
In Proceedings of Vl’96, Boulder, Collarado, USA, IEEE CS Press.

 © 1996 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

 component of this work in other works must be obtained from the IEEE.

Visual Language Support for Planning and Coordination in Cooperative
Work Systems

John C. Grundy† and John G. Hosking††

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
email: jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
email: john@cs.auckland.ac.nz

Abstract

This paper describes three new visual languages for
use in the coordination of collaborative work in large
CSCW environments. EVPL describes work plans and is
used to define the context of work, VQL is a query
language, and VEPL is an event processing language.

1. Introduction

Large CSCW systems, such as Software Engineering
Environments (SEEs) and cooperative work via the
Internet, require abstract, visual languages to support
collaborative planning of work processes and activities
[3,5]. The inadequacies of most workflow and process
modelling approaches motivated Swenson to develop VPL
(Visual Planning Language) [5] for collaborative work
planning. VPL defines plans and subplans for work tasks,
and useful plans can be abstracted into reusable policies.

 In our current work, we have extended VPL and the
SEE environment of [3] to allow the description of work

artefacts, tools and developers. Extended Visual Planning
Language (EVPL) elements include: process stages,
denoted by elipses with a role and stage description; split
stages, duplicated for each person involved; start and stop
stages; and named enactment event flows between stages.
Rectangles with “text” describe work artefacts; “faces”
represent individuals and groups (roles); and a tool icon
represents artefact manipulation tools. Figure 1 shows
three views of a software process model: “m1:model -
process’ is the basic model; “m1.1:design changes-
subprocess an exploded view of stage m1.1; and
“m1:model1 - roles” shows additional artefact, tool and
role usage by stages. Users enact models, resulting in
highlighting of enacted stages. The stage with the bold
border is the “current enacted stage”, which specifies the
part of the process the user is currently working on, thus
giving a “work context” for tools. Work coordination is
facilitated by capturing the context in which changes are
made to work artefacts (from active stages), and presenting
this to collaborating users.

Figure 1. EVPL views for a simple software process model.
2. Visual Event Processing Language

To allow developers to specify automatic processing
of EVPL events and how they are informed of
collaborators’ work, we have developed a Visual Event
Processing Language (VEPL). This provides filters
(boxes) and actions (shaddowed ovals) which specify what
should happen when events, such as stage completion or
artefact modification, relating to EVPL tools, artefacts,
plan stages, etc occur. An example is shown in Figure 2.
This specifies that if the “m1.3:check changes” stage is
made the user’s current enacted stage or testing completes,
the people filling the coders role for m1.2 will be notified
(by sending a message, iconic shading or writing a
message on their screen). Filters and actions can also
process artefact events, process multiple events and
process events hierarchically for all substages of a stage.

Figure 2. Processing enactment events with VEPL.

3. Visual Query Language

While EVPL is useful for defining work processes and
coordinating work, and VEPL for context awareness and
arbitrary event handling, extra facilities are also required. It
is useful to be able to query SEE repositories to enable
developers to locate required information. Common CASE
tools and SEEs lack sufficiently flexible, understandable,
and accessible query languages [4]. Liu proposed a two-
view visual query language for MetaEdit [4], but this uses
a limited and cumbersome notation to specify query
constraints. We have developed VQL which provides a
more concise, one-view visual query language. An
example VQL query is shown in Figure 3. Shaded boxes
are entities selected in the query output, round boxes are
relationships, list box annotations are projected attributes,
and optional constraint expressions are beneath entities and
relationships. Queries may also include EVPL elements.
We are currently extending VEPL to make use of VQL
results for complex rule specification.

class

feature

type = "figure" and
kind <> method

class_name <>
"window"

features

feature_name
type
kind

class_name

generalisation

parent

child

class
not name = "figure"

Figure 3. A VQL query example.

4. Architecture and Implementation

We have implemented a tool which supports EVPL
and VEPL using MViews [1]. This has been integrated
with SPE [2] to aid collaborative software development.
MViews environments generate change description objects
which describe events occuring on work artefacts and in
tools. We intercept these in a non-intrusive fashion and
route them to the “current stage” process artefact which
attaches work context information. VQL queries will use a
graphical representation of MViews data and thus be
applied directly to SEE data to obtain query results. VEPL
receives MViews change descriptions (events) from
artefacts and stages, which are sent to VEPL filters, with
actions invoked by events sent from filters.

References

[1] Grundy, J.C. and Hosking, J.G., “A framework for
building visusal programming environments,” in
Proceedings of the 1993 IEEE Symposium on Visual
Languages, pp. 220-224.

[2] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Connecting the pieces, Chapter 11 in
V i s u a l O b j e c t - O r i e n t e d P r o g r a m m i n g .
Manning/Prentice-Hall, 1995.

[3] Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., “Coordinating, capturing and
presenting work contexts in CSCW systems,” in
Proceedings of OZCHI'95, Wollongong, Australia, Nov
28-30 1995, pp. 146-151.

[4] Liu, H., “A Visual Interface for Querying a CASE
Repository,” in Proceedings of the 1995 IEEE
Symposium on Visual Languages, pp. 21-28.

[5] Swenson, K.D., “A Visual Language to Describe
Collaborative Work,” in Proceedings of the 1993 IEEE
Symposium on Visual Languages, pp. 298-303.

