
Supporting aspect-oriented component-based systems engineering

John Grundy

Department of Computer Science, University of Waikato
Private Bag 3105, Hamilton, New Zealand

jgrundy@cs.waikato.ac.nz

Abstract

Current approaches to component-based systems
development do not adequately capture high-level
knowledge about component provided and required
services for use during design, implementation and run-
time deployment. We describe a new approach to
engineering such systems that characterises components
by the various "aspects" of the overall system each
component provides to or requires from end users or other
components. These aspects include user interface,
persistency, distribution, collaboration, inter-component
relationships. Appropriate software architecture and
CASE tool support is needed in order to effectively
describe, reason about and implement this encoding of
high level knowledge about components. We motivate the
need for aspect-oriented component engineering, describe
and illustrate our approach and its current software
architecture and development tool support, and report on
our component-based system development experiences.

1. Introduction

Component-based systems, or "componentware",
have become popular as an approach to systems
development which promises improved reuse,
compositional systems construction, and end user
configuration support [10, 20]. Various software
architectures and implementation frameworks have been
developed based on the notion of software components,
including OpenDoc [1], COM [18], JavaBeans [16], and
JViews [5]. Various development tools and methodologies
have been developed to support component-based
software construction [2, 15, 17, 20, 22].

Currently component-based architectures and
development approaches focus on designing and

implementing component interfaces, and encoding low-level
information about components for use at run-time, such as
COM type libraries and JavaBeans introspection [16, 18]. We
have found such approaches do not adequately capture
knowledge about component provided and required services,
for neither other components nor end users to use [6, 7]. This
makes component design, implementation and deployment
more difficult than if components could publicise more
information about themselves, and this information was used
to better guide component design and implementation.

To overcome these problems, we have been working on
a new component development approach we call aspect-
oriented component engineering. This focuses on identifying
various aspects of an overall system a component provides to
or requires from other components and end users. Aspects
include systemic characteristics of systems such as user
interfaces, component persistency and distribution,
collaborative work and end user configuration support, and
may include domain-specific characteristics. Component
developers use aspects to describe more fully component
required and provided services, and use aspects to guide
component implementation. We describe extensions we have
made to a software architecture, its ADL, implementation
framework and run-time support to effectively support
aspect-oriented component engineering. We also discuss
enhancements to a CASE tool for this architecture. The
overall aim of this research is to better capture, describe and
reason with more knowledge about components than present
approaches, during component desigm, implementation and
deployment.

We begin with a motivating example application for this
work. We then overview the concept of aspect-oriented
component engineering, and discuss appropriate software
architecture, ADL and implementation framework support
for this methodology. CASE tool support and run-time usage
of component aspects is discussed. We conclude with a
report of our experiences with this approach, compare it to
existing approaches, and overview possible future work.

Version control tool

View layer component
(window)

View iconic
components

Stage Enactment
history

View Editing history

Persistency component

End user "agent"
specification

Dynamically reused
components

Figure 1. Example component-based application: Serendipity-II.

2. Motivation

Figure 1 shows an annotated screen dump from
Serendipity-II, a software process modelling and
enactment environment [7], that provides multiple,
enactable views of a software process. Visual languages
are used to describe work processes and end user deployed
software agents, and multiple user support is provided
with collaborative view editing and versioning.

Serendipity-II was developed using a component-
based software architecture, where a variety of software
components were composed to form the environment. The
environment can also be extended at run-time with new
components "plugged in" by end users to provide
dynamically deployable software agents and tool
integration. Many components have been reused from
other systems, including the event history component
(reused for both enactment and editing histories and
reconfigured for use in Serendipity-II), and the version
control and event broadcasting components, which have
only some of their capabilities used by Serendipity-II.
When developing component-based applications a range
of complex engineering issues arise. These include:
• Designing software components to appropriately

provide certain functionality to other components and
end users, and require functionality from other
components. Reasoning about complex provided and
required inter-relationships of components is difficult
in any non-trivial system.

• Reusing existing components when developing
applications, particularly user interface, collaborative
work and middleware components. Reasoning about how
capabilities reused components provide and require fit
with other components is very challenging.

• Component user interface facilities for end users. The
disparate components that are composed to produce a
component-based application should provide a consistent
look-and-feel, despite many components not being
designed with each other in mind. Some components
should thus provide windows, menus, button panels, tool
bars and dialogues which can be suitably extended and
modified by other components.

• Components supporting middleware functions like data
persistency, distribution and collaborative work need to
be appropriately reused and configured. Such
components often need to be used by all components in
an application requiring such facilities, and matching
middleware capabilities to component functional and
non-functional requirements is crutial.

• End user application configuration is increasingly
demand to achieve a major aim of plug-and-play
component technologies. To support this, end users must
have access to knowledge about component capabilities
they can understand and use. Other components need
similar knowledge to automatically reconfigure
themselves and related components.

3. Aspect-oriented Component Engineering

3.1. Concept of Component Aspects

To overcome current problems of lack of knowledge
about software component capabilities during design and
deployment we have been working on a new component
development methodology, aspect-oriented component
engineering. Our approach uses a concept of "aspects" of
an application for which components provide capabilities
to or require capabilities from other components or end
users. Aspects provide multiple perspectives onto the
provided and required services of software components,
allowing functional and non-functional requirements to be
organised using a set of systemic categorisations.

We have developed a set of common aspects of an
overall application components provide services to or
require services from other components. These categories
of systemic aspects include user interface, component
persistency and distribution, collaborative work, inter-
component relationship, and end user configuration. This
is similar though more generalised concept of an aspect as
used by aspect-oriented programming [11]. Other, domain
specific aspects or different systemic aspects could also be
used to categorise component services, such as process
modelling and process enactment capabilities for
Serendipity-II. Our systemic aspect categorisations have

worked well in our problem domain of collaborative,
multiple view design tools and Information Systems.

Aspect information is captured and documented during
component requirements engineering and software
component design, providing knowledge at differing levels of
abstraction about component capabilities. Aspect details may
relate closely to software component interfaces and services,
or span multiple interfaces. Different aspects may share
software component interface operations or be disjoint. For
some aspects each component provides and/or requires
certain capabilities to/from other components and end users.
Each of these "aspect details" may describe particular
interface or functional capabilities a component provides or
requires, and may also describe non-functional constraints on
the provision of or use of such capabilities. Some provided
aspects may be transitive, i.e. indirectly provided by another
component related to the “providor”. Not all required aspects
may necessarily need to be fulfilled to use a component, but
non-provided aspects mean services dependant on these can’t
be used in the component configuration. Constraints
associated with aspects control the matching of provided and
required aspects, and may also be transitive across several
related components. Groups of components can have
aggregate provided and required aspects that relate to the
group as a whole and which can be reasoned about. Aspect-
related knowledge can be codified in component
implementations and provided to other components or end
users and used to validate run-time component
configurations.

View layer
component

Event history
component

Collaborative
editing component

Event broadcaster
component

File Persistency
component

View icon
components

User interface:
 +window
 +extensible menu bar
Collaboration:
 -collab editing
Persistency:
 +serialise/deserialise
 + save/load data
 - read/write data
Configuration:
 + property sheet

User interface:
 + menu item
 - extensible menu bar
Collaboration:
 + async/sync editing
Distribution:
 - event broadcasting
 - data send/reveive
 - data serialise/deser.
 + event receiving

Distribution:
 + event send/receive
 + data send/receive
 - event actioning

Persistency:
 - serialise/deser. data
 + write data
 + read data
 + find data

User interface:
 + dialogue
 + extensible buttons panel
Distribution:
 - broadcast events
 + generate events
 + receive events
 Persistency:
 + serialise/deserialise
events
 - save/load events
User configuration:
 - wizard/visual tool

provides requires

Aspect kind:
 + provides aspect detail
 - requires aspect detail

(render icons)

(provides window)

(adds "Collaboration"
menu)

Serendipity-II
component

Figure 2. Some example components, aspects, aspect details and aspect usage from Serendipity-II.

3.2. Examples from Serendipity-II

Figure 2 illustrates some aspects for some
Serendipity-II process model view-related components.
Some components have several different kinds of aspects
and associated aspect details they provide and/or require,
for example view layer and event history components.
Others have a more narrow focus and consequently less
aspects of the overall system they contribute to, such as
the event broadcasting and persistency management
middleware components. Components are related by inter-
component links (grey directed arcs), and most provided
and required aspects of these linked components should be
matched up if a system configuration is valid (solid
directed arcs). Some provided capabilities of some
components are not used by Serendipity-II, hence no other
component requires such aspects.

3.3. Aspect-oriented Component Engineering Process

Figure 3. Basic AOCE process.

A key difference between aspect-oriented component
engineering (AOCE), illustrated in Figure 3, and
conventional OOA/D is that component requirements may
be reasoned about from an application perspective i.e. an
overall system’s requirements, or from individual
component or groups of reusable components. We have
found using aspects to characterise component capabilities
allows the relationship between domain-specific and
generic, reusable components to be more easily reasoned
about and specified. Software component design refines
both component and aspect specifications, choosing

appropriate user interface, middleware and database
technologies to implement a specification. Component
implementation codifies aspect information in
implementation classes, and leverages design and
requirements-level aspects to validate component
implementations. Component aspect information is
accessible an run-time by other components and end users.

4. Software Architecture Support

In order to effectively support aspect-oriented
component design and implementation, we have enhanced an
existing component-based software architecture, its
architecture description language, and its implementation
framework to support aspect description and codification.
The JViews software architecture was used to develop
applications like Serendipity-II, and provides a set of
component-based abstractions for developing multiple view,
multiple user design tools [5]. Figure 4 shows an example of
how JViews is used to describe and implement the software
architecture for Serendipity-II. JViews systems are comprised
of components, inter-component links, and relationship
components. JViews provides a set of novel event
subscription, generation, propagation and response
mechanisms that lead to highly reusable and extensible
components. Additional abstractions provide multiple view,
user interface, software agent, persistency, distribution, and
collaborative work support [5].

component relationship

link

Base filter

operation

Stage icon

Filter icon

View layer

Editing history

Collaborative editing

Event link

…

View rel

Basic JViews ADL

View rel View rel

Base stage

Base event link

Base repository

Base stages

…

Unique names

filter

Event broadcasting

persistency

External tool
communication

Repository

View

Figure 4. Serendipity-II modelled using JViews ADL.

View Layer
Properties:
 name:String
Methods:
 show()
 save()
 load()
 addComponent(Comp)
 …
Events:
 addComponent
 removeComponent
 setProperty
 …

Event History
Properties:
 title:String
 count:Integer
Methods:
 displayEvents()
 subscribeToEvents(Comp)
 addEvent(Event)
 actionEvent(Event)
 save()
 load()
Events:
 addEvent
 removeEvent
 setProperty

editing history

<<User Interface>>
 + window
 + extensible menu

<<Persistency>>
 + serialise/deserialise
 - save/load data

<<Collaboration>>
 + generate events
 + store events
 - send/receive events
 - locking protocol
 - version control

<<User Interface>>
 + dialogue
 + extensible button

<<Collaboration>>
 + generate events
 + action events
 + annotate events
 - broadcast events
 - locking protocol
 - version control

<<User Configuration>>
 + aspect information
 - property sheet
 - wizard/configuration

File Persistency

<<Persistency>>
 - serialise/deserialise
 + save/load data
 + find saved data

<<Collaboration>>
 - extensible menu bar
 - generate/action events
 + broadcast events
 + receive events
 + synchronous locking
 + menu item

Collaborative
Editing Support

Event Broadcasting

<<Collaboration>>
 - generate/receive events
 - event annotation
 + broadcast events
 + locking protocol

Version Control<<Collaboration>>
 - serialise/deserialise
 + check-in/check-out

Serendipity-II Agent
Specification Tool

<<Configuration>>
 + configuration tool
 + default property sheets

<<Aspect Kind>>
 + provided aspect detail
 - required aspect detail

Aspect interrelationship

Component interrelationship

broadcaster

View editing events

Figure 5. JViews visual Architecture Description Language extensions to support aspects.

component View Layer
properties

name : String
…

methods
displayView()
saveView(OutputStream)
addButton(Button)
…

events
WindowEvent(ID)
PropertyChanged(Component,Name,OldValue,NewValue)
…

aspect User Interface
 provides extensible menu bar : EXTENSIBLE_AFFORDANCE

-- other components can add additional menu items to main menu bar or menu bar items
AFFORDANCE=menu_bar -- menu bar (c.f. pop-up, buttons etc.)
ORDER=fixed -- can not change order of default view menu items

Aspect Collaboration
 provides "generate events" : EVENT_SOURCE

-- generates events before and after change operation
GENERATE=before, after -- before & after state change event generation
AGGREGATE=true -- propagates all aggregate (view component) events
TRANSITIVE=true -- all transitive events propagated

 provides "store events" : EVENT_STORE
-- stores all non-transitive events
STORE_KIND=state_change -- does not store non-editing events (open, close window etc)
SOURCE=self, aggregates -- events stored must only originate from view or view aggregate components

 requires "send/receive events" : EVENT_EXCHANGE
-- to support synchronous/semi-synchronous editing of view needs editing event transport between JViews environments
SERIALISATION=event_source -- must use view layer/view component serialisation/deserialisation methods

 requires "locking protocol" : SYNCHRONISATION
-- synchronous editing needs locking protocol activated on before state change event notification
LOCKING=pessimistic, exclusive

 requires "version control" : VERSIONING
-- asynchronous editing requires versioning of view editing history
GRANULARITY=event, component, aggregates -- should support exchange of events or entire serialised view with other users

…
end View Layer

Figure 6. Aspect details in the textual JViews Architecture Derscription Language.

The visual JViews Architecture Description Language
(ADL) was enhanced to add component aspects, aspect
details, and aspect usage notational symbols. The textual
ADL was enhanced to support the specification of aspect
detail information and constraints. Figure 5 illustrates the
additonal visual ADL notation used to describe aspects for
JViews components. Each provided and required aspect
detail has textually specified extra information and

constraints, illustrated in Figure 6. Each kind of aspect detail
has a set of properties whose values can be specified and
constrained, describing detailed aspect information and used
to reason about inter-component aspect usage.

JViews is implemented using Java, and its component
model extends the Java Beans component API [5]. We have
extended the JViews framework classes to support the
encoding of aspect information using a set of AspectInfo

classes, in a similar way that BeanInfo and Service classes
describe enterprise JavaBean low-level interfaces. Our
aspect information encodes high-level, categorised
knowledge about different kinds of component
capabilities, however, which can be perused and
understood by end users of component-based applications.
AspectInfo classes are used to not only publicise
component provided and required aspects, but to provide
rules to validate component configurations.

Aspect information is used to assist component
implementers in providing standardised access
mechanisms to component capabilities, making
components more reusable without hard-coded knowledge
of other component interfaces. AspectInfo classes have
methods for run-time configuration of components,
providing a decoupled way of accessing component
functionality. JViews also provides Java interfaces that
can be used to provide standardised access to component
aspects. We have developed some basic design patterns
and reflection mechanisms that AspectInfo classes can use
to access aspect-related component functionality at run-
time.

5. Development Tool and Run-time Support

In order to effectively develop complex, JViews-
based applications we have built a CASE tool for JViews

called JComposer [5]. JComposer provides multiple views of
systems using the JViews ADL, and supports collaborative
editing of these views with sophisticated inconsistency
management support. We have extended JComposer to allow
developers to describe component aspects, aspect details and
aspect usage. Basic aspect properties and constraints can also
be specified, and inter-component aspect usage checks
performed. Both requirements-level aspects and design-level
aspects can be represented, with simple refinement
relationships between each. Basic consistency checking is
used when aspect details are modified. Figure 7 (a) shows an
example of adding aspect information for some Serendipity-
II components using JComposer. When design-level aspect
information has been specified and basic aspect usage checks
performed, JViews component implementation code is
generated, including aspect codification.

When generating JViews class specialisations,
JComposer encodes design-level aspect information for a
component. This describes knowledge about the component’s
aspects that can be accessed and used at run-time by other
components (through JViews AspectInfo classes), or by end
users via a dialogue-based interface. End user support for
accessing component aspect information is supported by
tools that query components for their aspect specifications
and present this to end users. This allows them to use
knowledge of component capabilities categorised in standard
ways and that is high-level in nature.

Figure 7. (a) Designing with aspects in the JComposer CASE tool. (b) Run-time use of Aspects in Serendipity-II.

Figure 7 (b) shows a simple example of end-user use
of aspect information in Serendipity-II. The end user is
building a simple notification agent by reusing and
connecting component representations in the Serendipity-
II agent specification tool. The user can view detailed
information about components, using the aspect
information encoded in these components by JComposer
to inform them of the component’s various provided and
required aspects.

7. Discussion

Most current component-based system development
methodologies focus on software component interface
design, and tend not to consider component service
requirements [15, 6]. We found during development of
several component-based applications such approaches
produce components that have user interfaces, end user
configuration, persistency, distribution and collaborative
work capabilities that are either not adaptable enough or
are inappropriate in some situations the components could
be reused. In our original Serendipity-II system, many
component user interfaces and end user configuration
facilities proved inadequate or inappropriate in the diverse
situations they were reused. Many components with user
interface facilities did not allow these to be extended or
combined with those of other components, making the
overall application interface poor.

Some component design approaches try to take into
account component interface requirements [17] or system-
wide component properties [21], but still tend to mainly
focus on low-level component object interface
characteristics. The need for reusable components that can
be "trusted" to perform in appropriate ways in diverse
situations has become apparent [13], due to the lack of
dependability of component services using current design
techniques and implementation architectures [23]. We
have used our aspect-oriented component engineering
approach and supporting software architecture and tools to
reengineer many JViews and Serendipity-II components,
and to develop several new, reusable components. Our
aspect-oriented approach emphasises design for reuse,
trustability and support for component extension. This
dramatically improved most Serendipity-II component
user interfaces and the overall application interface for
end users.

Current component-based software architectures, such
as Java Beans [16], CORBA [14] and COM [18], and
support tools, such as Visual Age [9] and JBuilder [2],
tend to be focused on the provision of low-level
component-based system capabilities. The advertising of
component capabilities in these architectures, using
BeanInfo classes, interface specifications and type

libraries respectively, do not lend themselves to capturing
high level knowledge about component capabilities. This
information is thus not generally suitable for allowing end
users to understand how to reuse components dynamically
nor support other components reasoning about a component’s
high-level characteristics. High-level aspect information
greatly assists end user understanding of reused component
functionality, and we found developers reusing third party
components also appreciated this extra component design
information. Matching up middleware (persistency,
distribution and collaborative work) provided capabilities to
required capabilities has proved much easier with aspects.

Various systems support end users or software agents
reconfiguring system behaviour dynamically. These include
agent-based systems [4], workflow systems [19, 3, 7],
adaptive user interface systems [8], and end user computing
systems [12]. Agent-based systems often need third party
agents to communicate knowledge about their respective
capabilities, and provide interfaces allowing reconfiguration,
similar to Serendipity-II components. Often such inter-agent
communication techniques focus on domain-specific data and
functions, rather than common systemic functionality and
constraints, limiting the sharing of inter-agent user interface,
collaboration and distribution mechanisms. Most workflow
and process-centred systems do not utilise component-based
architectures, limiting the degree to which they can be
extended [7]. Many component-based systems require similar
user interface extension and end user configuration
capabilities to adpative and end user computing applications,
but access to knowledge about third party component
capabilities needs to be improved for both software
components and end users.

Aspect-oriented Programming uses a notion of systemic
aspects of a system to "weave" code managing data
persistency and distribution management, which have been
independently codified as aspect information, into object-
oriented programs [11]. However, components typically
provide services to manage one or more such systemic
aspects for a component-based application, and in addition
require services from other components that manage other
such aspects. If component interfaces are carefully designed,
this avoids a need for code weaving that conventional object-
oriented programs require to use aspect-oriented
programming, and which can’t usually be supported for
COTS components.

We are extending our architecture, framework and
support tools to support more formal specification and
checking of aspect usage constraints. We are using aspect
information to index and improve retrieval of component
specifications in a component repository. We are improving
JComposer's aspect information generation capabilities,
including support for using aspect-related design patterns and
Java interfaces. Mapping of component events and operations

using aspects relating to multiple view and tool integration
support is planned, using the notion of aspect-oriented
programming’s "weaving" of aspect information.

8. Summary

Current component-based system development
approaches do not adequately capture enough knowledge
about component capabilities to guide component design
and implementation, nor do current component
implementation architectures provide this knowledge to
end users and other software components at run-time. We
have developed aspect-oriented component engineering to
overcome these problems by categorising provided and
required capabilities into system-wide aspects each
component addresses. We have extended a component-
based software architecture and its Architecture
Description Language to describe this extended
knowledge of component capabilities, and have extended
supporting CASE tools and run-time environments to
make use of this knowledge during design,
implementation and deployment. Preliminary experiences
with our approach and tools have been very positive.

Acknowledgements

Support from the New Zealand Public Good Science
Fund and the helpful comments of the anonymous
reviewers are greatfully acknowledged.

References

1. Apple Computer Inc., OpenDoc Users Manual, 1995.
2. Borland Inc, Borland JBuilder™, Borland Inc,

http://www.borland.com/jbuilder/, 1998.
3. Fernström, C., “ProcessWEAVER: Adding process support

to UNIX,” in 2nd International Conference on the Software
Process, IEEE CS Press, Germany, Feb. 1993, pp. 12-26.

4. Finn, T., Labrou, Y., and Mayfield, J. KQML as an agent
communication language, Software Agents, MIT Press,
1997.

5. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Static and
dynamic visualisation of component-based software
architectures, In Proceedings of 10th International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, June 18-20, 1998, KSI Press.

6. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., Tool integration, collaborative work and
user interaction issues in component-based software
architectures, In Proceedings of TOOLS Pacific ’98,
Melbourne, Australia, 24-26 November, IEEE CS Press.

7. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley,
M.D. An architecture for decentralised process modelling and
enactment, IEEE Internet Computing, Vol. 2, No. 5,
September/October 1998, IEEE CS Press.

8. Grunst, G., Oppermann, R., Thomas, C. G., Adaptive and
adaptable systems, In Hoschka, P. (ed.): Computers As
Assistants - A New Generation of Support Systems. Hillsdale:
Lawrence Erlbaum Associates, 1996. 29-46.

9. IBM Inc, VisualAge™ for Java, 1998,
http://www.software.ibm.com/ad/vajava.

10. Jell, T. Component-based Software Engineering, SIGS/CUP
Publications, 1997.

11. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.M., Irwin, J. Aspect-oriented Programming, In
Proceedings of the 1997 European Conference on Object-
Oriented Programming, Finland, June 1997, Springer-Verlag,
LNCS 124.

12. Mehandjiev, N. and Bottaci, L. The place of user
enhanceability in user-oriented software development, Journal
of End User Computing, Vol. 10, No. 2., 1998, pp. 4-14.

13. Meyer, B., Mingins, C., and Schmidt, H. Providing Trusted
Components to the Industry, IEEE Computer, May 1998, pp.
104-15.

14. Mowbray, T.J., Ruh, W.A. Inside Corba : Distributed Object
Standards and Applications, Addison-Wesley, 1997.

15. Netscape Communications Inc, Visual Javascript™, 1998,
http://www.netscape.com/.

16. O’Neil, J. and Schildt, H. Java Beans Programming from the
Ground Up, Osborne McGraw-Hill, 1998.

17. Rakotonirainy, A. and Bond, A. A Simple Architecture
Description Model, In Proceedings of TOOLS Pacific'98,
Melbourne, Australia, Nov 24-26, 1998, IEEE CS Press.

18. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

19. Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari, B., and
Irwin, K., A Business Process Environment Supporting
Collaborative Planning, Journal of Collaborative Computing,
Vol. 1, No. 1., Chapman-Hall, 1994.

20. Szyperski, C.A. Component Software: Beyond Object-oriented
Programming, Addison-Wesley, 1997.

21. Szyperski, C.A. and Vernik, R.J. Establishing system-wide
properties of component-based systems: a case for tiered
component frameworks, OMG/DARPA Workshop on
Compositional Software Architecture, Monterey, California,
Jan 6-8 1998.

22. Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman, P.,
Black-box Reuse within Frameworks Based on Visual
Programming, In Proeedings of the. 1st Component Users
Conference, Munich, July 14-18 1996, SIGS Books.

23. Weyuker, E.J. Testing Component-based Sotware: A
Cautionary Tale, IEEE Software, Sept/Oct 1998, pp. 54-59.

