
MViews: A Framework for Developing Visual Programming Environments

J.C. Grundy and J.G. Hosking
Department of Computer Science

University of Auckland,
Auckland, New Zealand

kea@cs.aukuni.ac.nz

Abstract

MViews is a framework for constructing
visual programming environments. It
supports multiple views of a base document,
maintaining consistency between each of the
views. MViews has been used to construct a
visual programming environment for an
object-oriented language featuring both
graphical and textual views of the program.
Other applications of MViews under
development include entity-relationship and
dataflow diagrammers, a visual debugger, and
a dialog box painter.

1. Introduction

Diagrams are useful in all phases of the
software lifecycle to help explain and
understand concepts that are difficult to
describe in text. In object-oriented
programming, for example, diagrams
illustrating inheritance relationships are an
invaluable aid in understanding program
structure.

A natural extension of using diagrams to
explain programs is to use diagram
construction as a means of programming
systems. This visual programming approach
to program construction is becoming
increasingly popular. Example visual
programming systems include Fabrik [Ingalls
1988], Prograph [Cox 1990], and Pegasys
[Moriconi 1986]. Useful reviews of visual
programming can be found in [Ambler 1989]
and [Myers 1990].

In previous work we have developed Ispel, a
visual programming environment for object-
oriented programming [Grundy 1991]. Ispel
allows users to program either textually or
graphically. In the latter, class structure

diagrams can be constructed to define
inheritance relationships and client-server
relationships. An important feature of Ispel is
its support of multiple views of a program.
Multiple diagrams can be constructed with
overlapping information in each view.
Modifications can be made to any of the
views and the other views are automatically
updated to be consistent.

In this paper, we describe MViews, a
generalisation of Ispel. MViews is a
programming environment framework. Visual
programming environments for particular
tasks, such as object-oriented programming or
dataflow programming, are constructed by
appropriately specialising MViews.

The paper begins with a brief review of Ispel,
followed by an introduction to the MViews
architecture. Implementation of MViews and
its application in the development of an Ispel-
like environment, IspelM, are then described.
The paper concludes with a discussion of
current and future work.

2. Ispel

Figure 1 shows Ispel in use, illustrating
aspects of the programming environment and
some of the types of view available. The
following summarises significant features of
Ispel:

• Multiple views of the program are
supported. Each view may share
information with other views. The
program as a whole is the union of the
information supplied by each view. Each
view can occupy its own window or share
one with other views. Three views are
shown in Fig. 1, two graphical and one
textual.

• Multiple view support allows diagrams
focussing on particular aspects of the
program to be constructed. This reduces
the cognitive complexity in understanding
those aspects of the program. For
example one graphical view in Fig. 1 has

been used to describe the inheritance
relationship between different varieties of
Roof classes, while the other shows the
major feature hierarchy for Building
objects.

Figure 1. Example of Ispel in use.

• Each graphical view includes a palette of
tools used to construct and edit the view.
Tools for constructing, removing, and
expanding (based on information from
other views) classes, inheritance links,
and feature links are provided.

• Detailed code of a feature can be
programmed using text. The applic0-text
view in Fig. 1 shows a textual view of the
Roof class. This may be edited to provide
additional features, feature bodies, etc.
This version of Ispel supports Eiffel
[Meyer 1988] syntax. Another version
supports programming in Kea [Hosking
1990; Hosking 1991].

• Any view can be modified. All other
views that share affected information are
updated to maintain consistency.

• Consistency management also applies
between textual and graphical views.
Modifying a graphical view may cause a
textual view to be updated or vice-versa.
Users are thus free to program in
whatever mode, text or graphics, they feel
more comfortable with, but can view and
manipulate their results in views of the
other mode.

• View management facilities allow views
to be created, hidden, made visible, and
removed. View navigation facilities
provide a variety of ways of reaching
appropriate views.

Ispel is designed as a tool for visually
programming object-oriented systems.
However, we recognised that some aspects of
the Ispel environment could have wider

application in the development of other visual
programming environments, specifically:

• The multiple view with consistency
model

• The free interchange between textual and
graphical modes of programming

A framework supporting such facilities was
therefore felt to be desirable. The provision of
these facilities in Ispel is quite closely bound
to the OO-specific facilities, so direct
abstraction of such a framework from the
existing Ispel implementation would have

proved difficult. For this reason, MViews, a
new framework, was developed.

3. MViews

Fig. 2 shows the major components of a
programming environment constructed using
MViews. Central is the program
representation database, which holds all
information relating to program structure and
different views of a program. Tools
communicate via this central data repository,
which can also provide tool-specific data
storage.

Compiler
Run-time System

Program
Representation

External
Communication

Textual
Editors

User
Interface

Graphical
Editors

UserOther
Systems

MViews

Figure 2. Components of an MViews-based programming
environment.

Tools for a specific environment, such as text
or graphical editors, are either tailor-made for
the application or specialised from generic
tools included in the MViews framework.
Graphical editors are structure-oriented,
providing tools for manipulating specific
aspects of a program, and utilise direct
manipulation of graphical structures. Textual
editors consist of an editor, an unparser, and a
parser. Unparsers convert a shared program
representation into a textual form, and parsers
convert an edited piece of code into the
common repository format.

The main characteristic of MViews is its
central support of multiple views, unlike most
other systems which tend to treat views as an
additional component of the programming
environment. The term “multiple views” is

used to describe related, yet distinct, ideas by
different researchers. In MViews we define
three types of view:

• base view: This is a canonical
representation of a complete program,
constructed as a synthesis of all other
views. There is a single base view for any
one program.

• subset views: These describe subsets of a
program. Subset views may overlap, so
the same information can be accessed and
manipulated via different subset views.
Examples of systems incorporating a
similar notion to subset views include:

• Ispel, where multiple views describe
overlapping subsets of a base view of an
object-oriented program.

• The dynamic and static views of
MELD [Garlan 1987], which partition
programs into respectively overlapping
and non-overlapping subsets.

• Database views, which filter out
unwanted information. Database views
are usually non-updatable, however,
limiting the consistency management
problems (although see [Horowitz 1986]
and [Langerak 1990]).

• display views: These describe how some
part of the program is to be rendered on
the screen. The same program fragment
can be rendered in a variety of notations,
textual and graphical, using different
display views. Many visual programming
systems utilise some form of multiple
display views. Examples include PICT
[Glinert 1984], PECAN [Reiss 1985],
Garden [Reiss 1986], and Ispel. Most of
these, though, only provide several ways
of rendering a single base view. MViews'
display views visually render a subset

view, allowing only a specified part of the
program to be displayed by the renderer.
Users interact with display views to
modify graphical figures and connectors,
or textual characters. These modifications
are translated into subset and base view
program modifications.

Propagation of change is an essential aspect
of MViews' multiple views. If shared
information is modified in one view, a
consistency manager propagates the
modifications to other views. For example,
modification of a display view may alter the
base program state. Other views affected by
this change must then be updated and
redisplayed, to provide a consistent
presentation of the program across the
environment. Change propagation is
controlled by each affected view: the view is
notified of a change, it updates its
components appropriately, and then
propagates further changes to related views
(and hence their components).

Base Views Subset Views Display Views

Add Element
Delete Element

Establish Relationship
Disolve Relationship

Modify Attribute

Expand Subgraph

Cut/Copy/Paste
Subgraph

Add/ Delete
Subset View

Add/ Delete
Display View

Display View

Unparse/
Parse View

Add/Delete/Modify
Figure/Connector

Figure 3. Some basic operations on MViews programs.

MViews represents programs and views as
collections of directed, acyclic graphs. Thus
program structure in MViews is specified in
terms of program elements (graph nodes) and
relationships between elements (labelled
graph edges). Language semantic information
for a particular program can be stored in the
environment in an analogous manner. This
program representation is similar to that
employed by deterministic graph
transformation systems [Arefi 1990].

Graph operations are employed to modify a
program graph. The semantics of these
operations could be described as the editing
semantics of the programming environment:
the effect on the program state of applying an
operation. Some basic operations include
adding elements, establishing relationships
between elements, deleting elements,
dissolving relationships, and modifying the
attributes of elements and relationships. Fig. 3
shows typical operations affecting the

different view types and inter-view
relationships.

Development of the MViews architecture
commenced with a denotational semantics
specification of the graph representation of
program state and the operations performed
on that state (including a formal treatment of
undo/redo operations). From this
specification an object-oriented design and
implementation followed, as discussed in the
next section.

4 Design and Implementation

To produce a reusable MViews system, a
programming environment (PE) generator
with its own specification language could be
constructed, similar to that of the Synthesizer
Generator [Reps 1984], or a specialisable
framework implemented, as used in Unidraw
[Vlissides 1990]. However, many aspects of a
good, interactive PE, such as the editor
functionality and tool interfacing systems,
require specialisation and fine-tuning on a
scale difficult to provide with a specialised
PE generator. Also, generated PEs are well
known for their poor user interfaces and

performance [Minör 1987]. For these reasons,
the second approach was chosen.

Object-oriented languages foster reuse in
various ways [Meyer 1988], and a
specialisable MViews framework lends itself
to an object-oriented representation and
implementation. Generalisations can be used
to relate parts of the environment, and
specialisation and genericity allow reuse of
these abstractions. Type aggregation and the
client-server relationship allow attributes and
operations to be attached to appropriate
classes, and accessed and inherited via well-
defined mechanisms. View membership
determination, operation reversal and
delaying, and tool interfacing and
specialisation, are all suitable for object-
oriented implementation.

In designing MViews, class hierarchies were
derived from the formal specification, and
used to structure the framework. Class
responsibilities and services were then
determined. Fig. 4 shows part of this
framework, in terms of some of the main
classes (boxes) and generalisations (arrows)
used.

Figure 4. An object-oriented framework for MViews

class(rectangle,
 parents([closed_figure(
 [rename(create,fig_create),
 rename(info,closed_info)])
]),
 attributes([height(int),
 width(int)]),
 methods([create, area,
 resize, draw,
 perimeter, info])).

% Create a rectangle
rectangle::create(Rect,Window,Loc,W,H)
:-
 Rect@width:=W,
 Rect@height:=H,
 Rect@fig_create(Window,Loc).

% Area for a rectangle
rectangle::area(Rect,Area) :-
 Area is Rect@width * Rect@height.

% Resize a rectangle
rectangle::resize(Rect,NX,NY) :-
 Rect@width:=NX,
 Rect@height:=NY,
 Rect@draw.

% Draw a rectangle
rectangle::draw(Rect) :-
 Rect@window(Window),
 Rect@location((X,Y)),
 Rect@width(W),
 Rect@height(H),
 (Rect@visible(true) ->
 Window@chg_pic(Rect,
 box(Y,X,H,W))
 ;
 Window@add_pic(Rect,
 box(Y,X,H,W))
),
 Rect@visible:=true,
 Rect@frame:=box(Y,X,H,W).

% Perimeter for a rectangle
rectangle::perimeter(Rect,Perimeter)
:-
 Perimeter is
 2 * (Rect@width +
Rect@height).

% Info for rectangle
rectangle::info(Rect) :-
 writenl('Info for rectangle:'),
 Rect@closed_info.

Figure 5. An Example Snart class defining Rectangles

 Implementation of MViews is in Snart, an
object-oriented extension to Prolog developed
by the authors. We had previously used
Prolog to good advantage in the development
of Ispel [Grundy 1991], but found the lack of

structuring beyond the predicate level a
disadvantage. Snart aims to retain the
advantages of Prolog programming, but
embedded within an object-oriented
framework similar to that of [Pountain 1990].

Fig. 5 shows an example of Snart code. Snart
includes the following features:

• Classes contain attribute and method
specifications.

• Method predicates are defined separately
in a C++ style. Method predicates may
have multiple clauses.

• Creation methods are used to create and
initialise an object

• Attributes can be assigned to and are
therefore impure Prolog. They provide a
structured alternative to using the
standard Prolog assertion and retraction
facilities.

• Multiple inheritance is provided, together
with redefining and renaming of features
to avoid name clashes.

• Programmers can freely mix Snart code
and standard Prolog code

• The implementation of Snart has aimed
for efficiency of execution. Snart code is
compiled to Prolog. Object creation,
storage, method despatch and attribute
access have all been optimised.

MViews provides a collection of abstract
classes that implement or provide a
framework for:

• Storage of base program data describing
program components. For example,
classes, features, clusters, generalisations,
client-server relationships, and program
documentation for IspelM.

• Textual and graphical subset views of
base data. These subset views are partial
copies of the base, and can be modified
by editors, or by changes to the base data.

• Change propagation to maintain
consistency between the base view,
graphical, and textual subset views. This
includes demand- and data-driven view
update algorithms, and visual notification
of updates in both graphical and textual
views.

• Textual and graphical display views that
render subsets in either a graphical or
textual representation. Both types of
views may be edited by users to effect
changes at the subset, and consequently,
the base levels. Graphical views are
structure-edited, while textual views are
free-edited and then parsed.

• Graphical structure-editing and text editor
facilities. Graphical editors include tools
that act upon icons and connector glue to
effect changes to subset views. A
standard text editor can be used to
manipulate textual views, or the built-in
MViews text editor can be used. The
latter provides hyper-text links to enable
view navigation and structure-based
searching.

• Operation storage for subset views that
implement undo/redo facilities. Operation
histories are also provided. These are
completely generic, requiring no code be
added to specialisations of MViews (such
as IspelM) to implement undo/redo.

• Generic routines that save and reload
MViews data to and from persistent
storage. These include incremental saving
and loading of both base and subset view
data.

• Support for application-specific semantics
processing. For example, in IspelM
unique names must be used for classes,
and for each feature per class, and these
semantic constraints are added to classes
implementing IspelM.

• Unparsing and parsing support for textual
views, including parse-tree storage and
determination of base view updates via
parse-tree changes.

• An object-oriented interface to the
Macintosh user-interface system,
including window, dialog, menu, and
editing tool support.

5. Application

The first application of MViews has been in
the development of a visual programming
environment for Snart itself. This involved a
two step specialisation of MViews. The first
step was to generate an Ispel-like object-
oriented programming environment in
MViews (IspelM). Further specialisation
tailored IspelM for programming in Snart
producing the Snart programming
environment (SPE).

Fig. 6 shows SPE in use. The environment
provided is quite similar to that of Ispel,
providing multiple graphical and textual
views. However, SPE provides full graphical
and textual view consistency (in both
directions), and has a much richer set of
visualisation capabilities and representations.

The example shows SPE editing itself
(IspelM and MViews are both implemented
in Snart). The graphical views show the view
inheritance hierarchy, and client-server
relationships between graphical subset and
display views and their elements, in the
context of rendering subset views. One
textual view shows the class definition for the
graphic_subset_view class, and the other the

draw_element method predicate for the
graphic_subset class.

A key feature of SPE is its method of
handling updates to views that result from
changes to another view. In some cases, such
as a change to a feature name, updates can be
made directly. In other cases, it is not possible
to automatically infer the correct modification
and user assistance is needed. For this reason,
updates to views are not immediately
performed. Rather, some visual indication of
the update is given to the user, who can then
either accept, provide an implementation for,
or reject the update.

As an example, a modification to a graphical
view such as renaming the "selements"
feature of graphic_subset_view to "elements",
is reflected in a corresponding textual view
by an “update record”, as shown in Fig. 6.
This record informs of the change to the base
data, and allows the programmer to either
make the change, or to select the update
record and have SPE make the change to the
text (in this case, changing
selements(list(graphic_subset)) to
elements(list(graphic_subset))).

Figure 6. The Snart Programming Environment.

Another update record is shown in the
graphic_subset_Class view. Here, a client-
server link has been added between
graphic_subset and graphic_display_view
indicating that the draw_element method of
the former makes use of the visible feature of
the latter. In this case, automatic update of the
textual view is not possible as SPE cannot
infer the appropriate modification to the
draw_element method and the user must
implement the update.

Going from textual views to graphical is
handled in a similar manner. After parsing a
textual view, updates to the base are
determined by changes to the corresponding
parse tree. Any updates are reflected in
graphical views by applying the change (for
example, if a feature is renamed), or
displaying the changed data in a different

colour (for example, red for a deleted
feature). Updates work for multiple graphical
and textual views of the same information.
For example, if the class graphic_subset had a
feature moved to its super-class, this would
be indicated in any textual views for
graphic_subset (both class definition and
method predicate views). Any graphical
views in which the feature was displayed
would be changed by colouring the affected
feature connections.

SPE also provides view navigation facilities.
These include iconic buttons for quick view
selection, view dialogs, and keyword searches
for views by name and focus type. Class
definitions can be “structure” edited using a
dialog-based editing view, and documentation
added to classes and features. Graphical
views support feature names included with

class icons (in a similar manner to the
OOATool [Coad 1991]), and provide clusters,
groups, and responsibilities for high-level
complexity management. Textual views using
the MViews editor provide interpretation of
update records to modify the class text
automatically, hyper-text links to access
documentation and other views from the text
editor, and the ability to display features
inherited by a class together with its own
definition.

Programmers typically use graphical views to
design their programs, and to visually
document a program to enhance readability
and browsing. Textual views are used to
implement method predicates, Prolog
predicates, and to specify additional class
definition details, such as renaming of
inherited features. Any changes to the
program can be made at either the graphical
or textual levels, and full consistency between
all representations is ensured. After compiling
the textual views using the existing Snart
compiler, Snart programs can be run and
debugged using the Prolog run-time system.

IspelM is a specialisation of MViews, and
itself provides a framework for implementing
programming environments for object-
oriented languages. To specialise IspelM to
produce the SPE, we needed to write
language-specific parsers and unparsers for
textual subset views. The graphical views and
base information require little change to
support a different language, as common
O.O. concepts are captured well at the IspelM
level. An interface to the language compiler
and run-time system is also necessary for
different languages.

6. Summary and current and future
work

We have described MViews, a framework for
developing visual programming environments
featuring multiple views with consistency
management. MViews has been applied in the
development of IspelM, a generic
environment for object-oriented
programming, and SPE, a specialisation of
IspelM for visually programming in Snart.

Other applications of MViews are currently
under development. These include:

• A dataflow programming tool after the
style of Prograph [Cox 1990]. This will
provide an object-oriented dataflow
diagramming tool together with a Snart-
based interpreter capable of executing the
diagrams. The dataflow programs can
also be integrated with Snart code
allowing a mixture of conventional and
dataflow programming.

• A dialog box "painter". This is a visual
tool for laying out dialog boxes. The
dialog boxes can then be included within
a Snart program.

• A visual debugger for Snart programs.
This uses a similar approach to the SPE
graphical tools, but displays the state of
objects rather than classes.

• An entity-relationship diagramming tool.
The graphical entities and relationships
are translated into relational schema
which may be viewed and manipulated in
a textual view.

Future applications we envisage for MViews
include:
• Specialisations of IspelM for object-

oriented languages other than Snart.

• Specialisations of IspelM for object-
oriented analysis [Coad 1990; Booch,
1991]. These would provide facilities
more abstract than the current design-
implementation-maintenance views of
IspelM, but should allow progressive
refinement through to a full
implementation.

• Program visualisation tools to provide a
more graphical and dynamic view of
program execution than that provided by
the visual debugger.

In addition, we expect considerable synergy
between the work presented here and another
project being undertaken by our group in
developing software for the building and

construction industry. This latter project aims
to develop a common model of a building that
various architectural and engineering design
tools can interface to throughout the building
design/maintenance lifecycle [Amor 1992].
Many of the problems in developing such a
model are similar to those faced in
developing tools for integrating the various
phases of the software design cycle together.
In both cases multiple views of the model are
essential, and consistency between the views
is critical.

Acknowledgements

The financial assistance of Mana Systems
Ltd, the Building Research Association of
New Zealand, and the University of Auckland
Research Committee is gratefully
acknowledged.

References

Ambler, A., Burnett, M., 1989: Influence of
Visual Technology on the Evolution of
Language Environments, IEEE Computer,
22, pp. 9-22.

Amor, R.A., Hosking, J.G., Groves, L.J.,
Donn, M.R. 1992: Design tool integration:
model flexibility for the building
profession. Proceedings Building Systems
Automation-Integration 1992 Symposium:
Computer Integration of the Building
Industry, Dallas, Texas.

Arefi, F., Hughes, C.E., and Workman, D.A.
1990: Automatically Generating Visual
Syntax-Directed Editors, CACM, 33, 3,
349-360.

Booch, G. 1991: Object-Oriented Design
with Applications. Menlo Park, CA,
Benjamin/Cummings.

Coad, P., Yourdon, E., 1991: Object-
Oriented Analysis, Second Edition,
Yourdon Press.

Cox, P.T., Giles, F.R., Pietrzykowski, T.
1990: Prograph: a step towards liberating
programming from textual conditioning,
Proceedings of 1990 IEEE Workshop on
Visual Languages, IEEE, pp 150-156.

Garlan, D. 1987: Views for Tools in
Integrated Environments, PhD Thesis,

Carnegie-Mellon University, CMU-CS-87-
147.

Glinert, E.P., and Tanimoto, S.L., 1984:
PICT: An interactive, graphical
programming environment, IEEE
Computer, 17, 11, 7-25.

Grundy, J.C., Hosking, J.G., and Hamer, J.
1991: A Visual Programming Environment
for Object-Oriented Languages, Proc
TOOLS5, Prentice-Hall, 129-138.

Horwitz, S. and Teitelbaum, T., 1986:
Generating Editing Environments Based
on Relations and Attributes, ACM
TOPLAS, 8, 4, pp. 577-608.

Hosking, J.G., Hamer, J., Mugridge W.B.,
1990: Integrating functional and object-
oriented programming, Proc TOOLS3,
TOOLS Pacific, Sydney, pp. 345-355.

Hosking, J.G., Hamer, J. and W.B.
Mugridge, 1991: Kea 1.0 Tutorial Manual.
BRANZ Contract 85-024 Technical Report
No18, Department of Computer Science,
University of Auckland, 35 p,

Ingalls, D., Wallace, S., Chow, Y.Y.,
Ludolph, F., Doyle, K., 1988: Fabrik: A
Visual Programming Environment, Proc
OOPSLA ‘88, pp. 176-189.

Langerak, R., 1990: View Updates in
Relational Databases with an Independent
Scheme, ACM Transactions on Database
Systems, 15, 1, pp. 40-66.

Meyer, B., 1988: Object-Oriented Software
Construction, Prentice-Hall.

Minör, S. 1987: Structured Command
Interaction Based on a Grammar
Interpreting Synthesizer, Proc of the
Second IFIP Conference on Human-
Computer Interaction, North-Holland.

Moriconi, M. and Hare, D.F. 1986: The
PegaSys System: Pictures as Formal
Documentaion of Large Programs, ACM
TOPLAS, 8, 4 pp 524-546.

Myers, B.A., 1990: Taxonomies of Visual
Programming and Program Visualization,
Journ. Visual Languages and Computing,
1, 1, pp. 97-123.

Pountain, R., 1990: Adding objects to Prolog,
Byte, August, pp 64IS-15 - 64IS-20.

Reiss, S.P., 1985: PECAN: Program
Development Systems that Support
Multiple Views, IEEE Transactions on
Software Engineering, 11, 3, pp. 276-285.

Reiss, S.P., 1986: GARDEN Tools: Support
for Graphical Programming, Lecture Notes
in Computer Science #244, Springer-
Verlag, pp. 59-72.

Reps, T. and Teitelbaum, T., 1984: The
Synthesizer Generator. Proceedings of the
ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical
Software Development Environments,
ACM, New York, pp 42-48.

Vlissides, J.M., 1990: Generalized Graphical
Object Editing, PhD Thesis, Stanford
University, CSL-TR-90-427.

