
Copyright 2000 IEEE. Published in the Proceedings of 2000 IEEE Symposium on Visual Languages, Halifax, Nova Scotia.  Personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional  purposes or for creating new collective works for 

resale or  redistribution to servers or lists, or to reuse any copyrighted  component of this work in other works, must be obtained from the IEEE. Contact: 
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone:  + Intl. 732-

562-3966. 
High-level Static and Dynamic Visualisation of Software Architectures 

 
John Grundy and John Hosking 

 
Department of Computer Science, University of Auckland 

Private Bag 92019, Auckland, New Zealand 
{john-g, john}@cs.auckland.ac.nz 

 
Abstract 

Developing software architectures for complex 
software applications is challenging, and requires good 
static and dynamic visualisation support. We describe the 
visual software architecture modelling visual language we 
have developed and its support in the SoftArch 
environment. Static software architecture views are 
developed using this language, and designs and 
implementations developed from these specifications. 
Static views are copied, animated and annotated to 
visualise running system architecture characteristics. This 
approach provides better static modelling and dynamic 
visualisation of software architectures, at varying levels 
of abstraction, than do other current techniques.  

1. Introduction 
 
There has been increasing interest in the use of 

software architecture modelling techniques when 
developing large software systems [1, 15, 20]. Developers 
require visual modelling support to help them effectively 
design and reason about the software components of 
complex applications [13, 15]. They also require dynamic 
visualisations to allow them to understand running 
software systems [2, 21]. Ideally these static and dynamic 
visualisation approaches are consistent and 
complementary. 

A variety of approaches and tools have been 
developed to assist developers in visualising software 
architectures. The Unified Modelling Language (UML) 
[17] uses a combination of class, collaboration, 
component and deployment diagrams. Clockworks and 
JComposer use annotated component diagrams [5, 8]. 
PARSE-DAT uses process diagrams. Several systems, 
including SAAMTool  [13], Argo [19] and Visper [22], 
use various kinds of structural architecture component 
diagrams. All of these only offer static modelling 
diagrams. Most lack a wide enough range of abstractions 
or focus on only low-level architecture details. ViTABaL 
provides tool abstraction views of running "toolie" 
components [6]. JVisualise [6] and Cerno-II [12] provide 
low-level component and object visualisation together 
with some aggregated object performance visualisations. 

Various program visualisation tools have been developed 
[2, 14, 18, 21], which provide a mixture of views of 
running program information. Most of these systems 
focus on object or algorithm-level dynamic visualisation 
techniques, rather than architectural component 
visualisation. Most dynamic visualisations are 
inconsistent with static visualisation structures, making 
them hard to understand. 

We have been developing the SoftArch environment, 
which supports both static and dynamic visualisation of 
software architecture components at varying levels of 
abstraction. SoftArch provides a range of architecture 
modelling and visualisation representations and tools. A 
meta-model defines allowable architectural abstractions 
and multiple, visual modelling views capture various 
perspectives on architectural components and inter-
relationships. SoftArch uses the JComposer CASE tool 
[8] to generate classes and complete system 
implementation. The JVisualise monitoring and object 
visualisation tool [8] is used to detect run-time events, 
such as object creation and method calls, and forwards 
these to SoftArch. SoftArch static architectural views are 
copied, annotated and animated to provide developers 
with multiple, high-level execution architectural 
visualisations.  

2. Related Work 
 
Figure 1 (a) shows a screen dump from an on-line 

video library system we use as an example in the rest of 
this paper. This application provides customers with 
applets to find, reserve and review videos, and staff with 
applications to rent/return videos, maintain staff, customer 
and video information and generate reports. When 
designing the architecture of such a system, developers 
typically require support to: 
• represent processes, machines, data and other 

architectural components [5, 9] 
• represent inter-component relationships, such as data 

usage, message passing, event subscription/ 
notification etc. [1, 9] 

• represent additional architectural characteristics, such 
as data replication and caching, concurrency etc [5] 



 
 

 

DB Server

Application ServerHTTP Server

Customer Applet

Staff Video Maintence

Local software agent

(3)

(2)

1..1

0..*

1..1

VideoServerThread

run( )
processLogin( )
processFindVideos( )
processGetDetails( )

1..1

VideoQueryServer

main(
1..1

0..*

SocketComms

connect(
)
read( )
write( )

read/write

VideoQueryApplet

init( )
login( )
findVideos(
)

write/read

CustomerData
ID : int
name : String
...

findCustomer

1..1 VideoData
ID : int
title : String
category : String
...

findVideo (int)
findByTitleAndCategory (String, String) :
findVideo ()
updateVideo ()
setNumCopies ()

1..1

RDBMS

connect( )
select( )
insert( )
update( )
delete( )

(1)

 
Figure 1 (a) Example application; (b) some example architecture visualisations.

Commonly used modelling techniques like the UML 
[17] provide views of classes, components and machines. 
A UML class diagram for part of the video rental program 
is shown in Figure 1 (b), view (1). Such modelling 
techniques suit low-level architectural representation 
reasonably well, but do not provide a range of higher level 
architectural views [15, 9]. Deployment diagrams in UML 
offer a view of machine and process assignment and inter-
connection, but this is the only high-level specifically 
architectural view in UML, and is quite limited.  

Argo/UML [19] provides some additional 
architectural abstractions, such as communication "buses", 
but does not provide much else in the way of high-level 
architecture modelling support. Most component 
composition tools, like JComposer [8] and MET+[25], 
provide component views, with some higher level 
associations and properties like event exchange visualised. 
ClockWorks [5] also uses component diagrams, but with 
additional architecture "annotations", representing 
caching, concurrency and replication. Clockworks 
supports some code generation from these annotations to 
help automate realisation of such facilities from their 
visual specifications [24]. PARSE-DAT provides 
reasonably high level views of processes and inter-process 
communication [16]. Figure 1 (b), view (2) shows a 
PARSE-DAT representation of the video library processes 
(ovals are processing nodes, rectangles data management). 
Unfortunately PARSE-DAT doesn't support any OOD or 
code generation, and is limited to solely basic process 
views. Other architecture modelling approaches also tend 
to focus on basic process and/or program structure, such 
as SAMTool [13]. Most static visualisation approaches 

and tools do not support dynamic visualisation using the 
static representational techniques. 

Dynamic visualisation of systems is useful for 
developers to understand system correctness (i.e. to debug 
them), to understand higher-level system behavioural 
characteristics that can not be easily determined from 
static architecture design views and analyses. Tools like 
JVisualise [6] support object visualisation and object 
structure querying, but not higher level abstractions. 
Cerno-II [12] supports aggregate queries and 
visualisations over object graphs, generating call graphs 
and map visualisations, but these focus at only the object 
level, and are hard to scale and interpret for large, 
distributed applications. Various program visualisation 
systems have been developed, many offering high-level 
animations and visualisations of algorithms and object 
structures. These include VisualLinda [14], 
Rose/Architect [3], The Software Bookshelf [4], and 
PvaniM [23], and those using 3D call graphs [18] and 
object trees [11]. While these visualisations are useful, 
they typically bear no relation to static architecture 
modelling languages and views, and are thus difficult to 
formulate and interpret. ViTABaL [6] provides dynamic 
views of reasonably high-level system components 
("toolies") and their relationships. Figure 1 (b), view (3) 
shows a ViTABaL visualisation of the video library 
system, where ovals are toolies, rectangles are data 
management components, and inter-connections annotated 
with information about them. While ViTABaL provides 
some useful dynamic visualisation capabilities, developers 
must construct these views only from running 
components, with no static views, limiting its usefulness. 



���������������������������������
���������������������������������
���������������������������������

OOA specification

Successively refined
architectural models

Java Classes & Code

High-level
architectural model

Low-level
architectural model

JComposer
CASE Tool

SoftArch

JVisualise
Monitoring Tool

Running System Objects

Successively higher
level architecture

visualisations

High-level
architectural
visualisations

Low-level component
visualisations

Imported from CASE
tool e.g. R. Rose

Updates to static views
& dynamic views inter-
changed to keep each

consistent with the other

Limited forms of user
manipulation used to

change running system
configuration…

Running system component events
listened to & basic reconfiguration

of running comps by JVisualise
component object monitoring tool

Component OOD &
some code send to

JComposer CASE tool
by SoftArch;

Implementation
completed using

JComposer

Specification of
high-level

architecture;
refinement to

successively more
detailed

architectural static
models; eventual
specification of

partial OOD
model for system

 
Figure 2. Overview of using SoftArch for static and dynamic software architecture visualisation.

3. SoftArch 
SoftArch, as shown in Figure 2, provides support for 

static and dynamic visualisation of software architectures. 
Dynamic visualisations annotate and animate static visual 
forms. SoftArch provides a meta-model of available 
software architecture component types that can be 
modelled, which can be extended using a visual language. 
Software architecture modelling views use meta model 
types and a flexible set of visual elements to describe 
software architectures. Developers capture multiple, 
visual architectural perspectives at various levels of 
abstraction, by visually refining high-level architectural 
components to lower-level ones in several ways. A 
component-based CASE tool is used to support 
architecture implementation. When running a system, 
object events are sent to SoftArch. OOD-level architecture 
components are located, and information about running 
system is cached against them and their abstractions (i.e. 
higher-level components).  Static SoftArch visualisation 
views are copied and annotated and/or animated to convey 
this running system information to developers e.g. to 
highlight created/not created processes, indicate 
number/size/timing of messages between components etc. 

4. Static Software Architecture Views 
The main abstractions SoftArch uses to describe 

software architectures are architecture components (e.g. 
"servers"), associations (e.g. "LAN") and annotations (e.g. 
"cached data" or "SQL commands"). Each kind of 
architecture element has a  set of typed properties further 
characterising it. Figure 3 shows the basic notational 
elements in this architecture modelling visual language. 
We chose this visual language for architecture modelling 
to enable developers to capture a wide range of features, 
to be relatively simple yet expressive, to be relatively easy 
to extend as needed, and to be able to tailor the 

appearance of visual elements to their needs. Various 
display characteristics can also be changed, such as size, 
colour, shading etc. An extensible meta model holds all 
available architecture types, and can be programmed 
using a simple visual language, illustrated in Figure 4 (1). 
In this language, ovals represent architecture component 
types, horizontal bars inter-component association types, 
and labelled vertical arrows association and component 
annotation types. Dashed, arrowed lines between types 
indicate refinement e.g. a process can be refined into a 
client or server process. Solid arrowed lines indicate 
association relationships e.g. a data manager may have 
data usage relationships with any architecture element. 

Figure 4 (2) and (3) show use of the visual language 
we designed for modelling static software architecture 
structures and behaviour. This is derived from one we 
have used for many years when teaching architecture 
design in a software engineering course [7].  

 
Figure 3. Basic SoftArch Visual Language. 



  

(2)

(1)

(3)

(4)

 
Figure 4. Example SoftArch meta-model, template and static architecture visualisation view. 

Figure 4 (2) describes the main parts of the video 
library system using the SoftArch visual language. Ovals 
are components, vertical bars and arrowed lines 
associations, and the labelled square (replicated data) and 
vertical arrowed line (protocol) annotations. This view 
specifies that the system is made up of three main 
components: a set of shared servers, staff clients 
connected to the servers across a LAN and customer 
applets (embedded in browsers) connecting to the servers 
across the internet. The two annotations add further 
information about architecture components and 
associations in a visual fashion. In this example, these 
indicate that staff profiles are cached on the staff 
machines, and that the customer applets use a custom 
protocol to communicate with the servers. Each 
component, association and annotation has additional 
properties associated with it that specify e.g. network 
speed, CPU speed and memory, data size and transaction 
processing rate, quality of service characteristics of 
processes, machines and networks and so on. 

Reusable template views, such as that shown in 
Figure 4 (3), provide a means for developers to reuse best 
practice or common architectural structures. Templates 
use the same visual language as model views. This 
example is a model of a simple server-side “e-commerce” 
system organisation, made up of http, application and 
RDBMS servers and associated data. 

Each component has a property sheet, like the one 
for the customer applets to WAN association shown in 
Figure 4 (4). Various information about the component 
can be viewed and/or specified, such as its type and 
various property values, appearance, associations and 
annotations, and refinements to/from other components. 

Developers can specify multiple architecture views 
for a system being modelled in SoftArch. Often 
developers need to specify refinements of high-level 
architectural concepts into lower-level detailed 
information. This allows a system to be visualised from 
multiple perspectives, some showing basic architectural 
elements, others detailed views of parts of a system. 

Figure 5 (1) shows a view giving more detail about 
the servers in the video library system. This view was 
constructed by reusing the e-commerce template shown in 
Figure 4 (3). The use of the enclosing “servers” 
component indicates that the elements enclosed are 
refinements of the more abstract architectural component 
“servers”. Another way of describing refinement is shown 
in Figure 5 (2), where the “staff applications” component 
has been refined into several processes by creating a 
subview. All elements in this subview are refinements of 
the “staff applications” abstraction. Figure 5 (3) shows the 
use of explicit refinement links (dashed lines), in this 
example indicating OOD-level components (represented 
as UML class icons), used to implement the customer 
applet and application server architectural concepts. 



(3) (4)

(2)

(1)

 
Figure 5. Visual software architecture refinement and a JComposer OOD view. 

Once an architecture model is complete, the 
developer exports OOD-level components to our 
JComposer component-based CASE tool [8]. They 
complete implementation within JComposer, generating 
Java classes to implement the system. Figure 5 (4) shows 
a JComposer UML-style class diagram which has been 
generated by SoftArch from the OOD-level components 
specified in Figure 5 (3). Other implementation 
technologies and paradigms are also supported by 
SoftArch, as it makes no assumptions about the eventual 
target languages. We have modelled C/C++ implemented 
web servers and desktop applications, Perl scripts, Java, 
Visual Basic and Delphi clients and servers, and various 
data formats (relational databases and files) and network 
protocols (sockets, http, ftp, RMI and CORBA). 

Defining and refining architecture views in SoftArch 
is a straightforward process. Views are kept consistent 
when they share common information, and refinement 
links and subviews help developers manage the 
complexity of their architecture descriptions. Changes to 
OOA or OOD specifications and designs in JComposer 
can be imported back into SoftArch and architecture 
views modified to reflect changes. Similarly, architecture 

changes can be reflected in JComposer OOD designs 
updated by SoftArch. The above architecture views took 
less than one hour to specify in SoftArch. 

5. Dynamic Architecture Visualisation 
When a system is run, JComposer components are 

created and communicate locally and remotely as 
required. We have developed a dynamic visualisation tool 
for JComposer-based applications, JVisualise, that can 
inspect running component information and monitor inter-
component communication [8]. JVisualise sends events 
relating to OOD-level components to SoftArch, and 
SoftArch uses the refinement links associated with these 
OOD-level components to determine which higher level 
components the events relate to. It records object 
creation/deletion, method calling, event generation and so 
on against OOD-level components and their abstractions. 
Static architecture views are copied, annotated and 
animated to reflect information about the running system. 
Developers choose data to visualise, and visualisation 
techniques, to suit their needs. 



(1)

(2)

(3)

(4)

 
Figure 6. Dynamic visualisation of running system in SoftArch. 

For example, after starting up the video library 
servers and one video library staff application, Figure 6 
(1) shows a dynamic visualisation using the top-level 
architectural view in SoftArch. This visualisation 
represents the number of components created so far. The 
servers component is dark (five server-side objects 
created), staff applications lightly shaded (one staff 
application running) and customer applets very lightly 
coloured (no objects of types that are refined from this 
high-level component have been created). This kind of 
visualisation is useful for developers to determine what 
processes in an architecture have so far been created, and 
to determine relative densities of objects etc. Views can 
be animated to show density increasing as a system runs. 

Figure 6 (2) shows the server-side view of the video 
library system, annotated to illustrate relative method 
calling densities. The customer applets and staff 
applications make numerous calls to the application server 
and database server respectively. The http server is 
comparatively lightly used (only accessed to download 
customer applets for this system). 

Additional visualisation of data is supported, 
including details about object creation and method 
invocation, as shown in Figure 6 (3), which shows data 
for the application server objects at a snap shot in time. A 
bar graph of number of method calls to the 
VideoQueryServer component, an object making up the 

application server process, has been generated by 
exporting data to MS Excel™, shown in Figure 6 (4). 

Developers can request that inter-component 
communication information be cached for selected 
architectural elements, and can review these. Figure 7 (1) 
shows an example of such information presented in a 
dialogue. Each method invocation of the application 
server has been recorded, and the developer can examine 
this trace. Developers can also view detailed component 
information using our JVisualise tool. Figure 7 (2) shows 
such a view for the video rental application. JVisualise 
supports creation, deletion and connection of running 
component objects, as well as property modification and 
method invocation by developers. This is useful for low-
level testing and manipulation of an application. 

We have provided some basic running component 
manipulation in dynamic SoftArch architecture 
visualisations. One example is illustrated in Figure 7 (3), 
where the developer has, while a system is running, 
created a new architectural component (a data export 
agent), and connected this to another prior running 
component (in this example, the customer maintenance 
application). SoftArch uses the refinement links specified 
by the developer to determine the JViews components to 
create, inter-object references to establish and methods to 
call based on this information. At present only simple 
manipulations are supported. 



(2)

(3)

(1)

 
Figure 7. Example of dynamic software architecture manipulation, event tracing and JVisualise view. 

6. Design and Implementation 
We implemented SoftArch using the JComposer 

metaCASE tool, which generates classes specialised from 
the JViews framework for building multi-user, multiple 
view visual environments [10]. We defined meta-model 
and architecture model repository and view components in 
JComposer, to support an extensible set of architectural 
modelling abstractions. We defined both meta-model and 
modelling visual icons and editors using the BuildByWire 
tool [8], but designed these icons so they have a wide 
range of user-tailorable appearance characteristics. This 
allows users of SoftArch to readily adapt the visual 
notation to their own modelling needs and preferences, 
without having to use BuildByWire directly. 

We integrated SoftArch, the Serendipity-II process 
management system and the JComposer CASE tool to 
form an integrated environment. Serendipity-II provides 
software architecture design process guideance and user-
extensible analysis agents to assist in validating 
architecture designs. SoftArch provides meta-model and 
architecture model views and repositories, template 
support and pre-defined analysis agents. JComposer is 
used by SoftArch to support architecture design 
refinement and implementation. This integration was 
achieved using the capabilities of JViews software 
components to exchange events and data. Figure 8 
illustrates this basic integration. 

When a developed application is run, the JVisualise 
dynamic monitoring tool is automatically started. A plug-
in component directs component creation, destruction and 
modification events, and inter-component event 

exchanges, to a JViews component that implements the 
dynamic visualisation capabilities. This copies SoftArch 
static views and animates/annotates them as appropriate, 
by changing the appearance characteristics of the 
SoftArch view icons. 

 

 
Figure 8. Architecture of SoftArch. 

 



7. Summary 
We have described and illustrated a new approach to 

supporting software architecture design, refinement and 
dynamic visualisation and manipulation. The SoftArch 
environment supports an extensible visual language for 
modelling both high and low-level characteristics of 
software architectures, with support for multiple, 
overlapping views and refinements of high-level 
abstractions to lower-level detail. The behaviour of 
implemented systems can be visualised using copies of 
static visualisation views at varying levels of abstraction, 
to show detailed or high-level running system 
information. Limited manipulation of running systems is 
also supported. This approach has proved a very 
encouraging direction in supporting complex system 
software architecture modelling and visualisation. 

We are working on further extending the SoftArch 
meta-model and visual modelling capabilities to support 
richer architectural abstractions and modelling 
capabilities. We are also working on other dynamic 
visualisations, including map metaphors with varying 
sized icons, varying static view icon and connector size 
based on object, method, event, data size and timing 
information captured from running systems. We plan to 
explore 3D-based static modelling and corresponding 3D 
dynamic visualisations of architectures. 

References 
1. Bass, L., Clements,  P. and Kazman, R. Software 

Architecture in Practice, Addison-Wesley, 1998. 
2. Beaumont, M. and Jackson, D. Visualising Complex 

Control Flow. In 1998 IEEE Symposium on Visual 
Languages, Halifax, Canada, September 1998, IEEE. 

3. Egyed, A. and Kruchten, P., Rose/Architect: a tool to 
visualize architecture, In Proceedings of the 32nd Hawaii 
International Conference on System Sciences, January 
1999, IEEE CS Press. 

4. Finnigan, P, Holt, R., Kalas, I., Kerr, S., Kontogiannis, K., 
Mueller, H., Mylopoulos, J., Perelgut, S., Stanley, M., and 
Wong, K. The Software Bookshelf, IBM Systems Journal, 
Vol. 36, No. 4, pp. 564-593, November 1997. 

5. Graham, T.C.N., Morton, C.A. and Urnes, T. ClockWorks: 
Visual Programming of Component-Based Software 
Architectures. Journal of Visual Languages and 
Computing, Academic Press, pp. 175-196, July 1996. 

6. Grundy, J.C., Hosking, J.G. ViTABaL: A Visual Language 
Supporting Design by Tool Abstraction, In Proceedings of 
the 1995 IEEE Symposium on Visual Languages, 
Darmsdart, Germany, September 1995, IEEE, pp. 53-60. 

7. Grundy, J.C. Design principles for project-based courses, In 
Proceedings of the 2nd Australasian Conference on 
Computer Science Education, Melbourne, Australia, July 2-
4 1997, ACM Press. 

8. Grundy, John, Rick Mugridge and John Hosking, Visual 
Specification of Multi-View Visual Environments. In 1998 
IEEE Symposium on Visual Languages, Halifax, Nova 
Scotia, Canada, September 1998, IEEE CS Press. 

9. Grundy, J.C. and Hosking, J.G. Directions in modelling 
large-scale software architectures, In Proceedings of the 2nd 

Australasian Workshop on Software Architectures, 
Melbourne 23rd Nov 1999, Monash University, pp. 25-40. 

10. Grundy, J.C., Mugridge, W.B. and Hosking, J.G. 
Constructing component-based software engineering 
environments: issues and experiences, Information and 
Software Technology, Vol. 42, No. 2, January 2000, 
Elsevier, pp. 117-128. 

11. Hill, T., Noble, J. Visualizing Implicit Structure in Java 
Object Graphs, In Proceedings of SoftVis’99, Sydney, 
Australia, Dec 5-6 1999. 

12. Hosking, J.G. Visualisation of object-oriented program 
execution, In Proceedings of 1996 IEEE Symposium on 
Visual Languages, IEEE CS Press. 

13. Kazman, R. Tool support for architecture analysis and 
design, In Proceedings of the Second International 
Workshop on Software Architectures, ACM Press, 94-97. 

14. Koike, H., Takada, T., and Masui, T. VisuaLinda: A 
Framework for Visualizing Parallel Linda Programs, In 
Proceedings of the 1997 IEEE Symposium on Visual 
Languages, IEEE CS Press.  

15. Leo, J. OO Enterprise Architecture approach using UML, 
In Proceedings of the 2nd Australasian Workshop on 
Software Architectures, Melbourne 23rd Nov 1999, Monash 
University Press, pp. 25-40. 

16. Liu, A. Dynamic Distributed Software Architecture Design 
with PARSE-DAT, In Proceedings of the 1998 
Australasian Workshop on Software Architectures, 
Melbourne, Australia, Nov 24, Monash University Press. 

17. Quatrani, T. Visual Modeling With Rational Rose and 
UML, Addison-Wesley, 1998. 

18. Reiss, S.P. A framework for abstract 3-D visualization, In 
Proceedings of the 1993 IEEE Symposium on Visual 
Languages, IEEE CS Press. 

19. Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending 
design environments to software architecture design, 
Automated Software Engineering, vol. 5, No. 3, July 1998, 
261-390. 

20. Shaw, M. and Garlan, D. Software Architecture, Prentice 
Hall, 1996. 

21. Shizuki, B., Toyoda, M. Shibayama, E. and Takahashi, S. 
Visual Patterns + Multi-Focus Fisheye View: An 
Automatic Scalable Visualization Technique of Data-Flow 
Visual Program Execution. In 1998 IEEE Symposium on 
Visual Languages, Halifax, Canada, September 1998, 
IEEE. 

22. Stankovic, N. and Zhang, K. Towards Visual Development 
of Message-Passing Programs, In Proceedings of 1997 
IEEE Symposium on Visual Languages, IEEE CS Press. 

23. Topol, B., Stasko, J. and Sunderam, V., PVaniM: A Tool 
for Visualization in Network Computing Environments, 
Concurrency: Practice & Experience, Vol. 10, No. 14, 
1998, pp. 1197-1222. 

24. Urnes, T. and Graham, T.C.N. Flexibly Mapping 
Synchronous Groupware Architectures to Distributed 
Implementations. In Proceedings of Design, Specification 
and Verification of Interactive Systems, 1999. 

25. Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman, 
P., “Black-box Reuse within Frameworks Based on Visual 
Programming,”  in Proc. 1st Component Users Conference, 
SIGS Books, 1997. 


