
Copyright 1998 IEEE. Published in the Proceedings of 1998 IEEE Symposium on Visual Languages, Halifax, Nova Scotia. Personal use of

this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained

from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-

1331, USA. Telephone: + Intl. 732-562-3966.

Visual Specification of Multi-View Visual Environments

J.C. Grundy†, W.B. Mugridge†† and J.G. Hosking††

 †Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
email: jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
email: {rick,john}@cs.auckland.ac.nz

Abstract

We describe a set of visual tools for specifying and
generating multi-view visual environments. JComposer
provides an architecture description language for
defining environment repositories, view models, and
view-repository mappings. A visual event-flow language
permits annotation of JComposer diagrams with event
handlers specifying environment semantics.
BuildByWire supports constraint-based visual
specification of graphical elements for JComposer-
based environments. JVisualise provides support for
visualisation, querying and end-user modification of
environment semantics.

1. Introduction

Advanced software development environments are
large, complex pieces of software. They provide
multiple tools to manipulate an evolving software
artefact represented in a variety of notations. For
example, an integrated CASE tool may provide editors
for object-oriented analysis notations, such as those of
UML [12], entity-relationship diagrams, user interface
specification notations, and textual programming
language code. Facilities are needed for managing
consistency and inconsistency between representations,
and between multiple views of a single representation
[13, 8]. A common approach is to have a common
repository fully describing software artefacts, with
mappings to and from tool based representations and
views which maintain consistency between the various
models (or at least indicate where things are
inconsistent) [8, 28]. Often these mappings are
implemented using event propagation approaches [27,
26, 33].

There has been much work on simplifying the
construction of such environments by abstracting
common techniques into reusable frameworks.
Attention has also focussed on the generation of
environments and editing tools from meta-model
descriptions, which are typically expressed in a visual
notation [25, 27, 7]. To fully support such an approach,
tool meta models need to support more than just a
structural definition of the environment; they must also
be capable of specifying dynamic behaviour. As a
minimum the following aspects need to be specified:
• Shared repository objects and their inter-

relationships
• Tool views of the repository and the mappings

between the views and repository.
• Inter-object event propagation and response.
• The visual form and behaviour of view objects, ie

the visual syntax and semantics of the tools

We describe a collection of visual languages to
support these specification needs, with implementations
that support the generation of environments directly
from these visual specifications.

2. Our approach

Our approach uses change propagation and response
graphs (CPRGs) as the underlying implementation
architecture [28]. CPRGs propagate changes, such as
the modification of an icon, as change description
objects between component objects via relationship
objects. Receiving objects interpret or store change
descriptions appropriately to maintain consistency.
CPRGs support the implementation of a wide range of
tool capabilities, including multiple views, generic
undo/redo, view versioning, and collaborative editing.

To specify CPRG components and relationships, we
have developed the JComposer architecture description
language. This language has a visual form containing
elements in common with entity relationship diagrams
and UML class diagrams. JComposer specifications are
used to specify both the repository and view level
components of an environment, together with the
structural relationships between them, and the events
(change descriptions) propagated along the
relationships.

The semantics of event handling are specified using
a visual filter-action language, abstracted from our
earlier work on software process modelling [30], with
event handlers specified using "event-flow"
programming.

The visual form and editing semantics of graphical
views and their components are specified using
BuildByWire, a constraint-based notation editor.
Textual editors, such as for programming code, are not
currently supported, but can be conventionally
implemented and integrated via an event processing
interface.

In the following sections we describe these
notations and illustrate the process in which they are
used to specify and implement a multiple view UML
use case diagram editor. Fig 1 shows the tool
(UMLTool) in use. Use case diagrams contain actors
(people shapes) and use cases (ellipses). Actors make
use of use cases (arrow) and use cases may use or
generalise other use cases.

Multiple use case diagrams can be constructed, with
shared information (actors, etc). This UMLTool
example is simple, as it only requires only a single
notation with simple mappings to the common
repository, but serves to illustrate our visual
specification notations. We have specified and
generated other multi-view, multi-user environments,
including an ER modeller, a process modelling

environment, a visualisation tool, and our specification
tools themselves [29, 31].

2. Specification of the repository

Figure 2 shows part of the repository meta-model
specification for UMLTool using JComposer. CPRG
component types are represented as rectangles, and
relationship types as ovals. Component-relationship
links have associated arities. In this example, a
Repository component has two one-to-many
relationships, Actors and Use Cases, with, respectively,
BaseActor and BaseUseCase components. BaseActors
have a BaseParticipation relationship with
BaseUseCases, which in turn have an optional
BaseGeneralisation relationship to other BaseUseCases.

Component and relationship types specialise (ie
inherit from) CPRG framework component and
relationship types. For example, the Actors and
UseCases relationships are both specialisations of the
MVHashTableRel hash table relationship. The
supertype name is shown directly under the type name
in the icon. Component properties can be specified on
the diagrams e.g., BaseUseCases has a UseCaseName
property.

Figure 1. A UMLTool view

Figure 2. Part of the UMLTool repository specification

3. Specification of event handling

In the CPRG model, change descriptions (events)
are generated whenever components or relationships are
modified (eg properties changed). These event
representations are then propagated to associated
relationships or components for them to react to. The
reactions, which may, for example, modify the
receiving component’s state, are used to implement
semantic constraints on the environment.

Some component types have predefined actions that
are performed on receipt of specific types of event. For
example, an MVHashtableRel component listens to the
components it indexes, and when any of the attributes
that produce the hashtable key changes, it generates a
ChangeKey event.

In general, however, application specific actions
must be defined to specify the semantics of a tool.
JComposer provides a notation to support event handler
specification, using a visual event-flow programming
style. Filters (rectangular icons) and actions (shaded
ovals) can be attached, by event flows (arrowed lines),
to components and relationships in order to detect and
react to selected events.

Filters allow only selected (matched) events to flow
through them. An action carries out some process,
based on the event. Actions may, for example,
automatically make further changes, undo an invalid
change, store information, or inform users of a potential
problem. They may also generate new events flowing
out of them.

For example, the top of Figure 3 shows another
view of the repository structure of Figure 2, but with an
action (CheckUniqueValues) attached to the UseCases
relationship. This action is passed all events received by
the relationship. It aborts any insertion or key change if
a duplicate key will result.

Filters and actions can be packaged into
parameterisable “routines” for reuse. For example, the
CheckUniqueValues filter/action model has been
packaged in this way, and the lower part of Figure 3
shows its internal filter-action implementation. Two
filters (rectangular icons) detect the addition of a
BaseUseCase (EstablishRel(BaseUseCase) event) or
modification of a BaseUseCase name
(PropertyChange(UseCaseName)), via event flow
connections (arrowed lines) from the UseCases
relationship. The IsUniqueKey filter determines if the
new/changed use case name is non-unique, i.e. another
local use case has the same name. If so, it informs the
user of this semantic error using the NotifyUserOfError
action (shaded icon) and then "aborts" (reverses) this
invalid editing operation using the AbortOperation

action. The event input/output and component usage by
this filter/action model are specified by input (e.g. "rel
changed") and output (e.g. "change OK") items
parameterising the detailed specification of the model.

Figure 3: Example filter and action handler

A range of simple filters and actions are available
for reuse in JComposer. Programmers can also package
reusable filter and action models as in Figure 3, and
implement new ones in Java. Event flows in JComposer
filters and action models are similar in nature to the
flow of data between processes in dataflow languages,
but differ in the way event generation is used to drive
execution rather than data synthesis via calculation.

4. Specification of view models

Atool designer may specify the details of each view
of an underlying repository meta model. A view
provides a partial representation of the repository,
independent of the graphical form that icons in the view
may take.

Figure 4. View model and view mapping specification.

 Each structural component of a view is connected
by a view relationship to a corresponding repository
component. Associated “mapping” components specify
the mapping of view component changes to the
repository component and vice-versa.

Figure 4 shows a partial specification of a Use Case
diagram view for UMLTool. The view itself is
represented by the Diagram component, which has one-
to-many relationships with components defining use
case icons (ActorIcon, UseCaseIcon) and the connector
icon used to connect them (ParticipationGlue). Also
shown are view-repository mapping relationships,
ActorIconToBase and UseCaseIconToBase. The
former’s mapping component, ActorIconMapping,
specifies how view-level attributes map to/from
repository attributes.

Event handlers can be attached to view
relationships to map more complex structural changes
to and from views and the repository. For example, a
filter and action specification can ensure that whenever
a new actor is attached to a use case in the repository,
the graphical views of the use case have an appropriate
new actor icon added and linked to the use case icon in
the view.

Other kinds of views, for example a textual
representation of a use case, can have mappings
specified. When the base use case is modified, change
description events generated can be unparsed into a
human-readable textual form and inserted into the
view's text, informing users of changes affecting the
text.

Event handlers can also be attached to view level
components and relationships. For example, an
additional event handler is shown attached to the
Diagram (view) component in Fig. 4 to support
collaborative editing with other view users by

broadcasting change descriptions between users’
environments.

5. Specification of visual form

The visual form of view level components and their
layout and editing semantics are specified using
BuildByWire (BBW). BBW allows a visual notation
designer to:
• compose the graphical elements (icons) that make

up a visual notation, such as actors, use cases, and
participation connectors;

• specify how those icons may be created, changed,
connected, and transformed (such as through
resizing);

• specify interface tools to manage their
manipulation.

New icons are constructed by “wiring” together
existing icons using constraints and containers. Icons
available for composing include simple shapes like
boxes, ovals, and lines, together with any (lightweight)
Java user interface component, such as a TextField,
Menu, ComboBox or Button. Icons have associated
properties that may be changed at design time through
property sheets (eg size, position, filling). They also
have “reshaping” handles that are used for transforming
(resizing, rotating, etc).

Other icons are containers that organise collections
of icons, such as in vertical lists, organisational chart
structures, card stacks and other layouts. In addition,
layout may be specified with constraints.

Wires are multi-way constraints on the properties of
figures, such as for alignment. They are added by
dragging between handles, but don’t usually have a
visible iconic form of their own (a hierarchical

component view allows them to be edited). Some also
introduce their own handles, which may be used to
attach further wires. Using wires, the relative position
of component figures can be specified, as well as the
way in which repositioning and reshaping (resizing,
rotating, swivelling, shearing) of one component affects
another.

Figure 5 shows an example of the Actor icon being
defined in BuildByWire for UMLTool. It is constructed
from an oval, several lines, and some text. Proportional
wires break the icon into four equal sections vertically.
A proportional wire connects between two existing
handles, with a new handle created between them.
Whenever either of the original handles are moved (or
resized), the new handle maintains its proportional
position between them. The new handle can be
“adjusted” to be at any proportional position between
the two handles. The oval is placed in the top section of
the icon, with equality wires joining the top and bottom
of the oval to the top and bottom of the upper section.
The oval is constrained to be circular by specifying that
its width is equal to its height.

The arm and leg endpoints of the Actor are defined
as offsets from the left- and right-hand handles of the
icon using relative wires. These create a new handle at
a fixed offset from a target handle. Whenever the target
handle moves, the relative wire’s handle moves
correspondingly.

The text is placed at the bottom of the icon and its
contents specified using a property sheet for the
TextShape (shown in the bottom-right of Figure 5).

A property sheet (top right in Figure 5) is also used
to specify which properties of a composed shape are
accessible to underlying CPRG components. In this
case, the only property of interest is the text. This single
exported property is also displayed in the bottom-left
window of Fig. 5, where the developer has also entered
the class name to be associated with the icon.

Once auxiliary handles are hidden (in this case they
are only needed during construction), the class
corresponding to this new icon can be generated.
BuildByWire generates a JavaBean class for each new
composite icon of the notation.

Connectors, such as the participation connector of
UMLTool are specified in a similar manner to icons.
However, connectors are not freestanding, but are
dependent on other icons to attach their endpoints to.

The next step is to specify the tool interface
provided to the user to create and manipulate icons in a
particular view. This involves selecting the required
tool types and locations (eg pop up menu or tool bar)
using a property sheet approach. BuildByWire
generates user interface code (a JavaBean class) which
includes the tools, and an interface to CPRG-based code

for programmatic creation and manipulation of views,
icons and connectors.

Figure 5. Specification of an Actor in BBW

JComposer view components are associated with
appropriate BBW icons by specification of the icon
type in the property sheet of the view component (as
shown in Figure 4 right, where the UMLActor icon is
specified as the icon for the ActorIcon component). As
BBW icons are Java Beans, JComposer automatically
extracts the public property names from the specified
icon class and the user of JComposer specifies which of
these should be represented in the JComposer view
component. When these JComposer view component
properties change, the generated JComposer view
component updates the corresponding BBW icon
property. Similarly, when the icon properties change,
the JComposer view component detects this and updates
its own propeties appropriately. JComposer generates
this mapping code automatically. JComposer can also
modify characteristics of BBW shapes
programmatically to implement, for example, automatic
expansion and elision facilities.

6. Environment generation

Once a tool has been modelled in JComposer, the
tool developer can request generation of Java Beans
implementations of the tool components, relationships,
filters, actions, and icons. Unmodified or reused
components are not regenerated; instead, instantiations
of the reusable Java Bean implementation of the
component are created when the tool is used.

Backend code, such as code generators, is added by
tool implementors as textual code in subclasses of the
JComposer-generated classes. Regeneration of an

environment will not modify these subclasses, which
will only require hand amendment if a generated class
change in a way that affects the subclass code.

7. Visualisation of generated tools

Tools developed using JComposer can be
“statically” extended by modifying the JComposer
definition. However, one advantage of our component-
based modeling and implementation of tools is that the
tools can be dynamically extended by adding or
modifying components when the tool is in use. The
JVisualise tool provides repository querying and user-
defined event handling facilities in generated
JComposer environments, using a similar notation to
JComposer. Ids and type names replace type and
supertype names respectively in the icons. Links
between components are shown as relationship icons,
and attribute values are shown instead of types.
JVisualise views are updated as the environment
executes, and relationship links can be highlighted as
events are propagated along them.

Visualisations are constructed either interactively,
by the user selecting running components to visualise
via pop-up menus, or via a visual query language.
Figure 6 shows a user-constructed visualisation of a
running JComposer view, showing iconic visualisations
of the component which represents the view (JComp.
JCDiagram) and a component representing a JComposer
component specification (JComp.JCompIcon). These
"existing" components were added to the view by the
user first requesting the view be visualised via a menu
option. The user then asked for the viewComponents
link for the view to be shown, and selected one
JComp.JCCompIcon view component linked to the
view to be shown. The user then requested nameText, x
and y attributes of the view component to also be
shown.

The user has also interactively added filter, action
and version record (which stores component changes)
components to the view in Figure 6. Together these
cause all changes made to the diagram component (the
view) to be stored. This can be used, for example, to
support asynchronous cooperative work by making the
changes available for perusal by other users. Unlike
most existing tools, our interactively extensible
JVisualise views allow users to readily extend their
environment's event handling behaviour.

Users can also "query" an environment for
components of interest. This is done by interactively
constructing a visual query, using the same JVisualise
notation, but with icons not linked to existing
components. Constraints such as attribute values and
link arities can be specified, and the query run.

Components matching the query are visualised using
the query structure itself [31].

Figure 6. Example visualisation in JVisualise

8. Related work

A wide range of tools have been developed to
facilitate the specification and generation of multiple-
view systems. These range from the design and
implementation of visual languages, to meta-CASE
tools for specifying CASE tools, to the development of
general-purpose multiple view environments.

Examples of visual language and environment
specification tools include RGG [1], Escalante [7],
Clockworks [27], Vampire [6], and DV-Centro [22].
Several of these, including Vampire and RGG use
interpreted specifications and thus provide
environments fully-generated from visual notations.
Such generated environments tend to be rather limited
in the degree of user interaction they provide, however,
and have limited tool integration and multiple view
consistency management support.

Several tools, such as Escalante and Clockworks,
adopt partial-generation approaches, where some of a
new environment is specified visually or textually in the
generator tool, the rest being hand-implemented.
Clockworks provides a similar component-based
approach to JComposer for specifying and generating
component structures, including limited support for
mulitiple view specifications. It does not, however,
provide visual event specifications but require tool
developers to code these in the Clock language, using
uni-directional constraints to keep views consistent. We
have found such constraint approaches to lack
sufficiently flexible view consistency management for
our tool problem domains [28]. Escalante uses a range
of visual and textual views to specify and then generate

visual language tools. Its visual views are limited to
component structure specification and icon
representation, lacking event processing specifications.

Meta-CASE tools are used to specify and generate
CASE tools, many of which include visual language
aspects. Examples include KOGGE [25] and
MetaEDIT+ [3]. Tools for general-purpose software
development using visual specifications include
JBuilder [18], and Visual Javascript [11]. Most
metaCASE tools provide repository and view
specifications similar to JComposer’s, but use textual
constraints rather than visual event specification
models. For example, KOGGE uses a JComposer-like
notation for meta-model specification, but complex
textual constraints rather than visual event handling for
behaviour specification and multiple view consistency.
Similarly, metaEDIT+ uses database rules to specify
simple repository constraints.

JComposer filters and actions provide significant
advantages over other approaches such as constraints
and attribute grammars [15, 19], selective broadcasting
[13], action routines [19], and the basic component
event handling models of systems such as Visual Age
[2] and JBuilder [18]. This includes the ability to
readily understand and extend visual event handling
models, an easily composed visual notation vs. textual
formulae or code, and the ability to package filter and
action models for reuse via a single visual item [32].

Many tools supporting the generation of editors for
visual representations use textual specification of icon
appearance and editor behaviour. Examples include
Garnet [9], Amulet [10], Zeus [21], Unidraw [17],
KOGGE [25], and MetaEDIT+ [3]. These toolkit-based
approaches lead to complex specifications which bare
little resemblance to the actual icons and editing
behaviour desired. In particular, the specification of
icon layout and editing constraint in these systems is
complex and often unintuitive. BBW utilises a
compositional technique with designers building
accurate representations of editor components, with
layout constraints and editing behaviour specified using
a similar metaphor.

Other visual approaches to specifying visual
language editors include those of VisiTile [4], Vampire
[6], AgentSheets [14], DV-Centro [22], HotDoc [23],
and Escalante [7]. The majority of these approaches use
iconic composition approaches like BBW, but provide a
limited range of fixed interaction capabilities (such as
detecting mouse clicks). Specifying icons which can
both dynamically resize or be resized by users,
connectors that dynamically resize and reposition
annotations, and a wide range of user interaction
facilities are generally not supported, with the notable
exception of DV-Centro. The compositional metaphor

of BBW also allows designers to extend its built-in
iconic, connector and constraint components for reuse.

Dynamic visualisation and repository querying tools
include those of Teorey et al [16], Bird [20], Consens
and Mendelzon [24], and metaEDIT+ [5]. Most use
either graphical query languages, with results presented
textually, or textual query languages with textual or
graphical results. We have found the JVisualise
approach of graphical structure representation and
textual constraints, plus visualisation of results using
the graphical structures from the query, to be highly
suitable for component-based tools. The ability of tool
users to easily add extra event processing behaviour to
running tools is not supported visually in most other
systems. Our JVisualise visual notation has an
advantage of ease of use for novice users, but also
expressive power for experienced tool developers.

7. Summary

We have described an approach to specification and
generation of multi-view visual environments based on
the JComposer, BuildByWire, and JVisualise tools.
This provides an integrated approach to visual
specification of components, their visual forms and
possible user interactions. The approach to repository
and view mapping specification is novel in its
integration of static meta modelling and dynamic event
handling, both specified visually. Reuse of this notation
for visualising and debugging the executing
environment is also novel.

One important consequence of our work is that we
have lowered the cost of constructing editors and
environments for “small” visual notations, and
experimenting with and tailoring those notations
quickly to need. Our component based approach also
provides the ability to rapidly compose these “small”
notations together either at the view level or at the
repository level to provide multi-notation environments.
Thus, rather than a “one notation does all” approach,
JComposer tends to encourage a confederation of small,
relatively orthogonal visual notations. An example of
this is JComposer itself, which integrates several small
notations (the architecture description language, the
filter action language, and the BuildByWire
compositional tool) in a powerful synergy.

Acknowledgements

The first author acknowledges funding from the
New Zealand Foundation for Research, Science and
Technology. The second and third authors acknowledge
research grants from the University of Auckland
Research Committee.

References

[1] Zhang. D.Q. and Zhang, K., “Reserved graph grammar: a
specification tool for diagrammatic VPLs,” in Proceedings of
the 1997 IEEE Symposium on Visual Languages, IEEE CS Press,
1997, pp. 284-291.

[2] IBM Visual Age for Java™, IBM,
http://www.software.ibm.com/ad/vajava, 1997.

[3] Kelly, S., Lyytinen, K., and Rossi, M., “Meta Edit+: A Fully
configurable Multi-User and Multi-Tool CASE Environment,”
in Proceedings of CAiSE'96, Lecture Notes in Computer Science
1080, Springer-Verlag, Heraklion, Crete, Greece, May 1996, pp.
1-21.

[4] Lewicki, D. and Fisher, G., “VisiTile - A Visual Language
Development Toolkit,” in Proceedings 1996 IEEE Symposium
on Visual Languages, IEEE CS Press, Boulder, September 1996,
pp. 114-121.

[5] Liu, H., “A Visual Interface for Querying a CASE Repository,”
in Proceedings of the 1995 IEEE Symposium on Visual
Languages, IEEE CS Press, 1995, pp. 21-28.

[6] McIntyre, D.W., Design and implementation with Vampire,
Visual Object-Oriented Programming. Manning Publications,
Greenwich, CT, USA, 1995, chap. 7, pp. 129-160.

[7] McWhirter, J.D. and Nutt, G.J., “Escalante: An Environment for
the Rapid Construction of Visual Language Applications,” in
Proceedings of the 1994 IEEE Symposium on Visual Languages,
IEEE CS Press, 1994.

[8] Meyers, S., “Difficulties in Integrating Multiview Editing
Environments,” IEEE Software, vol. 8, no. 1, 49-57, January
1991.

[9] Myers, B.A., “Garnet: Comprehensive Support for Graphical,
Highly Interactive User Interfaces,” COMPUTER, vol. 23, no.
11, 71-85, 1990.

[10] Myers, B.A., “The Amulet Environment: New Models for
Effective User Interface Software Development,” IEEE
Transactions on Software Engineering, vol. 23, no. 6, 347-365,
June 1997.

[11] Netscape Visual JavaScript™, Netscape`Inc.,
http://www.netscape.com/compprod/products/tools/visual_js.ht
ml, 1998.

[12] Rational, C., UML Document Set Version 1.1,
Rational`Corporation, http://www.rational.com/uml/references/,
1997.

[13] Reiss, S.P., “Connecting Tools Using Message Passing in the
Field Environment,” IEEE Software, vol. 7, no. 7, 57-66, July
1990.

[14] Repenning, A., “Bending the Rules: Steps toward Semantically
enriched Graphical Rewrite Rules,” in Proceedings of IEEE
Symposium on Visual Languages, IEEE CS Press, Darmstadt,
Germany, September 1995, pp. 226-233.

[15] Reps, T. and Teitelbaum, T., “Language Processing in Program
Editors,” COMPUTER, vol. 20, no. 11, 29-40, November 1987.

[16] Teorey, T.J., Yang, D., and Fry, J.P., “A Logical Design
Methodology for Relational Databases Using the Extended
Entity-Relationship Model,” Computing Surveys, vol. 18, no. 2,
197-222, June 1986.

[17] Vlissides, J.M. and Linton, M., “Unidraw: A framework for
building domain-specific graphical editors,” in Proceedings of
the ACM SIGGRAPH Symposium on User Interface Software
and Technology, ACM Press, 1989, pp. 158-167.

[18] Borland JBuilder™, http://www.borland.com/jbuilder.

[19] Backlund, B., Hagsand, O., and Pherson, B., “ Generation of
Visual Language-oriented Design Environments,” Journal of
Visual Languages and Computing , vol. 1, no. 4, 333-354, 1990.

[20] Bird, B., “An Open Systems SEE Query Language,” in
Proceedings of 7th Conference on Software Engineering
Environments, IEEE CS Press, Netherlands, April 5-7 1995.

[21] Brown, M.H., “ Zeus: A System for Algorithm Animation and
Multi-View Editing,” in Proceedings of the 1991 IEEE
Symposium on Visual Languages, IEEE Computer Society Press,
1991, pp. 4-9.

[22] Brown, P.C., “Satisfying the graphical requirements of visual
languages in the DV-Centro framework,” in Proceedings of the
1997 IEEE Symposium on Visual Languages, IEEE CS Press,
1997, pp. 84-91.

[23] Buchner, J., Fehnl, T., and Kuntsmann, T., “HotDoc a flexible
framework for spatial composition,” in Proceedings of the 1997
IEEE Symposium on Visual Languages, IEEE CS Press, 1997,
pp. 92-99.

[24] Consens, M., Medelzon, A., and Ryman, A., “Visualising and
querying software structures,” in Proceedings of the 14th
International Conference on Software Engineering, IEEE CS
Press, Melbourne, Australia, May 1992.

[25] Ebert, J., Suttenbach, R., and Uhe, I., “Meta-CASE in practice: A
Case for KOGGE,” in Proceedings of the 9th International
Conference on Advanced Information Systems Engineering,
LNCS 1250, Springer-Verlag, Barcelona, Spain, 1997, pp. 203-
216.

[26] Gamma, E., Helm, R., Johnston, R., and Vlissides, J., Design
Patterns. Addison-Wesley, 1994.

[27] Graham, T.C.N., Morton, C.A., and Urnes, T., “ClockWorks:
Visual Programming of Component-Based Software
Architecture,” Journal of Visual Languages and Computing,
175-19, July 1996.

[28] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Supporting
flexible consistency management via discrete change description
propagation,” Software - Practice & Experience, vol. 26, no. 9,
1053-1083, September 1996.

[29] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A Java-based
toolkit for the construction of multi-view editing systems,” in
Proceedings of the Second Component Users Conference,
Munich, Germany, July 14-18 1997.

[30] Grundy, J.C. and Hosking, J.G., “Serendipity: integrated
environment support for process modelling, enactment and work
coordination,” Automated Software Engineering, vol. 5, no. 1, .

[31] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Static and
Dynamic Visualisation of Software Architectures for
Component-based Systems,” in Proceedings of SEKE'98, IEEE
CS Press, San Francisco, June 18-20 1998.

[32] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Support for
end user specification of workflows, work coordination and tool
integration,” Journal of End User Computing, vol. 10, no. 2, .

[33] Hill, R.D., “ The Abstraction-Link-View Paradigm: Using
Constraints To Connect User Interfaces to Applications,” in
Proceedings of CHI ‘92: Human Factors in Computing, ACM
Press, 1992, pp. 335-342.

