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Abstract 
We describe the Design Pattern Modelling Language, a notation 
supporting the specification of design pattern solutions and their 
instantiation into UML design models. DPML provides a set of 
modelling constructs allowing design pattern solutions to be 
modelled and reused. A corresponding notation links design 
pattern solution elements to UML model elements, verifying 
fulfilment of the design pattern in the UML model. A prototype 
tool is described, together with an evaluation of the language 
and tool... 

Keywords:  design patterns, pattern instantiation, visual 
languages, tool support 

1 Introduction 
Design patterns are a method of encapsulating the 
knowledge of experienced software designers in a human 
readable and understandable form. They provide an 
effective means for describing key aspects of a successful 
solution to a design problem and the benefits and 
tradeoffs related to using that solution. Using design 
patterns helps produce good design, which helps produce 
good software. 

Design patterns to date have mostly been described using 
a combination of natural language and UML style 
diagrams.  This leads to complications in incorporating 
design patterns effectively into the design of new 
software.  To encourage the use of design patterns we are 
investigating tool support for incorporating design 
patterns into program design.  We describe the DPML 
(Design Pattern Modelling Language), a visual language 
for modelling design pattern solutions and their 
instantiations in object oriented designs of software 
systems. 

We begin by describing previous work in design pattern 
tool support. We then overview DPML and describe its 
use in modelling design pattern solutions and pattern 
instantiation. We then describe an implementation and 
evaluation of DPML before describing future work. 

2 Previous Work 
Design patterns were popularised in the “Gang of Four” 
book of the same name (Gamma et al, 1994). A design 
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pattern describes a common design solution to a 
programming problem, and they have become very 
widely used in object-oriented software development. 
Design patterns are typically described using a 
combination of natural language, UML diagrams and 
program code (Gamma et al 1994, Grand 1998). Such 
descriptions lack design pattern-specific visual 
formalisms, leading to pattern descriptions that are hard 
to understand and hard to incorporate into tool support. 
While the UML has become an industry standard for 
object modelling, it has inherent shortcomings for 
modelling design patterns. The proposed UML standard 
for modelling design patterns relies upon parameterised 
collaborations (Object Management Group, 2000). The 
main drawback is that because these are constructed using 
similar concepts to object models, they become simply 
prototypical examples of an object model. This does not 
allow enough freedom to model patterns effectively.  
There is no construct for modelling groups or sets of 
objects.  Thus there is also no construct for mapping 
relations, such as associations or generalisations, between 
groups of objects. Several attempts have been made to 
develop new visual representations for design patterns. 

The LePUS language (Eden et al 1998) uses higher order 
monadic logic to express solutions proposed by design 
patterns.  Primitive variables represent the classes and 
functions in the design pattern, and predicates over these 
variables describe characteristics or relationships between 
the elements. LePUS also includes a visual notation for 
LePUS formulas consisting of icons (squares, ovals and 
triangles) that represent variables or sets of variables and 
annotated directed arcs representing the predicates. The 
main drawback with LePUS is that it is based on 
mathematics and formal logic, making it difficult for 
average software developers to work with and providing a 
weak basis for integrated tool support. Proposed tool 
support for LePUS is based on Prolog and lacks support 
for the visual notation. The notation defines many 
abstractions to make diagrams terse. Thus there are many 
different syntactic elements leading to diagrams that, 
while compact, are difficult to interpret. LePUS 
concentrates solely on defining design pattern structures, 
and has no mechanism for integrating instances of design 
patterns into program designs or code. 

Florijn et al (1997) represent patterns as groups of 
interacting “fragments”, representing design elements of 
a particular type (eg class, method, pattern). Each 
fragment has attributes (e.g. classname), and roles that 
reference other fragments representing pattern 
relationships, e.g, a class fragment has method roles 
referencing the method fragments for methods of that 
class. The fragments actually represent instances of 



patterns. Pattern definitions are represented by prototype 
fragment structures; a one-level approach to defining 
patterns where the patterns. kept in a separate repository, 
are identical to the pattern instances in the fragment 
model. This system lacks support for the definition of 
design patterns and also lacks a strong visual syntax; 
visual aspects only provided by the tool interface. The 
single level architecture means patterns are only defined 
as prototypical pattern instances. We argue that concepts 
exist at the pattern level that do not at the pattern instance 
level, thus patterns can’t be specified in the most general 
way using only prototypical instances. 

Lauder and Kent (1998) propose an extension to UML to 
aid in “precise visual specification of design patterns”. 
They use a 3-layer model with a visual notation for 
expressing models. The notation is an amalgam of UML 
and “Constraint Diagrams” a notation to visually specify 
constraints between object models elements. A second 
notation expresses object dynamic behaviour and can 
represent generalised behaviour of design patterns.  We 
found their notation difficult; the differentiation between 
the diagrams at different levels was unclear and it seemed 
difficult to understand the reason why some abstractions 
were made at one level and not another. 

Some approaches use textual rather than visual languages 
(Eden et al 1998, Florijn et al 1997, Reiss 2000, Hedin 
1997).  While these have good ideas and aspects, we are 
interested in a visual language for modelling design 
patterns. We are particularly interested in applying to 
design pattern modelling the approach UML (Bosch 
1996, Sunye et al 2000) takes to object modelling. 

3 Overview of DPML 
DPML defines a metamodel and a notation for modelling 
design pattern solutions and solution instances within 
object models.  It is important to stress that DPML  can 
only be used to model the generalised solutions proposed 
by design patterns, not complete design patterns, that also 
contain information such as when the solution should be 
applied and consequences of using the pattern.  A design 
pattern solution is a design pattern with information 
describing particular classes, methods and relationships 
used to realise the design pattern. A more abstract design 
pattern may not necessarily specify such particular 
implementation choices. 

DPML is designed so that it can be used as a stand-alone 
modelling language for design pattern solutions or in 
conjunction with UML to also model solution instances 
within UML object models i.e. where in a UML model a 
pattern is used. A design  pattern solution instance 
describes the relationship between design pattern solution 
elements modelled in DPML and system design elements 
modelled in UML. This allows tracking of the usage of a 
design pattern solution in a UML design and the 
validation of the usage of this pattern solution i.e. 
checking whether the pattern has been completely and 
consistently expressed in the UML design. 

DPML supports incorporation of patterns at design-time, 
as opposed to implementation of design patterns during 
program coding (Wild 1996; Budinsky et al 1996). We feel 

design-time is the vital stage at which to include design 
patterns in he software engineering process, the 
assumption being that if design patterns can be effectively 
incorporated into the UML object model then converting 
the object model into code is, relatively speaking, 
straight-forward.   

DPML has been developed specifically with automated 
tool support in mind.  It is designed to be relatively easy 
to implement, particularly in conjunction with UML 
(Sunye et al 2000). We have carried out a detailed 
investigation into the implementation issues for the 
DPML and the processes that can be supported for 
working with the DPML. 
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Figure 1: Core concepts of DPML. 

The core concept of DPML (shown in figure 1) is a 
design pattern specification model which is used to 
describe the generalised structures of design patterns that 
are of interest to or useful to the user. This entails 
modelling the participants (interfaces, methods etc) 
involved in the pattern and the relationships (e.g. this 
interfaces declares this method) between them. 
Participants represent roles in the design pattern solution 
that program elements must play, and the relationships 
represent the constraints these elements must satisfy.. 
During the OO modelling process, where UML is used to 
create an OO model of a system, if a modeller sees an 
opportunity to use a design pattern previously defined, 
s/he can create an instance of that design pattern from the 
original definition. Once an instance of the pattern is 
created, the realisation process consists of either linking 
the participants in the design pattern to elements of the 
OO model, or creating new model members where 
required. The language’s well-formedness rules define 
which members from the OO model are eligible for 
fulfilling each participant’s role. In this way the user can 
be sure of creating a valid instance of the design pattern 
and so be sure of gaining the benefits of using the design 
pattern. 

The design pattern instance model also allows each 
individual design pattern instance to be tailored.  By 
default a design pattern instance contains members for all 
objects and constraints on these objects specified by the 
pattern definition, however certain parts of the pattern 



may be relaxed or extended on a case by case basis 
allowing pattern instances that are variations on the base 
pattern. 

4 Modelling Design Pattern Solutions 
In DPML design pattern solution models are depicted 
using Specification Diagrams, the basic notation for 
which is shown in Fig. 2. DPML models design pattern 
solutions as a collection of participants; dimensions 
associated with the participants and constraints on the 
participants. A participant represents a structurally 
significant feature of a design pattern, that when 
instantiated, will be linked to objects from the object 
model to realise the pattern. Constraints represent 
conditions that must be met by the objects filling the roles 
of the participants in a design pattern instance for it to be 
considered a valid instance of the design pattern. 
Dimensions are constructs associated with participants to 
indicate that the participant potentially has more than one 
object linked to it in an instantiation. They indicate that a 
participant represents a set of objects in the object model, 
instead of just a single object. 
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Figure 2: Basic DPML notation 

Participants are interfaces, implementations, methods, 
operations or attributes.  An interface (hexagon) 
represents a role that must be played by an object that 
declares some behaviour i.e. it exhibits an interface in the 
object model.  In a traditional object model this means an 
interface or a class can fill an interface role as both 
declare a set of operations that provide behaviour. An 
implementation (rectangle) represents a role played by an 
object that defines or actually implements some 
behaviour.  In a traditional object model an 
implementation would map to a class. The key concept 
with an implementation is that it defines no interface 
itself: its type or the declaration of its behaviour is 
defined entirely by the interfaces it is said to implement. 
This is different from the traditional concept of a class, 
which embodies both an interface and an implementation 

in the one object.  This split is designed to allow a clearer 
definition of roles of objects in a design.  A single object, 
in the case of a class, can play the roles of both an 
interface and an implementation. 

An operation (diamond) is the declaration of a piece of 
behaviour while a method (oval) is the definition or 
implementation of a piece of behaviour.  This mirrors the 
abstract/concrete split of interface/implementation. An 
attribute (inverted triangle) is a declaration of a piece of 
state held by an implementation. An attribute defines a 
role played by an attribute of a class in the object model. 

Constraints are either simple constraints or binary 
directed relations.  Simple constraints (plain text in curly 
brackets) define a condition specified in natural language 
to be met by the object bound to a single participant.  
Binary directed relations (lines with arrowheads) define a 
relationship between two participants, implying a 
relationship must exist between the objects in the object 
model playing the roles the participants define. The type 
of the binary directed relation determines the exact 
relationship that is implied.  For example the 
‘implements’ relationship between an implementation 
and an interface implies the object filling the role of the 
implementation must implement the object filling the role 
of the interface.  Other examples of binary directed 
relations are extends, realises, declared in, defined in and 
refers to. 

A more complex subclass of binary directed relations is 
the extended relations.  These define the mappings of a 
binary directed relation between participants that have 
dimensions associated with them. These participants have 
sets of objects associated with them and therefore you 
need to specify how the base relation maps between the 
two sets of objects. There are four possible mappings: the 
relation exists between every possible pair of objects; 
exactly once for each object; for every object in one set 
but not necessarily the other; and only between one pair 
of objects. These respectively are a total, regular, 
complete and incomplete relations. 

Dimensions specify that a participant can have a set of 
objects playing a role. The same dimension can be 
associated with different participants in a pattern and this 
specifies not only that these participants can have some 
multiple number of objects associated with them but that 
this number of objects is the same for both participants. 

Consider modelling the Abstract Factory design pattern 
from (Gamma et al 1994) (Fig. 3). This pattern is used by 
designers when they have a variety of objects 
(“Products”) which are subclasses of a common root-
class to create. A set of “Factory” objects are used to 
create these related “Product” objects.  

In this pattern there are six main participating groups of 
objects.  The abstract factory interface declares the set of 
abstract create operations that the concrete factories will 
implement.  This can be modelled by the DPML with an 
interface named AbstractFactory and an operation named 
createOps. 
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Figure 3: Example specification of Abstract Factory 
pattern using DPML. 

Figure 4. Object structure implied by DefinedIn 
relations associated with ConcreteCreateOps method 

 

The createOps operation represents a set of operations so 
it has an associated dimension (productsDimension). 
There is also a complete Declared_In relation running 
from createOps to AbstractFactory. This relation implies 
that all methods linked to the createOps operation in an 
instantiation of the pattern must be declared in the object 
that is linked to the AbstractFactory interface. 

In Abstract Factory the other groups of participating 
objects are the factory implementations, the method 
implementations that these factories define, the abstract 
product interfaces used by the abstract factory and the 
concrete products that the factories produce. These are 
modelled by a concreteFactories implementation, a 
concreteCreateOps method, a Products interface and a 
concreteProducts implementation respectively.   

The concreteFactories implementation has a dimension, 
factoriesDimension, to indicate it represents a number of 
concrete implementations. A complete Implements 
relation runs from concreteFactories to AbstractFactory, 
implying all the concreteFactories must implement the 
AbstractFactory interface.  

The concreteCreateOps method represents all methods 
from the set of concreteFactories that implement one of 
the sets of createOps so it is associated with both the 
factoriesDimension and productsDimension dimensions.  
It has a regular, complete Defined_In relation running 
from it to the concreteFactories implementation. This 
extended relation specifies that for every concrete factory 
there is a set of concreteCreateOps as shown in figure 4. 
A similar extended relation Realises runs from 
concreteCreateOps to createOps. 

The Products interface has the productsDimension 
associated with it to imply there are a number of abstract 
product interfaces, and the same number of abstract 

createOps operations. A regular Return_Type relation 
runs from createOps to Products, implying each of the 
createOps operations has exactly one of the Products as 
its return type. 

Finally the concreteProducts implementation has both 
productsDimension and factoriesDimension dimensions 
associated with it. This is because there is exactly one 
concreteProduct for each abstract product and concrete 
factory i.e. each concrete factory produces one concrete 
product for each abstract product interface. The 
concreteProducts implementation also takes part in an 
Implements extended relation with the Products interface 
and a Creates extended relation with the 
concreteCreateOps method.  These specify that each 
concreteProduct implements one Product interface and 
that each concreteProduct is created (instantiated) in 
exactly one of the concreteCreateOps methods. 

5 Design Pattern Instantiation and Realisation 
A DPML Instantiation Diagram models design pattern 
solution instances and their realisation within object 
models.  The design pattern instances are regarded as part 
of the object model, providing another construct that can 
be used in the description of a program.  Every design 
pattern instance is derived from a design pattern solution.  
It is possible to have numerous instances of the same 
design pattern solution in an object model, each having its 
own identifying name and Instantiation Diagrams and 
connected to a different set of realising elements in the 
UML object model. 

Instantiation Diagrams look similar to a Specification 
Diagrams; all of the basic symbols are the same shape, 
however the ‘proxy’ element icons are drawn with a 
dashed (or coloured) outline to distinguish them from 



‘real’ elements as shown in Fig. 5. ‘Proxy’ elements are 
participants and relations inherited from the base design 
pattern solution and are therefore immutable in the 
instance; they can only be altered by changing the base 
design pattern solution. ‘Real’ elements are participants 
and relations added to a design pattern instance to tailor 
that instance. In this way we can ensure the basic 
structure of all instances of the same design pattern is the 
same, but still allow instances to be specialised for a 
particular task. 
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Figure 5: Instantiation Diagram Notation 

In a design pattern instance every participant (‘proxy’ or 
‘real’) has a link that maintains a binding from the 
participant to some number of UML model elements. 
Participants with no dimension can only be linked with a 
single UML model element; those with one or more 
dimensions can be linked with multiple UML model 
elements. The names of the UML model element(s) that a 
participant is linked to are shown in an italicised, textual 
annotation attached to each participant symbol in an 
Instantiation Diagram. If no model elements are linked to 
that participant then there is no annotation. 

For example consider an instantiation of the Abstract 
Factory pattern. Assume we are implementing a GUI 
toolkit that allows programmers to create a GUI with 
windows, menus, icons, buttons etc. We wish to use the 
Abstract Factory pattern to allow the look and feel of the 
GUI to be changed at runtime. We declare a GUIFactory 
interface that has methods to construct all GUI elements 
required in our GUI toolkit. Different implementations of 
this GUIFactory create different sets of elements with 
different look and feel, allowing a change of look and feel 
by changing factories. A UML model for this design is 
shown in Figure 6.  

If we assume there are no additions to the basic design 
pattern structure defined earlier in this instantiation then it 
is simply a matter of realising the design pattern by 
linking the participants from our design pattern instance 
to suitable objects in the UML model.  This is done by 
the following steps: 

• A design pattern instantiation model is made by 
copying the structure of the design pattern solution 
and substituting interface proxies, method proxies 
and binary directed relation proxies for pattern 
interfaces, methods and relations respectively. 

• Each proxy in the design pattern instance model is 
linked to a UML design element. Some can be linked 
to multiple UML design elements e.g. createOps to 
createMenu, createButton etc. 

• Once all design pattern instance elements are linked 
to one or more UML design elements, consistency 
checks are made: Are all pattern instance elements 
linked? Are correct kinds of pattern instance 
elements linked to UML design elements? 

The final instantiation diagram is illustrated in Figure 7. 
The first instance element to UML design element link is 
the easiest, a link between the AbstractFactory interface 
in our design pattern instance and the GUIFactory 
interface in the UML model.  Next we have a link 
between concreteFactories implementation and our two 
factory classes SpaceFactory and MetalFactory.   We 
linked our createOps operation to the three methods 
declared in the GUIInterface interface namely, 
createScrollBar, createMenu and createButton. We 
linked our Products interface to the three interfaces 
ScrollBar, Menu and Button. The concreteCreateOps 
method is linked to the six implementing methods in our 
two factory classes: createScrollBar(): MetalScrollBar, 
createScrollBar(): SpaceScrollBar, 
createMenu():MetalMenu, createMenu():SpaceMenu, 
createButton():MetalButton, createButton ():SpaceButton. 
Similarly the concreteProducts implementation is linked 
to the six implementing product classes: MetalScrollBar, 
SpaceScrollBar, MetalMenu, SpaceMenu, MetalButton 
and SpaceButton. 

6 Tool Support: DPTool 
As mentioned earlier the DPML was designed 
specifically to facilitate the provision of tool support.  We 
have successfully implemented a prototype DPML CASE 
tool we call DPTool. A screen dump showing the tool in 
use is shown in Fig. 8. The tool supports, among other 
things: 

1. UML object models and the specification of these 
models using UML class diagrams. 

2. DPML models and their specification using DPML 
specification and instantiation diagrams. 

3. Consistent, multiple views of UML and DPML. 
4. Model management mechanisms, so users can create, 

save and reload UML and DPML models. 
5. An automatic design pattern instantiation 

mechanism, to create pattern instances from design 
patterns. 

6. An automated consistency mechanism between 
design pattern instances and base design patterns. 

7. An automatic model verification mechanism, which 
ensures the UML object model, and all design pattern 
instances within that object model, are correct If not, 
suitable error messages generated. 

8. A pattern instance realisation support mechanism, 
which assists users in realising a design pattern 
instance by highlighting the valid model elements 
that can be bound to any given participant in an 
instance.  This also allows users to create new UML 
model elements “on the fly” to be bound to a 
participant, if no suitable element exists in the UML 
model. 
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Figure 6. GUIFactory UML object model. Figure 7. Instantiation of the 
AbstractFactory pattern. 

  

 
 

Figure 8: Three diagrams implemented in the prototype DPML tool: 
(left) A UML Class Diagram.  (centre) A Design Pattern Specification Diagram. 

(right) A Design Pattern Instantiation Diagram.  Note these diagrams use colour to convey information. 
 
The designer creates pattern solution diagrams and UML 
design diagrams as required. Pattern instantiation 
diagrams are created when the user wants to either link 
existing UML design elements to design pattern elements 
they implement or wants to instantiate a design pattern 
with a partially complete UML design. After creation, the 
user specifies links between pattern instance elements and 
UML design elements, as illustrated in Figure 9. DPTool 
shows the designer all available UML design elements 
that can be linked to the design pattern instance proxies. 
The designer can link the pattern instance proxy to no 
UML model, can ask for a new UML design element to 
be created to which the pattern instance proxy is then 
linked, or can select from the list of items identified by 

DPTool as being valid UML design elements the pattern 
instance proxy can be linked to. 

The designer may request DPTool to validate their UML 
design in terms of the usage of design patterns with the 
design as expressed by design pattern instance links to 
UML design elements. DPTool identifies incompleteness 
and inconsistency in the design pattern usage and reports 
this to the designer. Figure 10 illustrates an example of an 
error report generated by DPTool after attempting to 
validate a UML design. An example is also shown of 
DPTool’s pattern and pattern instance manager, allowing 
designers to select patterns for instantiation from a 
catalogue. Pattern definitions are saved to a separate 
project file than UML designs and pattern instantiations 
allowing reuse of patterns across multiple design projects. 



 

Figure 10. Pattern and instance manager and pattern validation manager examples.

   

Figure 9. Example of binding pattern instance 
elements to UML model element(s). 

7 Evaluation 
We performed an evaluation of our tool and the DPML.  
This evaluation consisted of a user survey and a cognitive 
dimensions framework (Green and Petre 1996) 
evaluation.   The user survey consisted of a tutorial for 
the DPML tool that the survey participants carried out 
and a number of open-ended questions for them to 
answer.  The tutorial was a long and relatively detailed 
introduction to the tool that guided the users through 
tasks such as: creating a design pattern solution; creating 
a simple UML object model; instantiating the design 
pattern solution to create a design pattern instance; 
realising the instance within the UML object model; 
validating the object model and tracking any errors; and 
carrying out modifications to the design pattern after the 
instance has been created. 

The survey questions covered two general topics.  The 
first focussed on how intuitive the users found the 
concepts represented in the tool.  Questions explored 

which concepts in the tool the users could and could not 
easily understand. The second group of questions 
focussed on the usability of the tool.  They were designed 
to find the good and weak points of the tool, and which 
operations were easy to carry out and which were not. 

The general survey response to the tool was quite 
enthusiastic. The majority of the language concepts were 
found to be easy to understand and use.  In particular, the 
explicit separation between design patterns, design 
pattern instances and object models was easy to follow 
and effective in managing the use of design patterns. The 
design pattern definition process was also well 
understood.  The almost universally mentioned difficult 
points were the dimension concepts. The inability to 
attach comments to model elements was highlighted as a 
weak point by several survey respondents. 

The majority of the respondents found the tool effective 
to use for its primary tasks of creating and instantiating 
design patterns models. The pattern realisation (binding) 
process was mostly approved of, although it had some 
shortcomings, particularly in the visualisation of 
dimension categories. Respondents had a range of 
suggested extensions and improvements ranging from 
support for reverse engineering from object designs to 
design patterns (pattern abstraction) to inclusion of 
support for aspects.  Most encouragingly all respondents 
thought that the tool was worth using if design patterns 
were a part of your design process. 

The cognitive dimensions framework evaluation explored 
the full range of dimensions. Here we comment on some 
of the more important issues arising. 

Abstraction Gradient. The DPML is a mixed abstraction 
system. There are few explicit abstractions in the 
notation, which mostly consists of combinations of 
primitive elements.  However the starting level of the 
abstractions in the system is very high, i.e. the primitive 
elements in the system represent quite advanced 
abstractions in their own right. 

Closeness of mapping. DPML models conceptual abstract 
design structures and their realisation in concrete OO 
models. It defines a set of concepts we felt designers most 



commonly use to formulate these conceptual abstract 
designs, providing a language that closely matches their 
thinking. Most concepts are common to OO modelling.  
Two concepts, implementation and dimension, are not 
commonly used, however they provide more useful 
abstractions than the more common class and set. 

Consistency. The DPML is consistent.  Dimensions are 
denoted in a consistent way on all participants, be they 
methods or interfaces or in patterns or pattern instances. 
Participant shape is consistent for both patterns and 
pattern instances e.g. interfaces represented by rectangles 
and methods by ovals. The consistent treatment of 
methods and operations as full participants similar to 
interfaces and implementations has advantages over the 
specialised treatment they receive in many other 
languages. 

Diffuseness/Terseness. Generally DPML is more diffuse 
than other visual languages for design patterns such as 
Kent and Lauder’s (1998) or LePUS (Eden et al 1998).  
Both of these languages use additional abstractions or 
more detailed notations resulting in terser, smaller, 
diagrams. 

Hard Mental Operations. We have reduced the need for 
hard mental operations in DPML, by avoiding some of 
the dense, terse notation of other languages. The 
dimension concept, that is mostly unfamiliar to new users 
of the language, can be difficult to understand. This does 
not fall into the category of a ‘hard mental operation’ 
however because in our experience once familiarity with 
the concept is gained it is easy to apply and the layering 
of dimensions does not overly increase their complexity. 

Hidden Dependencies. The design pattern to design 
pattern instance link is a hidden dependency; it is not 
possible to tell explicitly from a design pattern the design 
pattern instances related to it.  Also, it is also not possible 
to tell from a UML model element which roles it is 
playing, if any, in design pattern instances. 

Progressive Evaluation. The automatic model verification 
mechanism, which locates errors in a model being 
developed, can be run at any stage in development. 

Role-Expressivenes. Every object in a diagram has an 
obvious shape, denoting its type, and a prominent name, 
to further clarify the role it is playing in the diagram. The 
model/view separation and multiple view support makes 
it possible to create modularised models, with each view 
of the model displaying a single related group of entities 
from the model. The view can be given a relevant name 
indicating the role the group of entities has in the model. 

Secondary Notation and Escape from Formalism.The 
potential for secondary notation is high. Layout is not 
constrained in any way, naming conventions can easily be 
used and multiple views can be used to break models up 
into logical pieces.  Escape from formalism is not so well 
supported.  The ability to add free text to model elements 
as a form of documentation is essential, as is the ability to 
add free text and annotations to diagrams in general, but 
are not yet supported in our tool. 

Visibility and Juxtaposability. The DPML tool suffers 
from poor visibility in one notable area; the indication of 

bound elements for design pattern instance participants.  
While it is easy to display a list of the bound elements for 
any one participant, it is not possible to display the list of 
bound elements for more than one participant at a time.  
Also the lists are just lists of elements; there is no visual 
representation of the realisation links between UML 
model elements and the pattern instance participants.  In 
other areas DPML has good visibility. DPML has good 
juxtaposibility with the ability to have multiple views 
open side by side, displaying different parts of the same 
model or related parts of different models. 

9. Summary 
DPML is a visual language for modelling design patterns 
and their instances.  We feel DPML offers several 
benefits over other modelling languages for design 
patterns and as a basis for tool support for design 
patterns.   

The ability to work with design patterns in conjunction 
with UML is a major benefit. UML is now a standard for 
OO modelling and its use is widespread. Compatibility 
with UML makes our approach more palatable for many 
programmers and designers as they are already familiar 
with UML, and many of the concepts in the DPML are 
built upon or similar to concepts in the UML. We found 
the meta-modelling approach to the definition of the 
DPML particularly useful.  Not only did this approach 
give us an avenue for defining the formal semantics of the 
language, but also we found it very sympathetic to the 
implementation of tool support, we were able to create a 
large and sophisticated tool implementing the language in 
a very short period of time. 

The DPML’s multi-level approach with design patterns, 
design patterns instances and object models is effective as 
is the basic premise of describing pattern structures in 
terms of participating objects and the relations between 
those objects.  We avoided introducing unnecessary 
abstractions into the language, as these enlarge the 
language and introduce abstract structures, which, when 
combined together, are difficult to interpret.  One of the 
novel concepts in the language is that of dimensions. We 
feel there is much promise in use of this concept in place 
of sets. It offers a more accurate description of the 
principles involved and offers a more sophisticated 
insight into the pattern structure. 

There are a number of concerns that we did not have time 
to address in this initial work, but are certainly important 
issues for the future. 

• Support for design pattern composition to create 
other design patterns.  This could be used to support 
design pattern hierarchies or pattern languages. 

• Support for specification of dynamic aspects of 
design patterns. 

• The introduction of an OCL-style constraint 
language, for more clearly expressing constraints.  

• Better tracking of the overlapping of design pattern 
instances in object models, particularly visualisation 



of the roles a UML element is playing in different 
design pattern instances. 

• Better visualisation of the bindings that occur during 
the pattern realisation process. A 3-dimensional 
notation for expressing this might well be 
appropriate. 

• Support for a classification scheme for the design 
patterns, to assist in deciding when to apply them. 

• Extending the pattern concept (as used in the tool) to 
allow a greater range of patterns e.g. architectural 
patterns or code level idioms. 
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