
Procs of 1995 IEEE Symposium on Visual Languages, Germany, 1995, IEEE CS Press, pp. 53-60.

 © 1995 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
 component of this work in other works must be obtained from the IEEE.

ViTABaL: A Visual Language Supporting Design by Tool Abstraction

John C. Grundy† and John G. Hosking††

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
john@cs.auckland.ac.nz

Abstract
We describe a visual language and environment for

designing and implementing systems using the tool
abstraction paradigm. This paradigm permits systems to
be constructed from toolie and abstract data structure
components, using an event response mechanism to
handle inter-component interaction. This approach leads
to systems more easily adapted to functional
specification changes than with conventional design.

1. Introduction
In a recent paper, Garlan et al [4] introduce the tool-

abstraction (TA) paradigm for constructing computer
systems that support functional evolution. In this
approach groups of abstract data structures (ADSs) are
shared by a collection of co-operating toolies. Each
toolie supplies part of the overall system function.
Interaction is via event propagation, with toolies being
notified appropriately when shared data is modified.
Figure 1 shows an example system designed using TA.

Systems supporting TA implementation include
spreadsheets, production systems, active data and
structure-oriented environments [4]. However, no
existing tools support the design of software using TA.
In this paper we describe ViTABaL (Visual Tool-
A bstraction B a sed L anguage), a hybrid visual
programming environment for both designing and
implementing TA-based systems. The paper commences
with a brief introduction to TA. In Section 3, we
describe the ViTABaL visual language and its
environment. Section 4 describes support for textual
elaboration and implementation of the visual designs.
Implementation is briefly described in Section 5, and
run-time visualization in Section 6, before discussion
and conclusions are presented.

2. TA vs data-based abstraction
To illustrate TA, we introduce the KWIC (Key Word

In Context) index system example used in [4] and [16],
to illustrate the benefits of data abstraction over
functional decomposition. To quote from [16]:

"The KWIC index system accepts an ordered set of
lines, each line is an ordered set of words, and each word

is an ordered set of characters. Any line may be circularly
shifted by repeatedly removing the first word and
appending it at the end of the line. The KWIC index
system outputs a listing of all circular shifts of all lines
in alphabetical order"

 Parnas [16] uses data abstraction to specify a design
for this system, with the following modules:
• Line Storage, implementing a sequence of lines,

with routines to access/delete chars, words, and lines.
• Input, to read and store the original lines.
• Circular Shifter, to access characters, words, and

lines of circular shifts of the stored lines.
• Alphabetizer, to acess shifted lines in lexical order.
• Ouput, to print the circular lists in lexical order.

Input

Shifter Alphabetizer

Output

Lines Buffer Shifted Lines
Buffer

Shared Pool of ADSs

Toolies

Figure 1. KWIC system modelled by TA (after [4]).

The program invokes Input to read and store the lines
using Line Storage. Circular Shifter routines are then
used which retrieve lines from Line Storage. Functions
from Alphabetizer sort the shifted data, accessing the data
via Circular Shifter. Output accesses the sorted list via
Alphabetizer. Each module hides data representation and
algorithm choices from its users. Parnas' design is quite
robust against some, mainly data, specification changes,
such as packed vs. unpacked characters, and monolithic
vs. incremental alphabetization. However, as is argued in
[4], Parnas' design is not robust against combinations of
functional specification changes, such as:
• Adding the ability to omit shifted or original lines

that start with one of a number of "noise" words.

• Including only shifted or original lines starting with
one of a specified list of words.
Each such change is fairly straightforward to add, but

combinations of such changes interact awkwardly
requiring major design changes as "logically independent
requirements are difficult to implement without
intertwining logically independent implementations" [4].

Figure 1 shows the TA design of [4] for the KWIC
system. The input and shifted/alphabetized data are kept
as shared ADSs. When a toolie modifies the common
data through operations on the ADS, other dependent
toolies are notified and invoked indirectly. Note that the
implementations of the shared structures are still hidden.
Their functionality may, however, be modified by the
toolies as explained below. Toolies used in KWIC are:
• Input, reads lines, inserting each in the line buffer.
• Shifter, which is invoked by termination of the

insert operation of line buffer, creates the line shifts.
• Alphabetizer, is triggered by completion of shifter

activities. It sorts the lines and inserts them into the
shifted line buffer.

• Output, prints out the shifted lines.
Modification of the TA design is straighforward. An

Omit toolie can be triggered by inserts on the line buffer,
causing the insert to abort if the line starts with a word
from an omit list. Other code need not change. The same
approach can be taken for an Include toolie. Interaction
between the two modifications is no longer
problematical, as both are triggered by the insert
operation (as long as their interaction is managed
correctly by the toolie scheme).

TA is quite different to object-oriented (OO) design,
which is inherently data abstraction (encapsulating
functionality with data). Some OO models support
rudimentary TA mechanisms via active data, such as
Smalltalk’s MVC [13], but these are not sufficient for
implementing general purpose TA systems.

Systems which currently utilise TA are application-
specific. These include active data in OO systems (shared
data is objects, toolies are methods) [6, 13], spreadsheets
(shared data is cells, toolies are formulae) [4], structure-
oriented editors (data is abstract syntax trees, toolies are
attribute equations) [17], and rule-based systems (data is
shared data pool, toolies are rules) [2].

We now describe an environment for general purpose
TA-based design, and also elaborate on the KWIC design,
TA notation and how toolies and ADSs interact.

3. Event propagation views
ViTABaL event propagation views describe the

interconnections between toolies and ADSs. These
interconnections can be annotated with icons indicating
the kinds of event propagation(s) between the connected
toolies. For example, Figure 2 shows an event
propagation view describing the KWIC system. In this
example we have added a “kwic” toolie to indicate
starting and finishing of the KWIC system, and added
two additional ADSs, an input_file and an output_file.
This diagram is a screen dump from the environment we
have built to support programming with ViTABaL.

Figure 3 shows the notation used to describe toolies,
ADSs and event connections between toolies. This
extends the notation in [4] to support specification of
event types. ViTABaL makes no semantic distinction
between toolies and ADSs – they are implemented and
behave in the same way. The distinction is useful in
terms of their usage. Toolies typically encapsulate
behaviour in that they respond to events to carry out
some system function. ADSs typically encapsulate data
abstraction and respond to events to store, retrieve or
modify data. We use the term toolie to mean toolie or
ADS, except where a distinction is required.

Figure 2. The KWIC system expressed in a ViTABaL Event Propagation view.

sender

listener

receiver

toolie ADT

event(args)

sender receiver
event(args)

event(args)

listener
event(args)

broadcast
(1-way send)

request
(send event, receive data)

receiver

receiver

listen_after
(take action after event
 received by receiver)

listen_before
(take action before event

 received by receiver)

Figure 3. ViTABaL event propagations.

Both event names and data values are propagated
along event connections between toolies, unlike most
visual languages which use dataflow, such as Prograph
[3] and Fabrik [12], or control flow, such as PICT [5].
The event names and argument data types in a view can
be hidden if desired, just showing the kind of propagation
along a toolie connection.

There are four types of events that can be propagated
along event connections:

• broadcast (event(args)). The named event and optional
argument data values are sent from the sender
toolie to the receiver toolie. As the sender needs
no information from the receiver, if the sender and
receiver toolies are executing concurrently, the
sender can potentially continue executing before
the receiver responds to the event.

• request (event(args)). The named event and argument
data value(s) are sent from the sender toolie to the
receiver toolie. The sender must wait for the
receiver to respond and return any requested values.
Supplied and returned arguments are indicated by a
‘-’ meaning supplied by sender and a ‘+’ meaning
returned by receiver (e.g. read(+line) and insert(-
line) in Figure 2).

• listen_before (event(args)). The listener is sent the
named event and argument data values before the
receiver actually responds to the event. The
listener can even modify the event sent to the
receiver, allowing the event response behaviour of
the receiver to be modified without actually
modifying the receiver code. This is a powerful
technique, not supported by other TA or visual
languages, allowing toolies to “listen” to events
sent to other toolies and possibly modify them.
Other language support for such notions, such as
CLOS-style wrappers, are limited to simply
listening to but not modifying the event.

• listen_after (event(args)). The listener is sent the named
event and argument data values after the receiver
has responded to the event. In this case the listener
will not modify the behaviour of the receiver’s
response to the event, but will take some action
based on what event and data values the receiver
has just responded to. This is similar to MVC-

style dependency mechanisms, but has the added
advantage of the complete named event and data
values being sent to the listener.

Event propagation diagrams show instances of toolie
types connected to describe a particular system’s
functionality. The toolie types and their event responses
can be reused in different situations. For example, the
input or shifter toolies from the KWIC system may be
reused in quite different systems to input data into a line
buffer ADS and to shift these lines. ADSs will often be
reused in many different systems. For example, the
input_file and output_file ADSs from Fig 2 are instances
of the same character_file Abstract Data Type (ADT).

Reuse of the toolie type in a different situation may
mean an instance of this type is connected to toolies of a
variety of different types. For example, instances of the
character_file ADT may be connected to any toolie which
sends it read/write events. The input toolie is more
restricted in its usage, supporting a do_input response
and requiring two other toolies responding to read(+line)
and insert(-line) events. The KWIC design in Figure 2
could be modified to support quite different line input or
storage mechanisms by using instances of other ADTs.
ViTABaL checks the send/receive events of each toolie
before generating code to ensure each toolie is sent valid
events and argument data values.

Figure 4. Multiple views of complex systems.

ViTABaL supports multiple views of a system,
allowing designers to construct complex systems in
parts. Views can share information and can be used to
provide both high-level and detailed views of a system.
For example, Figure 4 shows two additional views of the
KWIC system, one showing the toolies and ADSs
associated with line input and shifting, the other
showing toolies associated with line sorting and output.
In these views the event propagation icons have been
hidden, thus showing only the basic interconnections of
the KWIC system toolies. The event connection names
can also be hidden, if desired. All event propagation
views are kept consistent by the environment. For
example, renaming a toolie instance, event connection or

event propagation in one view is reflected in all other
views which share this information.

Figure 5. Hierarchical toolie specification.

Hierarchical views are also supported for defining the
behaviour of complex toolies, as shown in Figure 5. For
example, the KWIC shifter toolie could be composed of
toolies to split lines into words and shift the words and
an ADS to store the words. The listen_after(insert(-line))
event response of the shifter can thus be specified in
terms of another, more detailed event propagation view.
The implementation of the words storage for shifter can
then be changed in this view without affecting the shifter
interface in other views.

ViTABaL allows designs to be easily modified to
express specification changes which are not easily or
efficiently expressed in other languages. For example,
consider the following combination of design changes: i)
some lines read in should not be stored, for example
blank lines; ii) lines input should be capitalised; iii) The
sorter should work incrementally rather than in batch
mode; and iv) the input and shifter toolies should run
concurrently, possibly on different machines. Figure 6
shows the event propagation view modifications made to
express these changes to the KWIC system.

To implement (i) and (ii), omit and upper_case
toolies are added. The omit toolie does a
listen_before(insert(-line)) on the line_buffer. If input
tries to insert any invalid lines, omit prevents line_buffer
responding to the insert. The upper_case, toolie also does
a listen_before(insert(-line)) on the line_buffer.
Serialisation annotations on the event connection allow
these toolies to be synchronised appropriately, ensuring
the omit toolie does the first listen.

For iii) incremental sorting, the sorter does a
listen_before(insert(-line)) on the shifted_line_buffer. It
translates this into an insert_in_order(-line) operation. If
that event isn’t supported by the line buffer ADS, the
sorter could step through each line in shifted_line_buffer
by sending it a request get_line(-position,+line) event,
until it finds the right place to insert the line.

Figure 6. Changes to the KWIC system expressing incremental, concurrent and modified toolie operation.

To implement iv) the input and shifter toolies have
been specified to run concurrently, by adding a ‘†’
annotation to their icons. They now require shared,
concurrent access to the line buffer and hence ViTABaL
generates code which synchronises the events they send
to line_buffer. The line_buffer ADS and its omit and
upper_case toolies can be run on a third machine, or
could be run on one of the input or shifter machines.

As noted in [4], systems supporting data-based
abstraction cannot be easily changed in this way to

support quite different operation or to modify responses
to events. Existing TA systems and existing visual
languages similarly do not support facilities to allow
designers to modify the behaviour of a system without
either requiring system functions to be rewritten or
requiring inefficient solutions to be used.

4. Event response views
Event propagation views specify toolie instance

interconnections and event propagation information

between connected toolies. The response that toolies
make to events can be specified in two ways.
Hierarchical event propagation views can be used to
decompose complex responses into smaller toolies and
ADSs. Simpler event responses are currently specified in
textual event response views (although a more visual
Prograph-like approach could readily be adapted for this).
Figure 7 shows the event response views for
input::do_input and omit::listen_before(insert(-line)).

The event response name (e.g. input::do_input)
specifies the toolie type name, the event name and
variables to hold argument data values. The interface
specifies “event ports” which, when instantiated, connect
instances of this toolie type to other toolies; events are
sent to these connected toolies via the port. Port names
do not refer to specific instances nor even to specific
toolie types. The name is generic, and ViTABaL
determines the actual connected toolie instance/type from
the event propagation views. For example, the
line_buffer@insert(-line) interface simply indicates that
the input::do_input event response can send an insert(-
line) event to some toolie using its line_buffer port.
This port name must be bound to a specific connection
in the event propagation views. This binding is specified
in a dialog when toolie icons are connected, but is not
normally shown in event propagation views.

This approach means that, for example, the input
toolie could be connected to a binary tree ADS to store
lines, and as long as the binary tree ADT supports an
insert(-line) event response, the system will function
correctly. This is not supported by most TA languages.

 The implementation section is Prolog code
supplemented with event broadcast/request calls. The
input::do_input implementation reads lines from the
input file and inserts them into the line buffer. The
omit::listen_before(line_buffer@insert(Line)) response
checks to see if the line is blank (‘‘) or invalid
(end_of_file), and if so does not insert the line into the
line buffer. ViTABaL translates the event
broadcast/request calls into event propagations to the
correct toolie instances.

ViTABal maintains consistency between the textual
event response views and the visual event propagation
views. The header section of the input::do_input event
response shows four change descriptions indicating
changes made to another view which affect the event
response specification. The first two are simple for the
environment to automatically implement: renaming the
input_file port and changing line_buffer@insert(-line)
broadcasts to line_buffer@append(-line).

Figure 7. Textual event response views for KWIC toolies.

The third change, adding an explicit connection to
the shifter toolie, means a new port must be added,
although it is not known which event(s) of shifter may
be used. The fourth change, adding a broadcast to the
shifter toolie, can not be automatically implemented by
the environment, as it does not know where to put this
broadcast in the implementation text nor which variable
should be passed as an argument (‘-line’ indicates the
argument type only). This change must be manually
implemented by the programmer, but the ViTABaL at
least indicates this manual change is required.

5. Implementation
ViTABaL is implemented by specialising the

MViews framework [7, 8]. MViews provides a collection
of object-oriented classes written in Snart, an object-
oriented Prolog [15]. These classes provide abstractions
for specifying data repositories to represent language
structure and semantics, multiple textual and graphical
views of language structures, and editors for
manipulating view information. MViews has been used
to build a variety of environments, including SPE and
Cerno [10], EPE [1], OOEER and MViewsER [11],
MViewsDP [10], and HyperPascal [14].

All views are kept consistent using the MViews
view consistency mechanisms. These allow some view
updates to be automatically applied to graphical and
textual views by the environment. Other changes which
can not be automatically carried out are presented to
programmers as change descriptions. Users manually
implement these changes to restore view consistency [8].

For efficiency, ViTABaL adopts a compilation
approach and translates ViTABaL programs into Snart
programs. These can be efficiently executed, with
generated code being almost as efficient as hand-generated
Snart programs. The process of translating a ViTABaL
program into a Snart program is illustrated in Figure 8.

Toolie classes, their attributes and methods, and code
to create instances of toolie classes and link instances
with variables used by event response ports are generated.
Event responses are translated into Snart code with
appropriate kinds of method calls between toolie objects.
Broadcast/requests with no listeners on the receivers and
no concurrency between sender/receiver are translated into
Snart method calls. Listened events must be sent to
listen_before/after methods of listeners, which may then
call the real receiver method for the event response.

Concurrency requires broadcasts and requests to be
sent along communication channels. Broadcasts can be
non-blocking if the receiver and toolies it is connected to
don’t send requests to the sender. We have run the KWIC
system on two Macintosh computers, splitting up the
input and shifter toolies. After removing concurrency
annotations, ViTABaL regenerates code which runs
efficiently on one machine.

ViTABaL generates code to “register” each toolie and
toolie connection, allowing programmers to choose
toolie objects and events they want visualised or traced.
At present ViTABaL regenerates all toolie classes and
methods whenever a view is modified. This could be
changed to incremental regeneration for efficiency.

ViTABaL performs consistency checks before
generating code, to ensure a specification is correct. This
includes checking event propagations are supported by
appropriate event responses in receiving toolies, ensuring
the correct number and type of event arguments are sent,
and ensuring event propagations enacted by event
responses have suitable receiver instantiations specified
in event propagation views.

1. Calculate all
toolies to generate

classes for

3. Calculate all
toolie connections
(= class attributes)

2. Calculate all
event responses used

(= class methods)

toolie toolie

connection
+ events

toolie_type

event response

Base ViTABaL Program Representation

... ...

...

class(input,
 inherits(...),
 features(
 input_file:file,
 line_buffer:lines,
 shifter:shifter,
 do_input,
 ...
)).

4. Generate code
to create instances
of toolie classes and

to link up instances via
port name attributes

kwic::init :-
 input@create(Toolie1),
 shifter@create(Toolie2),
 line_buffer@create(Toolie3),
 ...
 Toolie1@shifter:=Toolie2,
 Toolie1@line_buffer:=Toolie3,
 Toolie2@line_buffer:=Toolie3,
 ...

5. Generate event response
code for each event response needed.

Must translate broadcasts/requests into
a suitable form e.g. if listen_before
on call, if concurrent execution, etc.

input::do_input :-
 self@line_buffer(Var1),
 self@input_file(Var2),
 self@shifter(Var3),
 while(Var2@read(Line),
 Var1@listen_before(line_buffer@insert(Line)),
 Var3@input_finished.

Figure 8. Compilation of ViTABaL programs to Snart class implementations.

6. Program visualisation
Executing compiled ViTABaL systems can be

visualised in a variety of ways. The low-level state of
toolies and ADSs can be displayed in windows which
show attribute values of objects associated with toolie
instances. Event response code can be traced and stepped
through to check the implementation of event responses.

Event propagation views can be animated. As a
system executes, the flow of events along toolie
connections is shown and the “active” toolies are
highlighted. Spy points placed on toolies, toolie events
and event connections allow programmers to examine
toolie event flow and data values. Profilers attached to
toolie events show a list of the event names and data
values passing through connections and onto event

responses. Toolie state, event propagation animation and
profiling is illustrated in Figure 9, where shifter is about
to respond to listen_after(line_buffer@insert(-line)).

Figure 9. Visual debugging of ViTaBAL systems.

We are adapting the timing diagram views provided
by the Cerno-II program visualisation system [9] to
visualise event propagations through toolies. We are also
developing techniques to visualisie concurrently
executing toolies, including producing timing diagrams
with multiple propagation threads. Another area of work
is editable timing diagram views, used to specify toolie
concurrent execution and serialisation. These will be kept
consistent with graphical and textual view modifications
and will be used to ensure correct toolie event flows.

7. Discussion
ViTABaL provides many advantages over data

abstraction-based textual and visual languages for
designing and implementing large systems with evolving
functionality. It is much easier to reuse toolies (units of
functionality) as they can be linked to a variety of
different toolies in different situations. Their behaviour
can even be modified without altering the original
response code, by using listen before/after connections.
This has the added advantage that as systems evolve no
extra code need be built into toolies or ADSs that doesn’t
relate directly to their purpose. This is in contrast to data
abstraction-based languages, which require such
additional code in order to retain efficient solutions.

As ViTABaL generates event broadcasting/request
calls as necessary, programmers don’t have to build
special structures to support listened before/after and
concurrent event propagations. The kind of code
generated by ViTABaL is difficult to write directly in an
error free fashion using Snart or any other data-based
abstraction language. This is because programmers must
take into account possible concurrency or listening by
other toolies. To allow for the range of possibilities
these data abstraction-based language solutions either
become inefficient or inflexible compared to ViTABaL.

As ViTABaL allows complex events and data values
to flow down toolie interconnections, ViTABaL event
propagation views tend to be higher-level and less
complex than dataflow visual languages, such as
Prograph [3] and Fabrik [12]. A single event flow in or
out of a ViTABaL toolie would be represented as several
data flow pins in these languages. For example, consider
the incremental KWIC sorter toolie which uses multi-
argument insert and search events on the shifted list
buffer ADT. To model this in Prograph would require a
view specifying the source of the individual data values,
each flowing into a process modelling the ADT. This
results in more complex views than ViTABaL’s.

ViTABaL event response ports allow a toolie to be
reused more readily than Fabrik’s typed data flows or
Prograph’s inter-object method calls. A toolie need only
receive and respond to a valid event name and argument
data types, no matter what toolie this was sent from.
ViTABaL event propagation views specifying concurrent
toolie operation are less complex than those of other
visual languages, such as Meander [18], as ViTABaL
generates the concurrent toolie event propagation code.

ViTABaL offers many advantages over other TA
approaches, particularly its visual event propagation and
program visualisation views. The visual nature of
ViTABaL event specifications allows programmers to
construct TA-based systems by interacting directly with
toolies and event flows, rather than working with textual
equations or grammars. Other languages supporting TA
construct these connections via dependency analysis
(attribute grammars, [17]), patterns and rule resolution
(production systems, [2]), or active data rules (Smalltalk
MVC, [13]). These are much more difficult to visualise,
both statically and dynamically, than are ViTABaL event
propagation and execution views. ViTABaL also
supports easier definition of complex systems via
multiple views (both hierarchical and multiple
perspectives), together with visual debugging.

ViTABaL allows listen_before connections to be
simply serialised. It also allows concurrent toolie
execution to be easily specified. These are possible due
to the visual, high-level nature of event propagation
views. ViTABaL generates non-TA language code, in the
form of Snart programs, which can execute more
efficiently then other TA implementation approaches.
This is because where toolie events are not concurrent or
listened to, ViTABaL does not have to generate
synchronisation or listener code. In contrast, systems
using attribute grammars, active data and rule-based
systems always include extra dependency management
code, even if it is not required by parts of the system.

Reuse and modification of ViTABaL specifications
are both more readibly performed than with other TA
approaches. Toolie instances can be reused in multiple
systems with their port bindings re-specified to different
toolie types. Their behaviour can also be modified via
listen before/after events. Changing between batch and
incremental processing is straightforward, necessitating a

change in only the event response of a single toolie, and
not the toolies and ADSs that it is connected to.

Acknowledgements
John Hosking acknowledges the financial assistance

of the Auckland University Research Committee in
pursuing this research. Both authors acknowledge the
helpful comments of their colleagues Rick Mugridge and
Jim Kiper in the preparation of this paper.

References
[1] Amor, R., Augenbroe, G., Hosking, J.G., Rombouts,

W., and Grundy, J.C., “Directions in modelling
environments,” to appear in Automation in
Construction, 1995.

[2] Balzer, R., “A 15 Year Perspective on Automatic
Programming,” IEEE Transactions on Software
Engineering, vol. 11, no. 11, 1257-1268, November
1985.

[3] Cox, P.T., Giles, F.R., and Pietrzykowski, T.,
“Prograph: a step towards liberating programming
from textual conditioning,” in Proceedings of the
1989 IEEE Workshop on Visual Languages, IEEE CS
Press, 1989, pp. 150-156.

[4] Garlan, D., Kaiser, G.E., and Notkin, D., “ Using Tool
Abstraction to Compose Systems,” COMPUTER, vol.
25, no. 6, 30-38, June 1992.

[5] Glinert, E.P., and Tanimoto, S.L., “PICT: An
interactive, graphical programming environment,”
COMPUTER, vol. 17, no. 11, 7-25, November 1985.

[6] Goldberg, A. and Robson, D., Smalltalk-80: The
Language and its Environment. Reading, MA:
Addison-Wesley, 1984.

[7] Grundy, J.C. and Hosking, J.G., “A framework for
building visual programming environments,” in
Proceedings of the 1993 IEEE Symposium on Visual
Languages, IEEE CS Press, 1993, pp. 220-224.

[8] Grundy, J.C. and Hosking, J.G., “Constructing
Integrated Software Development Environments with
Dependency Graphs,” Working Paper, Department of
Computer Science, University of Waikato, 1994.

[9] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Visual Object-Oriented Programming.
Burnett, M, Goldberg, A., Lewis, T. Eds,
Manning/Prentice-Hall, 1995, chap. 11.

[10] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via
discrete change description propagation,” Working
Paper, Department of Computer Science, University of
Waikato, 1995.

[11] Grundy, J.C. and Venable, J.R., “Providing Integrated
Support for Multiple Development Notations,” in
Proceedings of CAiSE'95, LNCS, Springer-Verlag,
Finland, June 1995.

[12] Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., and
Doyle, K., “Fabrik: A Visual Programming
Environment,” in Proceedings of OOPSLA ‘88, ACM
Press, 1988, pp. 176-189.

[13] Krasner, G.E. and Pope, S.T., “A Cookbook for Using
the Model-View-Controller User Interface Paradigm in
Smalltalk-80,” Journal of Object-Oriented
Programming, vol. 1, no. 3, 8-22, 1988.

[14] Lyons, P., Simmons, C., and Apperley, M.,
“HyperPascal: Using visual programming to model the
idea space,” in Proceedings of the 13th New Zealand
Computer Society Conference, Auckland, August 1993,
pp. 492-508.

[15] Mugridge, W.B., Grundy, J.C., Hosking, J.G., and
Amor, R., Snart94 Reference/User Manual ,
Department�of Computer Science, University of
Auckland, 1995.

[16] Parnas, D.L., “On the Criteria To Be Used in
Decompos ing Sys t ems i n to Modu le s , ”
Communications of the ACM, vol. 15, no. 12, 1053-
1058, December 1972.

[17] Reps, T. and Teitelbaum, T., “Language Processing in
Program Editors,” COMPUTER, vol. 20, no. 11, 29-
40, November 1987.

[18] Wirtz, G., “A Visual Approach for Developing,
Understanding and Analyzing Parallel Programs,” in
Proceedings of the 1993 IEEE Symposium on Visual
Languages, IEEE CS Press, 1993, pp. 261-266.

