
Experiences in Using Java on a Software Tool Integration Project

John Grundy†, John Hosking†† and Rick Mugridge††

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
{john, rick}@cs.waikato.ac.nz

Abstract

Building and integrating complex software
development tools is a difficult task, but one which can
result in great usability and productivity gains for
software development. We describe our experiences in
developing the Banquet set of integrated software
development tools, initially using C++, and then Java as
the tool interfacing and implementation and languages.
We identify where, for us, the advantages of a Java-
based approach lie.

1. Introduction

Many diverse software engineering methodologies
and notations are available for use by students,
practitioners and researchers. To make effective use of
these, environments and CASE tools supporting them are
proliferating. Many techniques address different or
overlapping aspects of the software development life
cycle, such as programming environments utilising
hierarchical browsers, with notations in common with
those of CASE tools. Configuration management and
version control tools are useful for not only source code
but also designs and documentation. Process modelling
tools allow a developer to coordinate their work with
multiple tools and among multiple developers.

Integrated, coordinated use of these tools is needed
for them to be most effective [32, 30]. Many researchers
and commercial tool developers have developed
integration mechanisms. Examples include FIELD [32,
33], DEC FUSE [19], HP Softbench [3], process
modelling tools [1, 6], and collaborative work tools [35,
4]. In this paper, we report on the Banquet tool

integration project [12], which aims to build upon our
earlier tool development and integration work [7, 13].

Many of our earlier tools were implemented in an
object-oriented Prolog [13, 14]. These tools suffered
from development and modification overheads,
performance problems and lack of sufficiently open
architectures. Our initial approach to correcting these
faults was to port the Banquet tools and their underlying
architecture to C++ [12, 16]. Unfortunately, our C++
prototypes proved to be difficult to build and modify, the
tool components developed with it were neither robust
nor reusable, and they tended to lack third party tool
integration support. We describe our C++ development
experience, followed by our more recent experience in
reimplementing our tool architecture and some tools
using Java and the Java Beans componentware API [16].
Our Java prototype architecture and tools have proven to
be easier to develop, more robust and reusable, and
provide more open, extensible architectures than our
C++ prototypes.

2. Banquet Project

The Banquet project [12] aims to develop software
architectures, meta-CASE tools, software development
tools and an integration framework to allow a wide range
of software development tools to be effectively
integrated. We want to effectively integrate tools
developed using our own meta-CASE tools and also
third-party tools.

We have produced many software development tools
using MViews, the Prolog-based framework [14].
MViews provides abstractions for building multiple
view, multi-user environments, with a novel consistency
management mechanism.

jgru001
Text Box
(c) IEEE 1998. In Proceedings of the 1998 Conf on Software Engineering: Education & Practice (SEEP98).Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

Figure 1. Example of SPE-Serendipity integrated environment in use.

Systems built using MViews include: • SPE (Snart Programming Environment
•) [7], a multi-phase environment for OOA/D/P,

including Object-Z specification views [8].
• CernoII [5], supporting visualisation and debugging

of OO programs for SPE.
• MViewsDP [13], supporting dialog box design and

Skin [21], supporting user interface components.
• MViewsER and MViewsNIAM, providing ER and

NIAM modelling facilities [9, 38].
• ViTABaL [10], supporting visual tool abstraction

based programming.
• C-SPE, providing collaborative extensions to SPE

for multi-user OO development [11].

• Serendipity, supporting integrated software process
modelling, enactment and work coordination [18].

As an example of the type of environment we aim to
produce, and scale-up for large multi-developer software
development projects, SPE-Serendipity is illustrated in
Figure 1. This environment is an integration of the SPE
object-oriented software development environment [7],
and Serendipity, a software process modelling and
enactment environment [18]. These environments have
been tightly integrated so that, to a developer, SPE and
Serendipity appear as one system [

15].
SPE-Serendipity is one example of how we have

integrated out tools together. We have integrated a
number of our tools together loosely or tightly, while
others are yet to be integrated in any way. For example,
SPE and MViewsER have been fully integrated to
produce OOEER, an environment which supports
integrated OOA and EER modelling [9]. In an earlier
paper we presented our aim of integrating all of the tools
described above into, what appears to be from a user’s
perspective, one ISDE called Banquet [12]. Banquet will
support all aspects of software development from
planning and requirements formulation to program

implementation, visualisation and documentation. This
paper reports on progress towards that aim.

MViews, the OO Prolog-based framework that we
have previously used to develop our environments has
proved to be an inadequate platform to continue our tool
development and integration efforts. Being Prolog-based,
MViews tools are difficult to integrate with third-party
tools and have poor interactive performance, compared
to systems built with compiled, imperative languages.
MViews systems use an OO framework approach, where
much useful tool functionality is abstracted into the
framework classes. Nevertheless, tool builders must still
write considerable amounts of code to build tools, as

well as understand the ways in which the classes of the
framework interact to provide the various capabilities of
MViews.

3. C++ Approach

To address some of the problems with the Prolog-
based MViews implementation, we initially adopted C++
as a platform with which to port (and redesign) the
existing MViews framework. The principle advantages
we anticipated in making this move were: a major
increase in performance, allowing better scaling of
applications; better access by others to our work, by
using a more "standard" language; and portability. On
the other hand, we could see the following risks in
moving to C++:
• A lack of high level portable graphics support:

Particularly critical to success was the definition of
graphics support, to allow cross-platform
implementation of applications. At the stage we
were commencing, there was very little offering in
the way of support for cross platform 2-D graphics at
any reasonable level of abstraction. We saw
production of a high-level graphics support library
as being essential for permitting rapid development
of MViews-based applications; the high level of
graphics support provided by LPA MacProlog was
one of the main attractions to this platform.

• A lack of garbage collection: In earlier work, we had
already successfully ported much of the
functionality of low–level MViews classes to a C++-
like implementation, and hence felt that this would
not be a high risk area. However lack of automatic
garbage collection was seen as being a hindrance to
successful porting of the code.

• A lack of dynamic code loading and manipulation
capabilities: The OO Prolog we used (Snart) is
extended with constraint processing capabilities
which we have been experimenting with for
providing graphics support [29]. We were very keen
to develop these capabilities further, but had made
use of Prolog's dynamic code manipulation
capabilities to support their implementation. It was
unclear initially whether C++ would provide
sufficient flexibility for an efficient implementation.
In addition, environments such as SPE, allowed code
to be developed compiled, loaded and debugged, all
from within the one environment. It was clear that
this could prove difficult from within C++.

Having recognised these risks, we decided on the first
step in an evolutionary approach to performing the port.
This focussed initially on the graphics support, aiming to
implement sufficient support to construct the MViews
"display layer" of graphics, and the constraint
capabilities (initially independently) with garbage

collection capabilities to be explored as part of
implementing the graphics support.

The approach taken to graphics support was to
provide high level graphics abstractions, similar in style
to those we were familiar with from LPA MacProlog.
This style of abstraction had permitted us to rapidly
construct the user interface aspects of the Prolog-based
MViews environments. Low level platform-specific
graphics support for implementing these abstractions was
to be isolated as much as possible to allow ready porting
to other platforms. The Metroworks PowerPlant
application support libraries were used in the initial
implementation [28]. While we feel this approach was
architecturally correct, it readily became apparent that
progress in implementation was going to be extremely
slow, and that comprehensive memory management
would prove to be a major component of the
implementation as large numbers of objects would be
created and destroyed to support the high level
abstractions.

In parallel, constraint processing support was
developed by extending C++ with constraint expression
constructs. A preprocessor compiles these, adding
triggers to assignments involving manipulations of
attributes and object references included in the constraint
expressions. Much of the dynamic aspects of the original
constraint implementation needed to be compiled into
these static triggers. While this approach appeared
initially promising, the size of C++ meant a major
implementation effort was required. A particular
problem that was never resolved was the inability to
accurately identify what items of data were object
references and what were not (due to the weak typing
system of C++, aliases through references (&), and the
ability to perform pointer manipulations).

Experience from these initial steps suggested that the
port was feasible, and any problems had workarounds
(albeit somewhat inelegant in cases). However, the
resources that would be expended in completing the port
were far more than our group could support. Accordingly
we abandoned C++ as a platform for further
development.

4. Java Approach

Java was gaining momentum early in 1996, when it
became clear that the problems of using C++ for Banquet
were serious. Java seemed to provide an answer to most
if not all of our difficulties with C++, as well as
providing new opportunities (such as the expected
persistence features that were later provided in Java1.1).
Advantages we saw in Java over C++ were:
• The Java system provides a platform-independent

GUI package (awt), adequate for our needs [22].
This is a lower-level graphics approach than that of

MacProlog, but in many ways provides more power
(such as the use of LayoutManagers).

• Java provides automatic garbage collection. This
makes it much easier to program in Java, but does
leave us vulnerable to the performance hit of the
garbage collector [22].

• Java permits later binding than C++. Given the
name of any class (as a String), new objects of that
class can be created. The source code of a Java class
may be written to a file during program execution,
the source compiled, and then objects of that new
class created. We saw this as being useful for
environments where tools can be integrated on the
fly by developers. It proved to be extremely difficult
to adequately mimic such a mechanism using C++.

• Java does not have the C++ notion of a reference
(&) or pointer manipulation, so that it is not possible
to construct an alias to a primitive type. So, as long
as all attributes of a class are private, and can only
be accessed through a method of the class, it is
possible to determine statically all assignments to
attributes which are referenced within a constraint,
simplifying and making more robust constraint
implementation.

However, we had some doubts about Java at that
stage: Would it be adopted as a wide-spread language?
Would implementations on the various platforms get
beyond a beta-stage? Would the loss in efficiency over
C++ be problematic? With these caveats, we commenced
redevelopment in Java, and this was well underway
towards the end of 1996. The Banquet work over this
period concentrated on two main elements: JViews, the
port of MViews to Java, and BuildByWire, a visual
notation construction kit. BuildByWire is constructed as
a complex Java bean that is used by tools based on
JViews. Progress has developed much more rapidly than
with C++. The development of JavaBeans and other
features of Java 1.1 have confirmed that we made the
right decision. As we see later, JavaBeans have had an
important influence on the design of our architecture.

Java has been generally adopted much quicker than
we expected. However, the quality of implementations
have been poor and slow to improve. Speed of execution
is poor compared to C++, even with the use of Just-In-
Time (JIT) compilers. So far this has not been a
problem, as speed of execution has been more than
adequate.

5. BuildByWire

BuildByWire (BBW) is a constraint-based visual
notation construction kit that was originally developed
using our OO constraint Prolog [29]. BuildByWire
allows a designer to create a visual notation (such as for
Entity-Relationship diagrams) by composing visual
elements together through direct manipulation. Visual

elements are “wired” together using constraints (eg an
OOA class box with class name, attributes and methods).
Visual elements include simple ones such as rectangles
and lines; collections, such as vertical lists of methods;
and GUI elements, such as buttons and pop-up menus.

In porting BuildByWire to Java, two major aspects
needed to be addressed: the implementation of
constraints, used extensively to maintain connectedness
between visual components as they are dragged, resized,
etc; and the implementation of the visual components
themselves. Constraints were initially hand-compiled as
“trigger” classes which handle constraint propagation
between the properties of the visual components, which
were defined as JavaBeans. This made it trivial to allow
arbitrary JavaBeans (such as Buttons) to be plugged into
BuildByWire, with constraints defined between them and
other visual elements. The use of beans for visual
components also enabled the use of standard “property
sheets” to define the properties of any bean in
BuildByWire, including our standard visual components.
BuildByWire has turned into a rather sophisticated bean
builder, making use of constraints and allowing new
beans to be composed of existing beans.

We had originally planned to extend the Java
language with our constraints. However, experience
with JavaBeans and the BeanBox [16] has convinced us
otherwise. In a Bean builder, such as the BeanBox, an
event of one bean may be connected to a method of
another bean visually; the code for an adaptor class is
generated automatically and immediately to make the
connection. We plan to allow constraints to be defined
in the same way, but between bean properties instead;
trigger code can then be generated immediately in an
adaptor class that manages constraint propagation.

The Java re-implementation of BuildByWire has
been most successful, with adequate performance of the
constraints for effective notation use. JavaBeans has had
a strong influence on the implementation and evolving
design of BuildByWire.

6. JViews

The initial development of JViews using Java has
been very successful. JViews provides abstractions for:
• Modelling repository components, inter-component

relationships and semantic constraints. Tool
developers typically build these elements by
specialising and composing JViews classes. JViews
relationship classes explicitly model interclass
aggregation and association relationships.

• Propagating changes between JViews components
via relationship objects to maintain consistency.
JViews supports mechanisms to “listen” to state
changes which affect other components before and
after they occur [16]. Java objects representing
descriptions of the changes are propagated between

components and used to represent events and state
changes. Java interfaces are used to allow any Java
class implementing an appropriate interface to listen
to components generating change descriptions.

• Various components supporting different kinds of
repository and view component persistency, multiple
user component updating, and change description
presentation and storage.

• View-level components which correspond to
BuildByWire GUI objects. These are used by
developers to specify how BuildByWire and
repository components are linked and how view
edits modify repository component data.
BuildByWire shapes implemented as Java Beans
“plug into” view-level JViews components, and
changes are propagated between these two layers
using Java Beans-style event notification
mechanisms.

Our Java implementation of JViews has a similar
level of complexity to our MViews implementation in
our OO Prolog. However, the Java implementation has a
number of advantages, including better type checking by
the Java compiler, a huge improvement in the
performance and response time of editing tools, and the
ability to readily interface JViews-based tools to third-
party applications. The complexity of JViews compared
to our C++ prototype is similar, but JViews has no
memory management code as this is automatic in Java.
JViews has also proved to be more robust than the C++
prototype, with components providing their own
exception-handling mechanisms and automatic inter-
component relationship management.

7. BBW Composer and JComposer

To build JViews-based tools with BBW-based
editors, developers must still write a considerable
amount of code to specialise, compose and instantiate
BBW and JViews framework classes. This was a key
problem with our OO Prolog-based tools; tool developers
expended considerable effort to not only initially design
iconic components, view-level data models and
repository data models, along with appropriate semantic
constraints at each level, but also to implement these
designs using OO code.While developing BBW and
JViews, we decided to minimise the amount of code
developers would need to write to use these frameworks
by first using these frameworks to build tools for
composing BBW framework components into editors
and GUI components, and for designing JViews
repository and view data models and constraints. BBW
Composer is a BBW/JViews tool which provides

multiple, editable views for designing BBW iconic
components [16].

Figure 2. BBW Composition of ERLink shape.

Figure 2 shows an example of BBW Composer being
used during the development of an ER modeller
application. BBW shapes are defined by the tool
developer drawing and composing shapes which have
underlying correspondence to BBW framework shape,
connector, constraint and pin classes. Appropriate Java
Beans specialisation code is then generated by BBW
Composer to construct and manipulate these iconic
components for use in JViews (or other toolkit)
environments.

JComposer is a BBW/JViews tool which allows
developers to specify tool repository and view data
models, along with semantic constraints and behaviour
for these data models [16, 17]. Figure 3 shows
JComposer being used to specify components for an ER
modeller. Designers build up conceptual data models
using the JComposer notation and then attach “listeners”
to components to implement semantic constraints and
editing behaviour of the components. JViews multi-user
support components such as event propagation, storage
and presentation of event objects, version control and
synchronous view component editing can be utilised
from JComposer. Developers can generate JViews class
specialisations from within JComposer, and add arbitrary
Java code to implement complex constraints or editing
semantics, or compose appropriate constraints and event
handling using a graphical language in JComposer.

Figure 3. An example of JComposer being used to specify ER modeller components.

Figure 4. Run-time JComposer visualisation.

JViews environments can also make use of generic
JComposer views for visualising and modifying running
JViews component structures. This allows tool users to
view running JViews component states, invoke
component methods on the fly, and create new
components. Component interrelationships can also be
manipulated, and multiple views of running objects
opened. Tool users can also create event handling
components and attach these to running component
visualisations, to modify the behaviour of their tools e.g.

add notification of change mechanisms, integrate tools
with other tools, etc. Figure 4 shows an example of the
generated ER modeller components being visualised at
run-time, with the user having added event handling
components which notify them of EntityName property
changes to the visualised entity.

8. Related Research

Many problems need to be overcome when
attempting tool integration [37, 32]. Examples include:
tools need to share data and keep partially duplicated
data consistent (“data integration”); tools need to request
other tools to perform operations for them or be notified
of events in other tools (“control integration”); all tools
should have consistent user interfaces (“presentation
integration”); and tool use needs to be coordinated on
large projects among multiple developers (“process
integration”).

PECAN [31], MELD [23], the Cornel Program
Synthesiser [34] and Mjølner environments [27] use a
large centralised database to store shared information
with structure editors allowing modification of views of
data. Dora environments [30] integrate multiple textual
and graphical views of software development via a

structure editing approach. CASE tools utilise code
generation and reverse engineering to partially keep
design and code consistent [39, 36]. While such
approaches solve the data sharing problem in different
ways,they often fail to satisfactorily support control and
process intergation. FIELD environments [32, 33] and
DEC FUSE [19] utilise selective broadcasting of events
between Unix tools to achieve limited forms of control
and user interface integration. Federated approaches use
a database, such as PCTE, spread over several locations
[2], and tend to better support both data and control
integration. Unfortunately these approaches alone do not
provide adequate process integration on large scale
projects.

Tools supporting collaboration between multiple
users include ConversationBuilder [24], wOrlds [25], and
GroupKit [35]. Process-centred environments include
CPCE [26], Oz [20], SPADE [1] and ProcessWEAVER
[6]. The process-centred environments tend to support
process integration well, as they support the coordinated
use of multiple tools. But they often do not adequately
support other aspects of tool integration, as it can be very
difficult to tightly integrate third party tools in these
environments.

All of these systems do not solve all tool integration
problems, and generally lack adequate end-user
configuration for tool integration. Our JViews and BBW
frameworks, along with our BBW Composer and
JComposer tools, provide solutions for data integration
(via interconnected tool repositories using JViews
components and relationships), control integration (via
the propagation of JViews event objects between tool
components), presentation integration (via BBW Java
Beans specialisations), and process integration (via the
visual JComposer event handling language and a process
modelling environment we are porting to JViews). Our
use of Java Beans specialisations means our
environments are able to interoperate with other Java
Beans, exchanging events and method invocations. Java
Beans implementing Active X, InfoBus and CORBA
interface bridges also allow JViews-based tools to
interoperate with tools utilising these architectures.

9. Summary

We have described the Banquet vision for integrated
software development environments. Our attempts to
port our OO Prolog-based MViews architecture to C++
for the next generation of Banquet tools has proved to be
a comparative failure. Tools were difficult and time-
consuming to build, tool components tended to have only
limited reusability and robustness, and interoperation
support with third paty tools was limited. In contrast, our
more recent experience using Java and JavaBeans to
build a prototype Banquet infrastructure and exemplar
tools has been very successful. We have ported all the
MViews functionality to our new JViews framework, and

added to this considerably, including persistence, multi-
user and versioning support components. BuildByWire
provides iconic editors for JViews tools and these tend to
be much more user-customisable than those built with
most existing user interface development toolkits. Our
JComposer and BBW Composer environments, both
implemented with the BuildByWire and JViews
frameworks, provide tool developers with high-level,
visual languages for constructing and integrating tool
components. End-user configuration of JViews-based
tools is supported by a graphical run-time visualisation
and event handling language.

Future work with JViews, BBW and Banquet
includes further development of our frameworks and
meta-CASE environments so they can be used to develop
more sophisticated new tools and integrate our tools with
a wider range of third-party tools. Applications include
software development tools, design tools, components
for virtual reality modelling and visualisation, and agent-
based systems utilising the JComposer event handling
language to support composition and programming of
agents. BBW Composer is being extended to support
more sophisticated visual collections and to permit the
use of click-through tools (which can also be composed
visually). JComposer is being extended to support a
wider range of reusable modelling and event handling
components, distributed systems data storage/retrieval
and event propagation components, and bridge
compoents to support integration with third party
software development tools. We are continuing to port
various MViews-based environments to JViews in
addition to developing new Banquet tools, using BBW
Composer and JComposer.

References

[1] Bandinelli, S., Fuggetta, A., and Ghezzi, C., “Process
model evolution in the SPADE environment,” IEEE
Transactions on Software Engineering, vol. 19, no. 12,
1128-1144, December 1993.

[2] Bounab, M. and Godart, C., “A Federated Approach to
Tool Integration,” in Proceedings of CAiSE'95, LNCS
932, Springer-Verlag, Finland, June 1995, pp. 269-282.

[3] Champine, M.A., “A visual user interface for the HP-UX
and Domain operating systems,” Hewlett-Packard
Journal, vol. 42, no. 1, 88-99, 1991.

[4] Ellis, C.A., Gibbs, S.J., and Rein, G.L., “Groupware:
Some Issues and Experiences,” Communications of the
ACM, vol. 34, no. 1, 38-58, January 1991.

[5] Fenwick, S., Hosking, J.G., and Mugridge, W.B., “Visual
debugging of object-oriented systems,” in Proceedings of
TOOLS Pacific 94, 1994.

[6] Fernström, C., “ProcessWEAVER: Adding process
support to UNIX,” in 2nd International Conference on
the Software Proces, IEEE CS Press, Berlin, Germany,
February 1993, pp. 12-26.

[7] Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge,
W.B., Connecting the pieces, Chapter 11 in Visual Object-
Oriented Programming. Manning/Prentice-Hall, 1995.

[8] Grundy, J.C., and Hosking, J.G., “Support for Integrated
Formal Software Development,” Proceedings of the 1995
Asia-Pacific Conference on Software Engineering, IEEE
CS Press, Brisbane, Australia, Dec 6-9 1995, pp. 264-273.

[9] Grundy, J.C. and Venable, J.R., “Providing Integrated
Support for Multiple Development Notations,” in
Proceedings of CAiSE'95, LNCS 932, Springer-Verlag,
Finland, June 1995, pp. 255-268.

[10] Grundy, J.C. and Hosking, J.G., “ViTABaL: A Visual
Language Supporting Design By Tool Abstraction,” in
Proceedings of the 1995 IEEE Symposium on Visual
Languages, IEEE CS Press, Darmsdart, Germany,
September 1995, pp. 53-60.

[11] Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor,
R., “Support for Collaborative, Integrated Software
Development,” in Proceeding of the 7th Conference on
Software Engineering Environments, IEEE CS Press,
April 5-7 1995, pp. 84-94.

[12] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Towards an environment supporting all aspects of
software development,” Proceedings of 1996 Conference
on Software Engineering: Education and Practice, IEEE
CS Press, Dunedin, New Zealand, January 1996.

[13] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via discrete
change description propagation,” Software - Practice &
Experience, vol. 26, no. 9, 1053-1083, September 1996.

[14] Grundy, J.C. and Hosking, J.G., “Constructing Integrated
Software Development Environments with MViews,”
International Journal of Applied Software Technology,
vol. 2, no. 3-4, 133-160, 1996.

[15] Grundy, J.C., Hosking, J.G., and Mugridge, W.B., “Low-
level and high-level CSCW in the Serendipity process
modelling environment,” in Proceedings of OZCHI'96,
IEEE CS Press, Hamilton, New Zealand, Nov 24-27 1996.

[16] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A
Java-based toolkit for the construction of multi-view
editing systems,” in Proceedings of the Second
Component Users Conference, Munich, Germany, July
14-18 1997.

[17] Grundy, J.C., Mugridge, W.B., and Hosking, J.C.,
“Supporting end-user specification of work coordination
in workflow systems,” in 2nd International Workshop on
End-user Development, University of Hull Press, UK,
Barcelona, Spain, June 15-16 1997.

[18] Grundy, J.C. and Hosking, J.G., “Serendipity: integrated
environment support for process modelling, enactment
and work coordination,” Automated Software
Engineering, vol. 5, no. 1, January 1998 (in press).

[19] Hart, R.O. and Lupton, G., “DECFUSE: Building a
graphical software development environment from Unix
tools,” Digital Tech Journal, vol. 7, no. 2, 5-19, 1995.

[20] Heineman, G.T. and Kaiser, G.E., “An Architecture for
Integrating Concurrency Control into Environment
Frameworks,” in Proceedings of the 17th International
Conference on Software Engineering, IEEE CS Press,
Seattle, Washington, April 1995, pp. 305-313.

[21] Hosking, J.G., Fenwick, S., Mugridge, W.B., and Grundy,
J.C., “Cover yourself with Skin,” in Proceedings of
OZCHI'95, Wollongong, Australia, Nov1995, pp. 101-
106.

[22] JavaSoft Inc., “The Java Language: An overview,” White
Paper, 1997.

[23] Kaiser, G.E. and Garlan, D., “ Melding Software Systems
from Reusable Blocks,” IEEE Software, vol. 4, no. 4, 17-
24, July 1987.

[24] Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P.,
and Bignoli, C., “Supporting Collaborative Software
Development with ConversationBuilder,” in Proceedings
of the 1992 ACM Symposium on Software Development
Environments, ACM Press, 1992, pp. 11-20.

[25] Kaplan, S.M., Fitzpatrick, G., Mansfield, T., and Tolone,
W.J., “Shooting into Orbit,” in Proceedings of Oz-
CSCW'96, DSTC Technical Workshop Series, University
of Queensland, Australia, August 1996, pp. 38-48.

[26] Lonchamp, J., “CPCE: A Kernel for Building Flexible
Collaborative Process-Centred Environments,” In
Proceedings of the 7th Conference on Software
Engineering Environments, IEEE CS Press, Netherlands,
April 1995, pp. 95-105.

[27] Magnusson, B., Asklund, U., and Minör, S., “Fine-grained
Revision Control for Collaborative Software
Development,” in Proceedings of the1993 ACM
SIGSOFT Conference on Foundations of Software
Engineering, Los Angeles CA, December 1993, pp. 7-10.

[28] Metrowerks Inc., "Inside Powerplant for CW11", 1996.
[29] Mugridge, W.B., Grundy, J.C., Hosking, J.G., and Amor,

R., Snart94 Reference/User Manual, Department`of
Computer Science, University of Auckland, 1995.

[30] Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R.,
“Dora - a structure oriented environment generator,”IEE
Software Engineering Journal, vol. 7, no. 3, 184-190,
1992.

[31] Reiss, S.P., “PECAN: Program Development Systems that
Support Multiple Views,” IEEE Transactions on Software
Engineering, vol. 11, no. 3, 276-285, 1985.

[32] Reiss, S.P., “Connecting Tools Using Message Passing in
the Field Environment,” IEEE Software, vol. 7, no. 7, 57-
66, July 1990.

[33] Reiss, S.P., “ Interacting with the Field environment,”
Software practice and Experience, vol. 20, no. S1, S1/89-
S1/115, June 1990.

[34] Reps, T. and Teitelbaum, T., “Language Processing in
Program Editors,” COMPUTER, vol. 20, no. 11, 29-40,
November 1987.

[35] Roseman, M. and Greenberg, S., “Building Real Time
Groupware with GroupKit, A Groupware Toolkit,” ACM
Transactions on Computer-Human Interaction, vol. 3, no.
1, 1-37, March 1996.

[36] TurboCASE Reference Manual, StructSoft`Inc, 5416
156th Ave. S.E. Bellevue, WA, 1992.

[37] Thomas, I. and Nejmeh, B., “Definitions of tool
integration for environments,” IEEE Software, vol. 9, no.
3, 29-35, March 1992.

[38] Venable, J.R. and Grundy, J.C., “Integrating and
Supporting Entity Relationship and Object Role Models,”
in Proceedings of the 14th Object-Oriented and Entity
Relationship Modelling Conference, LNCS 1021,
Springer-Verlag, Gold Coast, Australia, 1995.

[39] Wasserman, A.I. and Pircher, P.A., “A Graphical,
Extensible, Integrated Environment for Software
Development,” SIGPLAN Notices, vol. 22, no. 1, 131-142,
January 1987.

