
Maplesden, D., Hosking, J.G. and Grundy, J.C. Design Pattern Modelling and Instantiation using DPML, In Proceedings of Tools Pacific 2002,
Sydney, 18-21 February, 2002, CRPIT Press

Design Pattern Modelling and Instantiation using DPML

David Mapelsden, John Hosking and John Grundy
Department of Computer Science, University of Auckland,

Private Bag 92019 Auckland, New Zealand
{dmap001,john,john-g}@cs.auckland.ac.nz

Abstract
We describe the Design Pattern Modelling Language, a notation
supporting the specification of design pattern solutions and their
instantiation into UML design models. DPML provides a set of
modelling constructs allowing design pattern solutions to be
modelled and reused. A corresponding notation links design
pattern solution elements to UML model elements, verifying
fulfilment of the design pattern in the UML model. A prototype
tool is described, together with an evaluation of the language
and tool...

Keywords: design patterns, pattern instantiation, visual
languages, tool support

1 Introduction
Design patterns are a method of encapsulating the
knowledge of experienced software designers in a human
readable and understandable form. They provide an
effective means for describing key aspects of a successful
solution to a design problem and the benefits and
tradeoffs related to using that solution. Using design
patterns helps produce good design, which helps produce
good software.

Design patterns to date have mostly been described using
a combination of natural language and UML style
diagrams. This leads to complications in incorporating
design patterns effectively into the design of new
software. To encourage the use of design patterns we are
investigating tool support for incorporating design
patterns into program design. We describe the DPML
(Design Pattern Modelling Language), a visual language
for modelling design pattern solutions and their
instantiations in object oriented designs of software
systems.

We begin by describing previous work in design pattern
tool support. We then overview DPML and describe its
use in modelling design pattern solutions and pattern
instantiation. We then describe an implementation and
evaluation of DPML before describing future work.

2 Previous Work
Design patterns were popularised in the “Gang of Four”
book of the same name (Gamma et al, 1994). A design

Copyright © 2002, Australian Computer Society, Inc. This
paper appeared at the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), Sydney, Australia. Conferences in
Research and Practice in Information Technology, Vol. 10.
James Noble and John Potter, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included..

pattern describes a common design solution to a
programming problem, and they have become very
widely used in object-oriented software development.
Design patterns are typically described using a
combination of natural language, UML diagrams and
program code (Gamma et al 1994, Grand 1998). Such
descriptions lack design pattern-specific visual
formalisms, leading to pattern descriptions that are hard
to understand and hard to incorporate into tool support.
While the UML has become an industry standard for
object modelling, it has inherent shortcomings for
modelling design patterns. The proposed UML standard
for modelling design patterns relies upon parameterised
collaborations (Object Management Group, 2000). The
main drawback is that because these are constructed using
similar concepts to object models, they become simply
prototypical examples of an object model. This does not
allow enough freedom to model patterns effectively.
There is no construct for modelling groups or sets of
objects. Thus there is also no construct for mapping
relations, such as associations or generalisations, between
groups of objects. Several attempts have been made to
develop new visual representations for design patterns.

The LePUS language (Eden et al 1998) uses higher order
monadic logic to express solutions proposed by design
patterns. Primitive variables represent the classes and
functions in the design pattern, and predicates over these
variables describe characteristics or relationships between
the elements. LePUS also includes a visual notation for
LePUS formulas consisting of icons (squares, ovals and
triangles) that represent variables or sets of variables and
annotated directed arcs representing the predicates. The
main drawback with LePUS is that it is based on
mathematics and formal logic, making it difficult for
average software developers to work with and providing a
weak basis for integrated tool support. Proposed tool
support for LePUS is based on Prolog and lacks support
for the visual notation. The notation defines many
abstractions to make diagrams terse. Thus there are many
different syntactic elements leading to diagrams that,
while compact, are difficult to interpret. LePUS
concentrates solely on defining design pattern structures,
and has no mechanism for integrating instances of design
patterns into program designs or code.

Florijn et al (1997) represent patterns as groups of
interacting “fragments”, representing design elements of
a particular type (eg class, method, pattern). Each
fragment has attributes (e.g. classname), and roles that
reference other fragments representing pattern
relationships, e.g, a class fragment has method roles
referencing the method fragments for methods of that
class. The fragments actually represent instances of

patterns. Pattern definitions are represented by prototype
fragment structures; a one-level approach to defining
patterns where the patterns. kept in a separate repository,
are identical to the pattern instances in the fragment
model. This system lacks support for the definition of
design patterns and also lacks a strong visual syntax;
visual aspects only provided by the tool interface. The
single level architecture means patterns are only defined
as prototypical pattern instances. We argue that concepts
exist at the pattern level that do not at the pattern instance
level, thus patterns can’t be specified in the most general
way using only prototypical instances.

Lauder and Kent (1998) propose an extension to UML to
aid in “precise visual specification of design patterns”.
They use a 3-layer model with a visual notation for
expressing models. The notation is an amalgam of UML
and “Constraint Diagrams” a notation to visually specify
constraints between object models elements. A second
notation expresses object dynamic behaviour and can
represent generalised behaviour of design patterns. We
found their notation difficult; the differentiation between
the diagrams at different levels was unclear and it seemed
difficult to understand the reason why some abstractions
were made at one level and not another.

Some approaches use textual rather than visual languages
(Eden et al 1998, Florijn et al 1997, Reiss 2000, Hedin
1997). While these have good ideas and aspects, we are
interested in a visual language for modelling design
patterns. We are particularly interested in applying to
design pattern modelling the approach UML (Bosch
1996, Sunye et al 2000) takes to object modelling.

3 Overview of DPML
DPML defines a metamodel and a notation for modelling
design pattern solutions and solution instances within
object models. It is important to stress that DPML can
only be used to model the generalised solutions proposed
by design patterns, not complete design patterns, that also
contain information such as when the solution should be
applied and consequences of using the pattern. A design
pattern solution is a design pattern with information
describing particular classes, methods and relationships
used to realise the design pattern. A more abstract design
pattern may not necessarily specify such particular
implementation choices.

DPML is designed so that it can be used as a stand-alone
modelling language for design pattern solutions or in
conjunction with UML to also model solution instances
within UML object models i.e. where in a UML model a
pattern is used. A design pattern solution instance
describes the relationship between design pattern solution
elements modelled in DPML and system design elements
modelled in UML. This allows tracking of the usage of a
design pattern solution in a UML design and the
validation of the usage of this pattern solution i.e.
checking whether the pattern has been completely and
consistently expressed in the UML design.

DPML supports incorporation of patterns at design-time,
as opposed to implementation of design patterns during
program coding (Wild 1996; Budinsky et al 1996). We feel

design-time is the vital stage at which to include design
patterns in he software engineering process, the
assumption being that if design patterns can be effectively
incorporated into the UML object model then converting
the object model into code is, relatively speaking,
straight-forward.

DPML has been developed specifically with automated
tool support in mind. It is designed to be relatively easy
to implement, particularly in conjunction with UML
(Sunye et al 2000). We have carried out a detailed
investigation into the implementation issues for the
DPML and the processes that can be supported for
working with the DPML.

DPML Pattern Specification DPML Pattern Instantiation

UML Object Model

instantiate

realise

Figure 1: Core concepts of DPML.

The core concept of DPML (shown in figure 1) is a
design pattern specification model which is used to
describe the generalised structures of design patterns that
are of interest to or useful to the user. This entails
modelling the participants (interfaces, methods etc)
involved in the pattern and the relationships (e.g. this
interfaces declares this method) between them.
Participants represent roles in the design pattern solution
that program elements must play, and the relationships
represent the constraints these elements must satisfy..
During the OO modelling process, where UML is used to
create an OO model of a system, if a modeller sees an
opportunity to use a design pattern previously defined,
s/he can create an instance of that design pattern from the
original definition. Once an instance of the pattern is
created, the realisation process consists of either linking
the participants in the design pattern to elements of the
OO model, or creating new model members where
required. The language’s well-formedness rules define
which members from the OO model are eligible for
fulfilling each participant’s role. In this way the user can
be sure of creating a valid instance of the design pattern
and so be sure of gaining the benefits of using the design
pattern.

The design pattern instance model also allows each
individual design pattern instance to be tailored. By
default a design pattern instance contains members for all
objects and constraints on these objects specified by the
pattern definition, however certain parts of the pattern

may be relaxed or extended on a case by case basis
allowing pattern instances that are variations on the base
pattern.

4 Modelling Design Pattern Solutions
In DPML design pattern solution models are depicted
using Specification Diagrams, the basic notation for
which is shown in Fig. 2. DPML models design pattern
solutions as a collection of participants; dimensions
associated with the participants and constraints on the
participants. A participant represents a structurally
significant feature of a design pattern, that when
instantiated, will be linked to objects from the object
model to realise the pattern. Constraints represent
conditions that must be met by the objects filling the roles
of the participants in a design pattern instance for it to be
considered a valid instance of the design pattern.
Dimensions are constructs associated with participants to
indicate that the participant potentially has more than one
object linked to it in an instantiation. They indicate that a
participant represents a set of objects in the object model,
instead of just a single object.

Interface

Implementation

Operation

Method

Attribute

Binary Directed Relation

Interface with Dimensions

{A constraint
imposed on
an element}

A Simple Constraint

Name

instanceName

Name

instanceName

Name

instanceName

Name

instanceName

Name

instanceName

Name

instanceName

Name

Figure 2: Basic DPML notation

Participants are interfaces, implementations, methods,
operations or attributes. An interface (hexagon)
represents a role that must be played by an object that
declares some behaviour i.e. it exhibits an interface in the
object model. In a traditional object model this means an
interface or a class can fill an interface role as both
declare a set of operations that provide behaviour. An
implementation (rectangle) represents a role played by an
object that defines or actually implements some
behaviour. In a traditional object model an
implementation would map to a class. The key concept
with an implementation is that it defines no interface
itself: its type or the declaration of its behaviour is
defined entirely by the interfaces it is said to implement.
This is different from the traditional concept of a class,
which embodies both an interface and an implementation

in the one object. This split is designed to allow a clearer
definition of roles of objects in a design. A single object,
in the case of a class, can play the roles of both an
interface and an implementation.

An operation (diamond) is the declaration of a piece of
behaviour while a method (oval) is the definition or
implementation of a piece of behaviour. This mirrors the
abstract/concrete split of interface/implementation. An
attribute (inverted triangle) is a declaration of a piece of
state held by an implementation. An attribute defines a
role played by an attribute of a class in the object model.

Constraints are either simple constraints or binary
directed relations. Simple constraints (plain text in curly
brackets) define a condition specified in natural language
to be met by the object bound to a single participant.
Binary directed relations (lines with arrowheads) define a
relationship between two participants, implying a
relationship must exist between the objects in the object
model playing the roles the participants define. The type
of the binary directed relation determines the exact
relationship that is implied. For example the
‘implements’ relationship between an implementation
and an interface implies the object filling the role of the
implementation must implement the object filling the role
of the interface. Other examples of binary directed
relations are extends, realises, declared in, defined in and
refers to.

A more complex subclass of binary directed relations is
the extended relations. These define the mappings of a
binary directed relation between participants that have
dimensions associated with them. These participants have
sets of objects associated with them and therefore you
need to specify how the base relation maps between the
two sets of objects. There are four possible mappings: the
relation exists between every possible pair of objects;
exactly once for each object; for every object in one set
but not necessarily the other; and only between one pair
of objects. These respectively are a total, regular,
complete and incomplete relations.

Dimensions specify that a participant can have a set of
objects playing a role. The same dimension can be
associated with different participants in a pattern and this
specifies not only that these participants can have some
multiple number of objects associated with them but that
this number of objects is the same for both participants.

Consider modelling the Abstract Factory design pattern
from (Gamma et al 1994) (Fig. 3). This pattern is used by
designers when they have a variety of objects
(“Products”) which are subclasses of a common root-
class to create. A set of “Factory” objects are used to
create these related “Product” objects.

In this pattern there are six main participating groups of
objects. The abstract factory interface declares the set of
abstract create operations that the concrete factories will
implement. This can be modelled by the DPML with an
interface named AbstractFactory and an operation named
createOps.

concreteCreateOps

concreteFactories

Implements

createOps

Declared_In

Defined In
Realises

Products concreteProducts

Implements

Creates

AbstractFactory

Return Type

factoriesDimension

productsDimension

Dimension Key

Products-
Dimension

. . .

Concrete
Factory 1

crea teOp1

crea teOp2

crea teOp3

.

.

.

Concre te
Factory 3

createOp1

createOp2

createOp3

.

.

.

FactoriesDimension

Concrete
Facto ry 2

createOp1

createOp2

createOp3

.

.

.

Figure 3: Example specification of Abstract Factory
pattern using DPML.

Figure 4. Object structure implied by DefinedIn
relations associated with ConcreteCreateOps method

The createOps operation represents a set of operations so
it has an associated dimension (productsDimension).
There is also a complete Declared_In relation running
from createOps to AbstractFactory. This relation implies
that all methods linked to the createOps operation in an
instantiation of the pattern must be declared in the object
that is linked to the AbstractFactory interface.

In Abstract Factory the other groups of participating
objects are the factory implementations, the method
implementations that these factories define, the abstract
product interfaces used by the abstract factory and the
concrete products that the factories produce. These are
modelled by a concreteFactories implementation, a
concreteCreateOps method, a Products interface and a
concreteProducts implementation respectively.

The concreteFactories implementation has a dimension,
factoriesDimension, to indicate it represents a number of
concrete implementations. A complete Implements
relation runs from concreteFactories to AbstractFactory,
implying all the concreteFactories must implement the
AbstractFactory interface.

The concreteCreateOps method represents all methods
from the set of concreteFactories that implement one of
the sets of createOps so it is associated with both the
factoriesDimension and productsDimension dimensions.
It has a regular, complete Defined_In relation running
from it to the concreteFactories implementation. This
extended relation specifies that for every concrete factory
there is a set of concreteCreateOps as shown in figure 4.
A similar extended relation Realises runs from
concreteCreateOps to createOps.

The Products interface has the productsDimension
associated with it to imply there are a number of abstract
product interfaces, and the same number of abstract

createOps operations. A regular Return_Type relation
runs from createOps to Products, implying each of the
createOps operations has exactly one of the Products as
its return type.

Finally the concreteProducts implementation has both
productsDimension and factoriesDimension dimensions
associated with it. This is because there is exactly one
concreteProduct for each abstract product and concrete
factory i.e. each concrete factory produces one concrete
product for each abstract product interface. The
concreteProducts implementation also takes part in an
Implements extended relation with the Products interface
and a Creates extended relation with the
concreteCreateOps method. These specify that each
concreteProduct implements one Product interface and
that each concreteProduct is created (instantiated) in
exactly one of the concreteCreateOps methods.

5 Design Pattern Instantiation and Realisation
A DPML Instantiation Diagram models design pattern
solution instances and their realisation within object
models. The design pattern instances are regarded as part
of the object model, providing another construct that can
be used in the description of a program. Every design
pattern instance is derived from a design pattern solution.
It is possible to have numerous instances of the same
design pattern solution in an object model, each having its
own identifying name and Instantiation Diagrams and
connected to a different set of realising elements in the
UML object model.

Instantiation Diagrams look similar to a Specification
Diagrams; all of the basic symbols are the same shape,
however the ‘proxy’ element icons are drawn with a
dashed (or coloured) outline to distinguish them from

‘real’ elements as shown in Fig. 5. ‘Proxy’ elements are
participants and relations inherited from the base design
pattern solution and are therefore immutable in the
instance; they can only be altered by changing the base
design pattern solution. ‘Real’ elements are participants
and relations added to a design pattern instance to tailor
that instance. In this way we can ensure the basic
structure of all instances of the same design pattern is the
same, but still allow instances to be specialised for a
particular task.

Name

instanceName
Bound Elements

Name

Interface Proxy Proxy Binary Directed Relation

{inherited: A
constraint imposed
on an element}

A Proxy Simple ConstraintMethod Proxy

Name

instanceName
Bound Elements

Figure 5: Instantiation Diagram Notation

In a design pattern instance every participant (‘proxy’ or
‘real’) has a link that maintains a binding from the
participant to some number of UML model elements.
Participants with no dimension can only be linked with a
single UML model element; those with one or more
dimensions can be linked with multiple UML model
elements. The names of the UML model element(s) that a
participant is linked to are shown in an italicised, textual
annotation attached to each participant symbol in an
Instantiation Diagram. If no model elements are linked to
that participant then there is no annotation.

For example consider an instantiation of the Abstract
Factory pattern. Assume we are implementing a GUI
toolkit that allows programmers to create a GUI with
windows, menus, icons, buttons etc. We wish to use the
Abstract Factory pattern to allow the look and feel of the
GUI to be changed at runtime. We declare a GUIFactory
interface that has methods to construct all GUI elements
required in our GUI toolkit. Different implementations of
this GUIFactory create different sets of elements with
different look and feel, allowing a change of look and feel
by changing factories. A UML model for this design is
shown in Figure 6.

If we assume there are no additions to the basic design
pattern structure defined earlier in this instantiation then it
is simply a matter of realising the design pattern by
linking the participants from our design pattern instance
to suitable objects in the UML model. This is done by
the following steps:

• A design pattern instantiation model is made by
copying the structure of the design pattern solution
and substituting interface proxies, method proxies
and binary directed relation proxies for pattern
interfaces, methods and relations respectively.

• Each proxy in the design pattern instance model is
linked to a UML design element. Some can be linked
to multiple UML design elements e.g. createOps to
createMenu, createButton etc.

• Once all design pattern instance elements are linked
to one or more UML design elements, consistency
checks are made: Are all pattern instance elements
linked? Are correct kinds of pattern instance
elements linked to UML design elements?

The final instantiation diagram is illustrated in Figure 7.
The first instance element to UML design element link is
the easiest, a link between the AbstractFactory interface
in our design pattern instance and the GUIFactory
interface in the UML model. Next we have a link
between concreteFactories implementation and our two
factory classes SpaceFactory and MetalFactory. We
linked our createOps operation to the three methods
declared in the GUIInterface interface namely,
createScrollBar, createMenu and createButton. We
linked our Products interface to the three interfaces
ScrollBar, Menu and Button. The concreteCreateOps
method is linked to the six implementing methods in our
two factory classes: createScrollBar(): MetalScrollBar,
createScrollBar(): SpaceScrollBar,
createMenu():MetalMenu, createMenu():SpaceMenu,
createButton():MetalButton, createButton ():SpaceButton.
Similarly the concreteProducts implementation is linked
to the six implementing product classes: MetalScrollBar,
SpaceScrollBar, MetalMenu, SpaceMenu, MetalButton
and SpaceButton.

6 Tool Support: DPTool
As mentioned earlier the DPML was designed
specifically to facilitate the provision of tool support. We
have successfully implemented a prototype DPML CASE
tool we call DPTool. A screen dump showing the tool in
use is shown in Fig. 8. The tool supports, among other
things:

1. UML object models and the specification of these
models using UML class diagrams.

2. DPML models and their specification using DPML
specification and instantiation diagrams.

3. Consistent, multiple views of UML and DPML.
4. Model management mechanisms, so users can create,

save and reload UML and DPML models.
5. An automatic design pattern instantiation

mechanism, to create pattern instances from design
patterns.

6. An automated consistency mechanism between
design pattern instances and base design patterns.

7. An automatic model verification mechanism, which
ensures the UML object model, and all design pattern
instances within that object model, are correct If not,
suitable error messages generated.

8. A pattern instance realisation support mechanism,
which assists users in realising a design pattern
instance by highlighting the valid model elements
that can be bound to any given participant in an
instance. This also allows users to create new UML
model elements “on the fly” to be bound to a
participant, if no suitable element exists in the UML
model.

GUIFactory
createScrollBar () : ScrollBar
createMenu () : Menu
createButton () : Button

<<Interface>>

ScrollBar <<Interface>>
Menu <<Interface>>

Button <<Interface>

MetalFactory
createScrollBar () : MetalScrollBar
createMenu () : MetalMenu
createButton () : MetalButton

SpaceFactory
createScrollBar () : SpaceScrollBar
createMenu () : SpaceMenu
createButton () : SpaceButton

MetalScrollBar SpaceScrollBar MetalMenu SpaceMenu MetalButton SpaceButton

�����������������
�����������������
�����������������

�������������������
�������������������
�������������������

concreteCreateOps

���������������
���������������
���������������

concreteFactories

Implements

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

createOps

Declared_In

Defined In
Realises

��������������������
��������������������
��������������������

Products
����������������
����������������
����������������

���������������
���������������
���������������
���������������

concreteProducts

Implements

Creates

AbstractFactory

factoriesDimension

productsDimension

�������
��������������
�������

Dimension Key

MetalFactory
SpaceFactorycreateMenu

createScrollBar
createButton

6 bound elements

6 bound elements
Menu

ScrollBar
Button

GUIFactory

Return Type

Figure 6. GUIFactory UML object model. Figure 7. Instantiation of the
AbstractFactory pattern.

Figure 8: Three diagrams implemented in the prototype DPML tool:
(left) A UML Class Diagram. (centre) A Design Pattern Specification Diagram.

(right) A Design Pattern Instantiation Diagram. Note these diagrams use colour to convey information.

The designer creates pattern solution diagrams and UML
design diagrams as required. Pattern instantiation
diagrams are created when the user wants to either link
existing UML design elements to design pattern elements
they implement or wants to instantiate a design pattern
with a partially complete UML design. After creation, the
user specifies links between pattern instance elements and
UML design elements, as illustrated in Figure 9. DPTool
shows the designer all available UML design elements
that can be linked to the design pattern instance proxies.
The designer can link the pattern instance proxy to no
UML model, can ask for a new UML design element to
be created to which the pattern instance proxy is then
linked, or can select from the list of items identified by

DPTool as being valid UML design elements the pattern
instance proxy can be linked to.

The designer may request DPTool to validate their UML
design in terms of the usage of design patterns with the
design as expressed by design pattern instance links to
UML design elements. DPTool identifies incompleteness
and inconsistency in the design pattern usage and reports
this to the designer. Figure 10 illustrates an example of an
error report generated by DPTool after attempting to
validate a UML design. An example is also shown of
DPTool’s pattern and pattern instance manager, allowing
designers to select patterns for instantiation from a
catalogue. Pattern definitions are saved to a separate
project file than UML designs and pattern instantiations
allowing reuse of patterns across multiple design projects.

Figure 10. Pattern and instance manager and pattern validation manager examples.

Figure 9. Example of binding pattern instance
elements to UML model element(s).

7 Evaluation
We performed an evaluation of our tool and the DPML.
This evaluation consisted of a user survey and a cognitive
dimensions framework (Green and Petre 1996)
evaluation. The user survey consisted of a tutorial for
the DPML tool that the survey participants carried out
and a number of open-ended questions for them to
answer. The tutorial was a long and relatively detailed
introduction to the tool that guided the users through
tasks such as: creating a design pattern solution; creating
a simple UML object model; instantiating the design
pattern solution to create a design pattern instance;
realising the instance within the UML object model;
validating the object model and tracking any errors; and
carrying out modifications to the design pattern after the
instance has been created.

The survey questions covered two general topics. The
first focussed on how intuitive the users found the
concepts represented in the tool. Questions explored

which concepts in the tool the users could and could not
easily understand. The second group of questions
focussed on the usability of the tool. They were designed
to find the good and weak points of the tool, and which
operations were easy to carry out and which were not.

The general survey response to the tool was quite
enthusiastic. The majority of the language concepts were
found to be easy to understand and use. In particular, the
explicit separation between design patterns, design
pattern instances and object models was easy to follow
and effective in managing the use of design patterns. The
design pattern definition process was also well
understood. The almost universally mentioned difficult
points were the dimension concepts. The inability to
attach comments to model elements was highlighted as a
weak point by several survey respondents.

The majority of the respondents found the tool effective
to use for its primary tasks of creating and instantiating
design patterns models. The pattern realisation (binding)
process was mostly approved of, although it had some
shortcomings, particularly in the visualisation of
dimension categories. Respondents had a range of
suggested extensions and improvements ranging from
support for reverse engineering from object designs to
design patterns (pattern abstraction) to inclusion of
support for aspects. Most encouragingly all respondents
thought that the tool was worth using if design patterns
were a part of your design process.

The cognitive dimensions framework evaluation explored
the full range of dimensions. Here we comment on some
of the more important issues arising.

Abstraction Gradient. The DPML is a mixed abstraction
system. There are few explicit abstractions in the
notation, which mostly consists of combinations of
primitive elements. However the starting level of the
abstractions in the system is very high, i.e. the primitive
elements in the system represent quite advanced
abstractions in their own right.

Closeness of mapping. DPML models conceptual abstract
design structures and their realisation in concrete OO
models. It defines a set of concepts we felt designers most

commonly use to formulate these conceptual abstract
designs, providing a language that closely matches their
thinking. Most concepts are common to OO modelling.
Two concepts, implementation and dimension, are not
commonly used, however they provide more useful
abstractions than the more common class and set.

Consistency. The DPML is consistent. Dimensions are
denoted in a consistent way on all participants, be they
methods or interfaces or in patterns or pattern instances.
Participant shape is consistent for both patterns and
pattern instances e.g. interfaces represented by rectangles
and methods by ovals. The consistent treatment of
methods and operations as full participants similar to
interfaces and implementations has advantages over the
specialised treatment they receive in many other
languages.

Diffuseness/Terseness. Generally DPML is more diffuse
than other visual languages for design patterns such as
Kent and Lauder’s (1998) or LePUS (Eden et al 1998).
Both of these languages use additional abstractions or
more detailed notations resulting in terser, smaller,
diagrams.

Hard Mental Operations. We have reduced the need for
hard mental operations in DPML, by avoiding some of
the dense, terse notation of other languages. The
dimension concept, that is mostly unfamiliar to new users
of the language, can be difficult to understand. This does
not fall into the category of a ‘hard mental operation’
however because in our experience once familiarity with
the concept is gained it is easy to apply and the layering
of dimensions does not overly increase their complexity.

Hidden Dependencies. The design pattern to design
pattern instance link is a hidden dependency; it is not
possible to tell explicitly from a design pattern the design
pattern instances related to it. Also, it is also not possible
to tell from a UML model element which roles it is
playing, if any, in design pattern instances.

Progressive Evaluation. The automatic model verification
mechanism, which locates errors in a model being
developed, can be run at any stage in development.

Role-Expressivenes. Every object in a diagram has an
obvious shape, denoting its type, and a prominent name,
to further clarify the role it is playing in the diagram. The
model/view separation and multiple view support makes
it possible to create modularised models, with each view
of the model displaying a single related group of entities
from the model. The view can be given a relevant name
indicating the role the group of entities has in the model.

Secondary Notation and Escape from Formalism.The
potential for secondary notation is high. Layout is not
constrained in any way, naming conventions can easily be
used and multiple views can be used to break models up
into logical pieces. Escape from formalism is not so well
supported. The ability to add free text to model elements
as a form of documentation is essential, as is the ability to
add free text and annotations to diagrams in general, but
are not yet supported in our tool.

Visibility and Juxtaposability. The DPML tool suffers
from poor visibility in one notable area; the indication of

bound elements for design pattern instance participants.
While it is easy to display a list of the bound elements for
any one participant, it is not possible to display the list of
bound elements for more than one participant at a time.
Also the lists are just lists of elements; there is no visual
representation of the realisation links between UML
model elements and the pattern instance participants. In
other areas DPML has good visibility. DPML has good
juxtaposibility with the ability to have multiple views
open side by side, displaying different parts of the same
model or related parts of different models.

9. Summary
DPML is a visual language for modelling design patterns
and their instances. We feel DPML offers several
benefits over other modelling languages for design
patterns and as a basis for tool support for design
patterns.

The ability to work with design patterns in conjunction
with UML is a major benefit. UML is now a standard for
OO modelling and its use is widespread. Compatibility
with UML makes our approach more palatable for many
programmers and designers as they are already familiar
with UML, and many of the concepts in the DPML are
built upon or similar to concepts in the UML. We found
the meta-modelling approach to the definition of the
DPML particularly useful. Not only did this approach
give us an avenue for defining the formal semantics of the
language, but also we found it very sympathetic to the
implementation of tool support, we were able to create a
large and sophisticated tool implementing the language in
a very short period of time.

The DPML’s multi-level approach with design patterns,
design patterns instances and object models is effective as
is the basic premise of describing pattern structures in
terms of participating objects and the relations between
those objects. We avoided introducing unnecessary
abstractions into the language, as these enlarge the
language and introduce abstract structures, which, when
combined together, are difficult to interpret. One of the
novel concepts in the language is that of dimensions. We
feel there is much promise in use of this concept in place
of sets. It offers a more accurate description of the
principles involved and offers a more sophisticated
insight into the pattern structure.

There are a number of concerns that we did not have time
to address in this initial work, but are certainly important
issues for the future.

• Support for design pattern composition to create
other design patterns. This could be used to support
design pattern hierarchies or pattern languages.

• Support for specification of dynamic aspects of
design patterns.

• The introduction of an OCL-style constraint
language, for more clearly expressing constraints.

• Better tracking of the overlapping of design pattern
instances in object models, particularly visualisation

of the roles a UML element is playing in different
design pattern instances.

• Better visualisation of the bindings that occur during
the pattern realisation process. A 3-dimensional
notation for expressing this might well be
appropriate.

• Support for a classification scheme for the design
patterns, to assist in deciding when to apply them.

• Extending the pattern concept (as used in the tool) to
allow a greater range of patterns e.g. architectural
patterns or code level idioms.

8 Acknowledgements
Support for this research from the New Zealand Public
Good Science Fund is gratefully acknowledged. David
Mapelsden was supported by a William Georgetti
Scholarship.

9 References
BOSCH, J. (1996): Language support for design patterns, In

Proceedings of TOOLS Europe ’96, pg 197-210, Prentice-
Hall.

BUDINSKY, F.J., FINNIE, M.A., VLISSIDES, J.M., YU, P.S.
(1996): Automatic code generation from design patterns, In
IBM Systems Journal 35 (2).

EDEN, A.H., HIRSHFELD, Y., YEHUDAI, A. (1998): LePUS
– A declarative pattern specification language, Technical
report 326/98, department of Computer Science, Tel Aviv
University, (1998).

FLORIJN, G. MEIJERS, M. VAN WINSEN, P. (1997): Tool
support for object-oriented patterns, In Proceedings of the
11th European conference on Object Oriented programming,
Springer LNCS 1241, pg 472-495.

GAMMA, E., HELM, R., JOHNSTON, R. AND VLISSIDES,
J. (1994): Design Patterns, Addison-Wesley.

GRAND, M. (1998): Design patterns and Java, Addison-
Wesley.

GREEN, T.R.G. AND PETRE, M. (1996): Usability analysis of
visual programming environments: a ‘cognitive dimensions’
framework, Journal of Visual Languages and Computing 7,
pg 131-174.

HEDIN, G. (1997): Language support for design patterns using
attribute extension, In Proceedings of ECOOP ’97, Springer
LNCS 1357, pg 137-140.

LAUDER, A., KENT, S. (1998): Precise Visual Specification of
Design Patterns, In Proceedings of the 12th European
conference on Object Oriented programming, LNCS 1445,
pg114-134.

OBJECT MANAGEMENT GROUP (2000): Unified Modeling
Language (UML) Specification v1.3, Document formal/00-
03-01, available from http://www.omg.org.

REISS, S.P. (2000): Working with patterns and code, In
Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences, (Abstracts) pg 243.

SUNYÉ, G., LE GUENNEC, A., JÉZÉQUEL, J-M. (2000):
Design patterns application in UML, In Proceedings of the
14th European conference on Object Oriented programming,
Springer LNCS 1850, pg 44-62.

WILD, F. (1996): Instantiating code patterns, Dr. Dobb’s
Journal, pg 72-76.

