greece, May 1996.

5. Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom
G., Sprinkle J., Karsai G.: Composing Domain-Specific
Design Environments, Computer, 44-51, Nov, 2001.

6. Lewicki, D. and Fisher, G. VisiTile - A Visual Language
Development Toolkit, Proc VL’96, Boulder, pp. 114-121.

7. Myers, B.A., The Amulet Environment: New Models for
Effective User Interface Software Development, IEEE TSE,
vol. 23, no. 6, 347-365, June 1997.

8. Smith, D.C., Cypher, A. and Spohrer, J. KidSim:
programming agents without a programming language,
Communications of the ACM, vol. 37, no. 7, pp. 54 – 67.

9. Zhu, N., Grundy, J.C. and Hosking, J.G., Pounamu: a meta-
tool for multi-view visual language environment
construction, Proc VL/HCC’04, pp. 254-256.

