
Page 1

In Proceedings of SoftVis97, Adelaide, Australia, Dec 1997

Visualising Event-based Software Systems: Issues and Experiences

John C. Grundy† , John G. Hosking†† and Warwick B. Mugridge††

†Department of Computer Science University of Waikato
Private Bag 3105, Hamilton, New Zealand

††Department of Computer Science University of Auckland
Private Bag, Auckland, New Zealand

Abstract

Event-based software systems, such as componentware, tool abstraction, message passing systems, software process
environments, and many data visualisation systems, are becoming ever more common. Constructing, understanding, and
modifying such systems can be very difficult, however, and appropriate software visualisation support is often a great help to
developers. We describe some issues in both statically and dynamically visualising a range of event-based software systems.
We illustrate these issues with examples from our own experiences in developing a diverse range of event-based software
visualisation notations and tools.

1 . Introduction

Event-based software systems are based on software architectures that utilise the ideas of software component interdependencies,
the propagation of objects representing events between components, and the appropriate response to these events by the
receiving components [18]. Examples of event-based software systems include the following:

• Componentware systems, such as those based on Java Beans [30], Active-X [29] and OpenDoc [2], are composed of
discrete, interdependent software components which exchange events. Components respond to events received by other
components to appropriately redisplay data, update data structures, communicate over networks or with databases, etc.

• Tool abstraction systems [13] are similar to componentware in that discrete data and function-implementing software
components are wired together to produce an application. Tool abstraction systems use a combination of event passing
and method invocation, as well as a variety of triggering and coordination mechanisms to function.

• Process-centred environments [4] support models of work processes. For example, models of how software is to be
developed, which are “run”, or enacted, to guide or enforce how work is done. These systems are often event-driven,
with events causing rules to fire or being used to enact process stages, ensuring that appropriate responses to process-
related events are carried out.

• Data and program visualisation systems [7, 9] often utilise event-based models. On changes to visualised data, events
describing these changes are used to updates to visualisations of that data.

• Multiple view systems [33, 28] often utilise events to keep model and view objects consistent under change. When a
model object is updated, events describing this change are generated and propagated to view objects, which redisplay
and/or reconcile their state to the updated model object.

Many event-based systems are complex in nature, with many interdependent components and complex event propagation and
response behaviour. Their static structure can often be usefully visualised using graphical notations, to assist developers in
constructing, understanding and modifying them. Annotating structural descriptions with indications of event-based behaviour,
or developing separate behavioural models of a system, are also very useful. Such descriptions of static event-based system
structure and behaviour are also useful in documentation.

Visualising the dynamic behaviour of a running event-based system allows developers to view abstract representations of an
actual running system, rather than viewing their static structure and behavioural visualisations. These run-time visualisations
help developers in understanding how actual data and events are represented and propagated, and are often very useful during
debugging or understanding of such systems.

Constructing both static and dynamic event-based system visualisations can be non-trivial. Static visualisations can be
assembled by reverse engineering event-based system structures, although doing this automatically is usually quite difficult.
Often such static visualisations are best hand crafted by those designing and implementing the event-based software. Dynamic
visualisations necessarily require both design of the visualisation software and the detection of “interesting events” from the
event-based system software as it runs, used to drive the visualisation. The specification and realisation of such dynamic
visualisations usually needs to take into account the kind of event-based system being visualised, its software architecture and
implementation language, and the static visualisations used for design and documentation of the system.

Page 2

2 . Issues in Visualising Event-based Software Systems

Event-based software systems are generally comprised of a collection of interdependent software components, as shown in
Figure 1 [18]. Components may exchange data and control via operation invocation, as in other software systems, but a key
distinction with event-based systems is the propagation of “interesting events” between related components. A component
which has undergone a noteworthy state change, or other event, typically generates some description of this event, as an object.
This event object is broadcast to other components that have indicated an interest in such an event. Some event-based systems
broadcast all events to all dependent components, while others broadcast selected events to components indicating an interest in
the specific kind of event that has occurred [19, 35]. The structure of an event-based system may be static, or may have
components dynamically added or removed at run-time. This has resulted in event-based systems proving to be a very adaptable
and powerful model, suitable for use in many application domains [18, 8, 36, 7, 11, 12].

Component 1

Component 2 Component 3

Event propagation Event propagation

Operation
Call

"Event""Event"

Figure 1 Basic structure of event-based software systems.

For a developer to create a static visualisation of an event-based software system, such as the simple one in Figure 1,
languages are needed to express the system structure and behaviour. For example, the “notation” used in Figure 1 represents
components as ovals, component interdependencies as arrowed lines, and the propagation of events as small, shaded arrow
annotations. In order to visualise large, complex event-based systems, developers need appropriate notations to describe their
structure and semantics, along with tools that support system design and construction with these notations, and/or reverse
engineering tools which examine an implementation and produce such visualisations. Ideally, developers will have access to a
range of notations, depending on the nature of the event-based system(s) they are working with. They will be able to construct
multiple perspectives of the system (i.e. multiple views of parts of the system structure and behaviour). And they will be able
to design, build and maintain systems using these notations and views.

Dynamic visualisation of event-based software systems depends on both the run-time structure of the system and the detection
of events as they pass between software component instances. For example, in Figure 1 a running system might have an
instance of Component1 linked to zero, one or several Component2 and Component3 instances. When a Component1 instance
generates an event that is propagated to instances of Component2, the developer may wish to trace such propagation, step
through a series of inter-component propagations, and/or profile many such propagations to produce statistics about the run-
time nature of an instance of the component-based system. Tools supporting such visualisations may output event propagation
traces in a textual manner, showing relevant component and event data values. They may utilise graphical visualisations
similar to the static visualisatons used in designing and building the system. Or such tools may utilise quite different
visualisations; for example, timing diagrams and graphical event profiles.

We describe our experiences in developing static and dynamic visualisations in four of our event-based software systems.
MViews is a notation for describing a component-based software architecture, with CernoII providing the dynamic visualisation
of the implementation language of this architecture. ViTABaL is a tool abstraction system that utilises a visual language to
describe the structure and behaviour of the system, along with annotations to specify dynamic visualisations. Serendipity is a
process modelling and enactment language and environment with static and dynamic visualisation of software processes.
JComposer is a visual language for component-based software, which can be utilised for both static and dynamic visualisation.
We compare our work to other approaches to static and dynamic program visualisation, and indicate directions for further
research.

3 . MViews and CernoII

Our first attempt at static program visualisation of an event-based software system was with the MViews framework. MViews
is a framework for building multiple view editing tools [20]. It is based on the Change Propagation and Response Graph
(CPRG) software architecture, an event- and component-based architecture for maintaining consistency between interdependent
software components [19]. CPRGs, and thus MViews framework class specialisations, consist of components and inter-
component relationships, with components and relationships having attributes and operations. When a component or
relationship is modified by operations, change description objects representing these events are generated and propagated along
the relationship links. The CPRG architecture has a graphical notation that represents components as rectangular icons,
relationships between components as ovals, and event flows allow relationship links as arrow annotations [19]. Figure 2
shows an example of the MViews architecture representing a OO CASE tool structure. We have used the CPRG notation as an

Page 3

Architecture Description Language to describe MViews environments during design and documentation, thus describing their
environment static structure and aspects of its behaviour (event propagation between components).

Displays/
External

Tools

Views

Base
Layer

class

class

generalisations

window

drawing_window text

text forms

features

class_icon

class_icon

gen_glue
class_text feature_text

text

drawing_window

window

external_class

External Interface
(Data/Event interchange)

External

...

feature

text forms

view rel. view rel.view rel. view rel. view rel.

Figure 2. The MViews architecture, using the CPRG notation.

Figure 3. An example of CernoII visualising a running MViews program.

Large systems developed in MViews, such as the OO development environment SPE [16], integrated CASE tools OOEER and
NIAMER [43], and modelling environment EPE [1], utilise many different components, component inter-relationships and
complex event flows. Dynamic visualisation of such MViews-based systems proved to be very useful in understanding the
systems (for other users of the framework), and for debugging. To aid such visualisation, we developed some simple textual

Page 4

and graphical program visualisation components, using MViews itself [15]. These provided simple traces of events flowing in
part of an MViews system, and simple graphical renderings of these event traces.

These visualisation components proved too limited in general. Hence the CernoII program visualisation system was
developed, to not only visualise MViews-based environments but also to visualise any program developed using Snart, the OO
Prolog implementation language of the MViews framework [16]. CernoII is an MViews-implemented tool, which allows
developers to visualise their running Snart programs using a simple, visual representation of objects and references, and to
create multiple visualisations of different parts of their programs. It also allows developers to create complex visualisations,
such as timing diagrams and event trace profiles. A textual language is used to specify the appearance of visualisation
elements. Reusable "abstractors" are used to generate abstractions of underlying program data and execution structures. These
allow tailored visualisations of interesting program events or abstractions of sequences of events to be readily developed. Figure
3 shows three CernoII visualisations. View 1 is a timing diagram, similar to an instantiation of a UML sequence diagram.
View 2, showing component referencing structures together with event flows, is similar to a UML collaboration diagram.
View 3 is a map metaphor view [15] which uses size and colour to provide a visual indication of event propagation frequency
between and within clusters of components. An important lesson we learned from CernoII was the need to allow simple
specification of new types of visualisation, particularly those abstracting from specific program events to sequences of event
flows.

4 . ViTABaL

MViews uses a simple type of event-based model, in which a component generating an event-representing object propagates
this object to all connected components to inform them of the event. A more sophisticated kind of event-based system is “tool
abstraction”, where components are distinguished by data-structure-implementing and function-implementing “toolies” [13].
Events are propagated between selected, linked components, with a variety of event responses supported. ViTABaL is a Visual
Tool Abstraction Language, implemented using MViews but which generates Snart code to implement tool-abstraction-based
systems [17]. ViTABaL provides a novel visual language for describing the static structure of such systems. An example,
using Parnas’ KWIC (Key Word In Context) example, is shown in Figure 4. Toolies implementing event-driven functionality
are shown as ovals, while a shared pool of ADT toolies are shown as rectangles. Toolies are connected by event dependencies,
and annotations indicate different kinds of events and event parameters. For example, the “insert(-line)” event sent from the
input functionality toolie to the line_buffer ADT toolie indicates a insert event sent to the line_buffer is triggered by the input
toolie and passed a line to insert into the buffer. ViTABaL supports multiple views of toolies, including orthogonal and
hierachical visual views, textual event response implementation views, and supports event propagation annotations such as
broadcast, request, listen before and listen after.

Figure 4. An example of a static ViTABaL program structure.

Dynamic visualisations of ViTABaL programs utilise visual static structure views by highlighting “active” toolies and event
propagation links. We have also provided textual event tracing views that show event data, and toolie inspection dialogues
which allow the attribute values of toolies to be visualised. An example of a running ViTABaL program being visualised is
shown in Figure 5. These views, like CernoII visualisations, are updated as a program runs; i.e. as events are propagated and
data changes. Due to ViTABaL’s support of concurrent toolie execution, such visualisations are very helpful in understanding
toolie interdependencies and operation; these become quite complex even for simple system with a limited number of toolies
and toolie interconnections. We intend to construct "concurrent timing diagram" for ViTABaL programs, using CernoII.

ViTABaL shows the benefit of reusing design level abstractions in a concrete instantiated form for visualisation purposes,
providing a ready mapping of concepts from design to implementation. Similar reasoning was behind the development of early
CernoII visualisations, which aimed to instantiate analysis and design level object and interaction diagrams for visualisation
purposes.

Page 5

Figure 5. A running ViTABaL program being visualised.

5 . Serendipity

Figure 6. An example of Serendipity environment process models.

Page 6

Process-centred environments allow users to describe work processes, for example the process by which software is, or should
be, developed [4]. Such environments typically utilise a form of event-based system to run, or “enact” such process models,
with process stages triggered by events sent to them by other stages or external sources. These environments are useful for
planning and coordinating multiple developers working on software projects. We have developed the Serendipity process
modelling and enactment environment, which utilises two kinds of event propagation and response to drive process model
enactment and to act on a variety of stimuli [23, 24].

Figure 6 shows examples of static visualisations of Serendipity process models for the ISWP6 Software Process example [26,
21]. The bottom right diagram is the top-level model of this process, with the left hand diagram an exploded description of the
“Design, Code and Test” process stage. Stages (ovals with an ID, role and name) are connected by “enactment event” flows.
When a stage completes, a “finished” event flows into the connected stage(s) and enacts them appropriate. Additional modelling
constructs include artefacts, tools and roles, and “usage” connections describing how different stages make use of these. The
top, right diagram shows how enactment and artefact modification events can be process by filters (rectangular icons) and
actions (shaded ovals). Filters detect interesting events and pass them onto other filters or actions, which then carry out some
operation(s) based on the events they receive. This allows developers to specify work coordination strategies, to automate
various event-triggered tasks, and to integrate third-party tools into their process models.

Figure 7 shows an enacted Serendipity process model (left-hand side, top). Enacted stages are highlighted by shading and
colouring, indicating who has enacted stages and which enactment links have caused a stage to become enacted. Dialogues
showing enactment histories for stages, work done (i.e. artefact modifications) for stages, and modifications for artefacts are
also supported. The bottom diagram in Figure 7 shows an Excel graph indicating time spent on process stages and estimated
time remaining. This was based data on time spent between enactment of stages (recorded by Serendipity) and estimated time
remaining for each stage (recorded by the project leader). A Serendipity action generated a delimited text file for import into
Excel, where a simple graphing macro was used to generate the visualisation. These different forms of dynamic visualisations
of an enacted software process assist developers in using the process, coordinating their work, tracking and analysing their
work, and ultimately in improving their software processes.

Figure 7. An enacted Serendipity process model.

The Serendipity enactment visualisations use the same approach as CernoII and ViTABaL in concretely instantiating, then
annotating, design level diagrams. The timing graphs, however, also show the need to be able to specify views representing

Page 7

higher level abstractions, as was the case in CernoII. In Serendipity, however, such visualisations have been hand crafted. The
lack of a CernoII-like ability to specify such visualisations has thus limited Serendipity's capabilities.

6 . JViews and JComposer

Due to various limitations with the implementations of MViews, ViTABaL and Serendipity, we have recently developed the
JViews framework, a successor to MViews and CPRGs. This is a component-based framework implemented using the Java
Beans componentware API [22]. Component-based software systems (often referred to as “componentware”) have become
popular, in large part because of their event-based nature, which allows reusable components to be readily “plugged-and-played”
with other components. Component-based software architectures include Java Beans [30], Active X [29], and Open Doc[2].

JComposer is a tool to design and generate JViews-based systems. It utilises a modified form of the CPRG static visualisation
notation to allow developers to design JViews-based software systems. Figure 8 shows an example of JComposer being used
to design a multiple-view EER modelling tool. Components (square icons) are linked by relationship links and relationship
components (oval icons). Components have attributes and operations, and are interdependent. Events generated by one
components are propagated to other components. The behaviour of components is either specified textually (coding in Java) or
by attaching visualisations of reusable, Serendipity-style filters and actions to components via relationships. Filters and actions
can themselves be defined in several ways: via parameterised filters and actions specified via dialogues, hierarchical definitions
composed of simpler filters and actions connected together, or via Java code. The visual notation allows designers to describe
the structure of JViews-based systems at a high level of abstraction, and allows new systems to be composed by reuse of
existing components.

Figure 8. A JViews system being defined with JComposer.

A slightly modified form of the JComposer notation is used to allow users of JViews-based environments to visualise running
JViews components, and to modify them. End-users can tailor their environments by adding additional components, filters
and/or actions to visualisations using the same editing techniques and notation as in JComposer itself. Filters and actions may
be added by end-users, for example, to notify them of changes made by other users, to automate simple tasks such as backing

Page 8

up data or specifying defaults for newly created components, and to invoke third-party tools from within JViews-based systems.
Figure 9 shows an example of a running JViews-based environment, with the bottom-right view showing visualised, running
JViews components. Other visualisation techniques support by JViews environments include group awareness (the highlighted
entity icon in the top left diagram indicates another user is editing it), changes broadcast from other users (in the right hand
diagram) and modification histories for components (left hand dialogue).

Figure 9. A running JViews system being visualised and extended.

7 . Related Work

Various approaches to static program visualisation have been developed to aid developers during implementation and
maintenance of programs. These approaches generally focus on the structure of modules making up logical components of the
system. Examples include the Eiffel short and flat utilities [27] for viewing abstractions of OO programs, programming
environment browsers, such as Semantic C++ [38], program filtering tools, such as multi-dimensional browsers [41] and star
diagrams [14]. These approaches to supporting static software visualisation can only be used to visualise the basic structure of
event-based software. They tend to focus on data and procedural flow of control and do not express the flow of events and
triggering of actions via events. Some Architecture Description Languages (ADLs) and reverse engineering tools [44] provide
additional abstractions which capture some event-based aspects of software architectures. Some modelling notations and
supporting CASE tools also provide abstractions for capturing information about event-based systems, such as UML event
diagrams [32]. Such modelling languages and ADLs tend to be at a higher level than our approaches to visualising event-based
systems, and do not always provide detailed documentation of event protocols.

Dynamic program visualisation systems provide support for specifying, running and analysing executing programs. Examples
include BALSA-II [7], Tarringim [31], and Zeus [8]. These systems try to provide high-level abstract analyses of programs,
rather than the lower-level visualisations that we have concentrated on to support debugging and architecture understanding.
Other approaches which use these lower-level visualisation techniques include 3D call graph analysis and highlighting [37, 39]
and Self’s visual debugger [9]. These approaches do not focus on the event-based nature of systems, however, being more
general in nature. Our work, including ViTABaL, Serendipity and JComposer focus not only on program structuring, dynamic
animation of structures and component inspection, but also on the passing of events between components at run-time.

Visual languages often provide a combination of static program structure visualisation using a visual language to structure and
code a program, and animation of this visual language to dynamically visualise a running program. Examples of this approach

Page 9

include Prograph [10], Fabrik [25] and Garden [34]. Visual languages have also been used to design and visualise parallel and
distributed systems, for example PEDS [46] and Meander [45]. These approaches are similar to ViTABaL’s use of an ADL for
structure and then animation of this structure to visualise a running program.

Process-centred environments (PCEs) tend to be event-focused in nature, with events either being used to control process
enactment or used to trigger rules which constraint process enactment. Examples of event-driven PCEs include Regatta [40],
Teamware FLOW [42], ADELE-TEMPO [5] and ProcessWEAVER [12]. Rule-based environments include SPADE [3] and Oz
[6]. Because many of these environments use graphical languages to only visualise structure and not event behaviour, they can
be very difficult to understand and use. Serendipity improves on both the static and dynamic visualisation of process models by
indications of event flows between stages, the use of graphical filters and actions to explicitly program event-handling, and the
use of various highlighting techniques to visualise enacted models.

8 . Summary

We have described some of the issues involved in static and dynamic visualisation of event-based software systems. This
includes the need for suitable, often visual, descriptions of the architecture of such systems, and for dynamic visualisations of
parts of running event-based systems. We have described our experiences in providing static and dynamic visualisations for a
range of such systems. These include notations and simple dynamic visualisations of CPRG event-based systems, visual
languages supporting both static and dynamic visualisation of tool-abstraction based systems, static and dynamic visualisations
of software process models, and static and dynamic visualisations of componentware systems. Much of our work has focused
on the need to describe new abstractions for static and dynamic program visualisation, and to allow the reuse of existing
abstractions.

We are working on improving the static and dynamic visualisation languages for JViews-based systems. We plan to use more
expressive visual annotations along with the component, relationship, filter and action abstractions currently used. We are also
using the dynamic visualisation views to support sophisticated visual querying of running systems. Finally, we are building
reverse-engineering tools to examine third-party Java Beans in order to incorporate these into JComposer specifications, using
our visual notations.

References
[1] Amor, R., Augenbroe, G., Hosking, J.G., Rombouts, W., and Grundy, J.C., “Directions in modelling environments,”

Automation in Construction, no. 4, 173-187, 1995.
[2] Apple,OpenDoc Users Manual, Apple Computers Inc., 1995.
[3] Bandinelli, S., Fuggetta, A., and Ghezzi, C., “Process model evolution in the SPADE environment,” IEEE Transactions

on Software Engineering, vol. 19, no. 12, 1128-1144, December 1993.
[4] Bandinelli, S., DiNitto, E., and Fuggetta, A., “Supporting cooperation in the SPADE-1 environment,” IEEE

Transactions on Software Engineering, vol. 22, no. 12, .
[5] Belkhatir, N., Estublier, J., and Melo, W.L., The Adele/Tempo Experience, Software Process Modelling & Technology.

Research Studies Press, 1994.
[6] Ben-Shaul, I.Z. and Kaiser, G.E., “A Paradigm for Decentralized Process Modeling and its Realization in the Oz

Environment,” in Sixteenth International Conference on Software Engineering, May 1994, pp. 179-188.
[7] Brown, M.H., “Exploring algorithms using BALSA-II,” COMPUTER, vol. 21, no. 5, May, 14-36 1988.
[8] Brown, M.H., “ Zeus: A System for Algorithm Animation and Multi-View Editing,” in Proceedings of the 1991 IEEE

Symposium on Visual Languages, IEEE Computer Society Press, 1991, pp. 4-9.
[9] Chang, B.W., Ungar, D., and Smith, R.B., “Getting close to objects,” in Visual Object-Oriented Programming, Burnett,

M., Goldberg, A., and Lewis, T., Eds. Manning/Prentice-Hall, 1995, chap. 9, pp. 185-198.
[10] Cox, P.T., Giles, F.R., and Pietrzykowski, T., “Prograph: a step towards liberating programming from textual

conditioning, , IEEE Computer Society Press,” in Proceedings of the 1989 IEEE Workshop on Visual Languages, 1989,
pp. 150-156.

[11] Dannenberg, R.B., “ A Structure for Efficient Update, Incremental Redisplay and Undo in Graphical Editors,” Software-
Practice and Experience, vol. 20, no. 2, 109-132, February 1990.

[12] Fernström, C., “ProcessWEAVER: Adding process support to UNIX,” in 2nd International Conference on the Software
Process: Continuous Software Process Improvement, IEEE CS Press, Berlin, Germany, February 1993, pp. 12-26.

[13] Garlan, D., Kaiser, G.E., and Notkin, D., “ Using Tool Abstraction to Compose Systems,” COMPUTER, vol. 25, no.
6, 30-38, June 1992.

[14] Griswald, W., Chen, M.I., Bowdidge, R., and Morgenthaler, J.D., “Tool Support for Planning and Restructuring of Data
Abstractions in Large Systems,” in Proceedings of the Fourth ACM Symposium on the Foundations of Software
Engineering, ACM Press, San Francisco, 1996, pp. 33-45.

[15] Grundy, J.C., “Multiple textual and graphical views for Interactive Software Development Environments,” Ph.D. thesis,
University of Auckland, Department of Computer Science, June 1993.

[16] Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge, W.B., Connecting the pieces, Chapter 11 in Visual Object-
Oriented Programming. Manning/Prentice-Hall, 1995.

[17] Grundy, J.C. and Hosking, J.G., “ViTABaL: A Visual Language Supporting Design By Tool Abstraction,” in
Proceedings of the 1995 IEEE Symposium on Visual Languages, IEEE CS Press, Darmsdart, Germany, September
1995, pp. 53-60.

Page 10

[18] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Towards a Unified Event-based Software Architecture,” in Joint
Proceedings of the SIGSOFT'96 Workshops, Vidal, L., Finkelstein, A., Spanoudakis, G., and Wolf, A.L., ACM Press,
October 14-15 1996, pp. 121-125.

[19] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Supporting flexible consistency management via discrete change
description propagation,” Software - Practice & Experience, vol. 26, no. 9, 1053-1083, September 1996.

[20] Grundy, J.C. and Hosking, J.G., “Constructing Integrated Software Development Environments with MViews,”
International Journal of Applied Software Technology, vol. 2, no. 3-4, 133-160, 1996.

[21] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Low-level and high-level CSCW in the Serendipity process
modelling environment,” in Proceedings of OZCHI'96, IEEE CS Press, Hamilton, New Zealand, Nov 24-27 1996.

[22] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A Java-based toolkit for the construction of multi-view editing
systems,” in Proceedings of the Second Component Users Conference, Munich, Germany, July 14-18 1997.

[23] Grundy, J.C. and Hosking, J.G., “Serendipity: integrated environment support for process modelling, enactment and work
coordination,” Automated Software Engineering, vol. 5, no. 1, .

[24] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Support for end user specification of workflows, work coordination
and tool integration,” to appear in the Journal of End User Computing.

[25] Hosking, J.G., Visualisation of Object Oriented Program Execution, Proceedings 1996 IEEE Symposium on Visual
Languages, Boulder, IEEE CS Press, Sept 1996, pp. 190-1.

[25] Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., and Doyle, K., “Fabrik: A Visual Programming Environment,” in
Proceedings of OOPSLA ‘88, ACM Press, 1988, pp. 176-189.

[26] Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama, T., Osterweil, L.J., Penedo, M.H., and Rombach, H.D.,
“Software Process Modelling Example Problem,” in Proceedings of the 6th International Software Process Workshop,
(Ed), T.K., IEEE CS Press, Hokkaido, Japan, 28-31 October 1990.

[27] Meyer, B., Object Oriented Software Construction. Prentice-Hall, 1988.
[28] Meyers, S., “Difficulties in Integrating Multiview Editing Environments,” IEEE Software, vol. 8, no. 1, 49-57, January

1991.
[29] Microsoft, C., “ActiveX,” http://www.microsoft.com/com/, 1997.
[30] Sun Microsystems, “Java Beans 1.0 Specification,” http://www.javasoft.com/javabeans/,1996.
[31] Noble, J., Groves, L., and Biddle, R., “ObjectOriented Program Visualisation in Tarringim,” Australian Computer

Journal, vol. 27, no. 4.
[32] Rational, C., UML Document Set Version 1.1, Rational�Corporation, http://www.rational.com/uml/references/, Version

1.1, 1997.
[33] Reiss, S.P., “PECAN: Program Development Systems that Support Multiple Views,” IEEE Transactions on Software

Engineering, vol. 11, no. 3, 276-285, 1985.
[34] Reiss, S.P., “ Working in the GARDEN Environment for Conceptual Programming,” IEEE Software, vol. 4, no. 11,

16-26, November 1987.
[35] Reiss, S.P., “Connecting Tools Using Message Passing in the Field Environment,” IEEE Software, vol. 7, no. 7, 57-

66, July 1990.
[36] Reiss, S.P., “ Interacting with the Field environment,” Software practice and Experience, vol. 20, no. S1, S1/89-S1/115,

June 1990.
[37] Reiss, S., “A Framework for Abstract 3D Visualisartion,” in Proceedings of the 1993 IEEE Symposium on Visual

Languages, IEEE CS Press, Bergen, Norway, 1993, pp. 108-115.
[38] Semantec, I., Semantec C++ Reference Manual, Semantec�Corporation, 1993.
[39] Stasko, J.T. and Wehrli, J.F., “Three-dimensional Computation Visualisation,” in Proceedings of the 1993 IEEE

Symposium on Visual Languages, IEEE CS Press, Bergen, Norway, 1993, pp. 100-107.
[40] Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari, B., and Irwin, K., “A Business Process Environment

Supporting Collaborative Planning,” Journal of Collaborative Computing, vol. 1, no. 1.
[41] Taivalsaari, A., “Multidimensional Browsing,” in Proceedings of 8th Conference on Software Engineering

Environments, IEEE CS Press, Cottbus, Germany, 1997.
[42] TeamWARE, I., TeamWARE Flow, (http://www.teamware.us.com/products/flow/), 1996.
[43] Venable, J.R. and Grundy, J.C., “Integrating and Supporting Entity Relationship and Object Role Models,” in

Proceedings of the 14th Object-Oriented and Entity Relationship Modelling Conferece (OO-ER'95), Lecture Notes in
Computer Science, Springer-Verlag, Gold Coast, Australia, 1995.

[44] Proceedings of the Joint SIGSOFT96 Workshops, Vidal, L., Finkelstein, A., Spanoudakis, G., and Wolf, A.L., ACM
Press, ACM, San Francisco, 1996.

[45] Wirtz, G., “A Visual Approach for Developing, Understanding and Analyzing Parallel Programs,” in Proceedings of the
1993 IEEE Symposium on Visual Languages, IEEE CS Press, 1993, pp. 261-266.

[46] Zhang, D.Q. and Zhang, K., “A Visual Programming Environment for Distributed Systems,” in Proceedings of the
1995 IEEE Symposium on Visual Languages, IEEE CS Press, Darmsdadt, Germany, 1995.

