
In Proceedings of SE:E&)’96, Jan 24-28 Dunedin, New Zealand, IEEE CS Press.

 © 1996 IEEE. Personal use of this material is permitted. However, permission to
 reprint/republish this material for advertising or promotional purposes or for creating new
 collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

 component of this work in other works must be obtained from the IEEE.

Serving up a Banquet: Towards an Environment Supporting All
Aspects of Software Development

John C. Grundy†, John G. Hosking††, and Warwick B. Mugridge††

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
jgrundy@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand
{john, rick}@cs.auckland.ac.nz

Abstract

In order to make diverse software engineering
techniques readily available and their use effective, they
should be supported by appropriate CASE
environments. We describe our experiences in building
several such environments for different software
engineering methodologies and notations. As these
methodologies address different aspects of software
development, tools embodying them should ideally be
integrated within one overall environment. The design
of such an environment is described, and our recent
progress towards achieving this integrated environment
for all aspects of software development is presented.

1 . Introduction

Many diverse software engineering methodologies
and notations are available for use by students,
practitioners and researchers. To make effective use of
these, environments and CASE tools supporting them
are proliferating. Many techniques address different or
overlapping aspects of the software development life
cycle. For example, many programming environments
utilise hierarchical browsers, with notations in common
with those of CASE tools.

Tools supporting different aspects of software
development can be used in isolation, but this results in
much redundancy, an inability to effectively share data,
and inconsistent user interfaces [21, 4]. Tools
supporting different aspects of software development
need to be integrated into a single Integrated Software
Development Environment (ISDE) which overcomes
these problems [21, 26, 24]. Many problems are
presented when attempting tool integration. These
include the need to: keep different views of software
development consistent; effectively manage environment
extension and evolution; and integrate tools shared by
multiple users in multiple locations.

Recent research into integrating software
development environments has focused on control, data,
user interface and process integration [4, 21]. PECAN
[25], MELD [18], and the Cornel Program Synthesiser
[28] utilise a large centralised database to store shared
information with structure editors allowing modification
of views of data. FIELD environments [26, 27] utilise
selective broadcasting of events between Unix tools to
achieve limited forms of control and user interface
integration. Dora environments [24] integrate multiple
textual and graphical views of software development via
a structure editing approach. CASE tools utilise code
generation and reverse engineering to partially keep
design and code consistent [33, 30]. Federated
approaches use a database, such as PCTE, spread over
several locations [4]. Tools supporting collaboration
between multiple users include ConversationBuilder [19]
and GroupKit [29]. Process-centred environments
include CPCE [20] and Marvel [3]. None of these has
satisfactorily solved all of the above problems.

We describe a heterogeneous approach to ISDE
production. Tools supporting related aspects of software
development are integrated via hierarchical repositories
which support flexible, bi-directional consistency
management. Within each tool, multiple textual and
graphical views of the software artefact are supported and
kept consistent. Multiple users are supported by a
combination of low-level CSCW editing capabilities
and high-level work and planning coordination facilities.

2 . Towards Banquet

Our recent research has concentrated on building a
variety of multi-view editing tools. These support :
 • object-oriented software development. SPE (Snart

Programming Environment) [9] is a multi-phase
environment for OOA/D/P. Object-Z views have
recently been integrated with SPE [11].

• program visualisation. CernoII [6] supports
visualisation and debugging of OO programs.

• user interface specification and construction.
MViewsDP [12] supports dialog box design. Skin
[17] supports flexible user interface components.
Currently under development are DrawByWire, a
novel constraint-based user interface development
tool, and LC+, which adds LeanCuisine+ [23]
views to MViewsDP.

• data modelling. MViewsER and MViewsNIAM
provide ER and NIAM modelling facilities [13, 32].

• visual programming. ViTABaL [14] supports visual
tool abstraction based programming.

• collaborative software development. C-SPE
provides collaborative extensions to SPE for multi-
user OO development [15],

• work coordination. Under development is a high-
level work and planning coordination tool [16].

Some of these tools have been integrated together
loosely or tightly, while others are yet to be integrated
in any way. Figure 1 illustrates these current "islands"
of integration. For example, SPE and MViewsER have
been fully integrated to produce OOEER, an
environment which supports integrated OOA and EER
modelling [13]. A similar process has been used to
produce NIAMER, an environment supporting
integrated ER and NIAM modelling [32]. Object-Z
views have been fully integrated into SPE [11]. We are
currently integrating the work coordination tool with C-
SPE, and plan to extend this to support collaborative
software development in our other tools [16].

SPE

SPE+Object-Z
 formal views

ViTABaL

Skin

DrawByWire

MViewsDP

MViewsER
(OOEER)

MViewsNIAM

CernoII

work
coordination

C-SPE

 LC+

Tightly integrated

(Currently) Loosely integrated

(NIAMER)

Figure 1. Current “islands” of integration.

Visual Planning
Language

ViTABaL

SkinDrawByWire

MViewsDP

ER
DiagramsNIAM

Diagrams
CernoII

Visualisation

 LC+

Requirements
Editor

OO Visual
Programming

Object-Z
Specification

OO Textual
Programming

Specification Design User Interface Implementation VisualisationProject
Planning

Figure 2. The Banquet integrated environment.

Our aim is to integrate all of the tools described
above into, what appears to be from a user’s
perspective, one ISDE called Banquet. Banquet will

support all aspects of software development from
planning and requirements formulation to program
implementation, visualisation and documentation.
Figure 2 illustrates the kinds of tools and the software
life cycle tasks Banquet will support. In the next section
we describe a framework for implementing tool
integration. We then describe our existing tools in more
detail, and our plans for integrating them into Banquet.

3 . MViews

The tools we have already built are, in the main,
implemented using the MViews architecture [8, 10].
MViews supports the construction of ISDEs by
providing a general model for defining software system
data structures and views, combined with a flexible
mechanism for propagating changes between software
components, views and tools.

ISDE data is described as components with
attributes, linked by a variety of relationships. Multiple
views are supported by representing each view as a
graph linked to a base data dictionary graph. Each view
is rendered and edited in either a graphical or textual
form. Distinct environment tools can be interfaced at the
view level (as editors), via external view translators, or
multiple base layers may be connected via inter-view
relationships, as described in [10, 13].

When a software or view component is updated, a
change description is generated. This is of the form
UpdateKind(UpdatedComponent, ... update-

specific Values ...). For example, an attribute
update on Comp1 of attribute Name is represented as:
update(Comp1, Name, OldValue, NewValue).

All graph editing operations generate change
descriptions and pass them to the propagation system.
Change descriptions are propagated to all related
components that are dependent upon the updated
component’s state. Dependents interpret these change
descriptions and possibly modify their own state,
producing further change descriptions. See [8, 10, 15,
16] for details of the implementation of MViews.

MViews achieves control integration between tools
via change description broadcasting [10]. Data
integration is achieved via single or multiple
hierarchical base views [13]. Presentation (user interface)
integration is achieved through common user interface
building blocks provided by the MViews framework [8].
Process integration is achieved at a low-level via
collaborative editing tools [15], or via a high-level work
coordination system [16].

MViews is implemented using Snart, an OO
extension to Prolog. We are currently porting MViews
to C++ to improve the availability, portability and
efficiency of derived environments. This will provide
Banquet's underlying integration mechanism.

Figure 3. A screen dump from SPE.

Change
descriptions

inserted
into view's

text

Figure 4. Textual view consistency.

4 . ISDE for Object-oriented Development

We have used the existing MViews framework to
build various tools for Analysis, Design,
Implementation, and Visualisation. SPE is the major
one, an ISDE which provides multiple textual and
graphical views for constructing programs in Snart.
SPE supports integrated analysis, design,
implementation, and documentation tools.

Figure 3 shows a screen dump from SPE with two
graphical views (one for analysis and one for design) and
two textual views (a class interface and a method
implementation). A CernoII graphical debugging view
is also shown. Consistency is maintained between all
SPE views, so changes to one view are always reflected
in other views that share the updated information, no
matter how loose the connection between the view
representations. Additional analysis and design views,
such as class contract and documentation views, are also
provided by SPE. SPE supports a rich set of view
navigation facilities, utilising hypertext techniques.

Graphical views are interactively edited and are kept
consistent with other views by the environment directly
updating changed icons. Descriptions of changes
affecting graphical view components can also be viewed
in dialog boxes. Textual views are free-edited and parsed.
Textual view consistency involves expanding change
descriptions into the view’s text in a special header
annotation, as shown in Figure 4. Some changes can be
automatically applied by SPE to update the view’s text,
such as renaming classes and features and adding or
deleting features. Other changes can not be carried out
by the environment (eg a semantic error, or a design
level change, such as the addition of a client-supplier
relationship), and are manually implemented.

CernoII [6] provides graphical program visualisation
views for running Snart programs. These include basic
object attribute values, object reference networks and
method call timing diagrams. CernoII and SPE are
currently loosely integrated. Both can be running at the
same time, and both have a common look-and-feel.

We have recently added Object-Z formal
specification views to SPE [11]. Figure 5 shows a
screen dump which illustrates how SPE design and
implementation views can be kept consistent with
Object-Z views. Change descriptions are expanded into
the relevant class interface and method implementation
views when an Object-Z view is modified, and vice-
versa. Some of these, such as adding attributes and
method arguments or renaming attributes and methods,
can be automatically carried out by the environment.
Others are documented by the environment for
programmers to manually implement.

We are porting SPE and CernoII to C++, to support
integrated software development of C++ programs. This
requires extension of SPE's graphical notation to cope
with additional constructs available in C++ and a
modification of CernoII to interface to the C++ runtime
system. Tighter integration between the tools will be
provided via a facility to move between SPE and
CernoII views via hyperlinks. These OO development
tools will provide the core of the Banquet environment.

5. Other modelling tools

SPE provides facilities for object-oriented
modelling. We have also developed tools for modelling

using other approaches. MViewsER [13] provides
graphical Entity-Relationship model views and textual
relational schema views. These views are kept
consistent in a similar manner to SPE graphical and
textual views, and the textual views can be exported to a
relational database system. MViewsNIAM provides
similar facilities for NIAM modelling [32].

In Banquet, we wish to allow a variety of modelling
approaches to be used in a single project, with
translation and consistency maintained between those
models that overlap in content. As a first step in such
an integration, we have integrated SPE and MViewsER
to produce OOEER, an environment supporting truly
integrated OOA and EER modelling [13].

Figure 6 shows a screen dump from OOEER.
OOA/D views are kept consistent with all changes to
EER views, and vice-versa, even when direct translation
is not possible. The dialog shown holds change
descriptions (the “modification history”) for the customer
OOA class. Change descriptions highlighted by ‘→’
were actually made to the EER view (diagram) and
automatically translated into OOA/D view updates
(where possible) by OOEER. Unhighlighted items were
made by the designer to the OOA view to fully
implement “indirect” translations that could only
partially by implemented by OOEER.

Figure 5. Integrated Object-Z views in SPE with bi-directional consistency management.

→
→

→
→

→

→
→

Figure 6. Integrated OOA/D and EER views in OOEER with bi-directional consistency management.

The OOEER integration was achieved by adding an
additional data dictionary graph level below the data
dictionaries of the SPE and MViewsER tools. This
layer is responsible for translating, where possible,
between the different notations and notifying tools
where automatic translations are not possible. Neither
SPE nor MViewsER required any significant change to
achieve this integration.

In a similar manner we have produced NIAMER, a
design environment integrating MViewsER and
MViewsNIAM to produce an integrated NIAM/ER
modelling environment [32].

The success of the OOEER and NIAMER
integrations gives us good reason to believe that the
MViews layered dictionary approach to integration will
scale up for integrating the many tools in the Banquet
project.

6 . Visual Programming

The tool abstraction (TA) paradigm [7] is a new
software engineering design and implementation
approach. TA involves designing programs around
functional units (called toolies) which share a pool of
abstract data structures (ADSs). TA produces systems
which can be more readably adapted to functional
specification changes than traditional data abstraction.

A variety of approaches to implementing tool-
abstraction based designs have been suggested. These
include active data in OO systems, spreadsheets,
structure-oriented editors, and rule-based systems [7]. We
have recently developed ViTABaL (Visual Tool
Abstraction Based Language) which provides a general-
purpose, visual and textual specification language and
environment for building TA-based systems [14].
ViTABaL makes tool abstraction more readily available
for system designers and programmers.

Figure 7 shows a screen dump from ViTABaL
showing an event propagation view describing the flow
of events between toolies and their ADSs. This example
describes a simple design for a KWIC (Key Word In
Context) indexing system [22, 7], which generates a set
of sorted, shifted words from input lines. Designers
build up toolie and ADS structures and connect these via
event connections, describing the kind of event flows
between them. This includes “listening” to events before
or after they have been received by toolies, and even
modifying result data values on a listen-before [14].

ViTABaL supports the design of very flexible TA
systems, allowing designers to easily change toolies
from serial to concurrent operation, from batch to
incremental processing, and to modify toolie or ADS
behaviour via listening without changing existing code.

Figure 7. An example of a ViTABaL event propagation view.

ViTABaL uses textual views for specifying how
toolies respond to events, using an adapted form of
Snart syntax. Event propagation views can be animated
to show the flow of events through running TA
systems.

ViTABaL generates Snart code. This could invoke
or be invoked by code developed in other tools, such as
SPE and MViewsDP. As part of Banquet development,
we are integrating ViTABaL into the ISDE to allow
programs to be built using traditional object-oriented
approaches, as supported by the SPE approach, or tool
abstraction, as supported by ViTABaL.

7 . User Interface Construction

We have built several tools with MViews and Snart
for user interface construction. MViewsDP [12] provides
graphical interface builder-style views for defining the
appearance and location of user interface components,
such as dialog boxes. Textual views provide additional
information such as the interface to dialogs, dialog
control parameters, and constraints on control values and
behaviour. A dialog specification generates Snart code
which is run from within the environment. We are
currently adding a LeanCuisine+ [23] view to
MViewsDP, which will complement its interactive
specification and textual interface/constraint views. This
will allow the structure of the user interface components
to be more easily specified and visualised, and many
constraints will be more abstractly specified by
annotating this structure.

Another tool, arising from the CernoII visualisation
work, is the Skin visual, functional language. Skin
supports the definition of flexible user interface
components which are highly adaptable to data change
[17], in contrast to the more static dialog-box like
structures able to be specified using MViewsDP.

Figure 8 shows a Skin function. This takes two
arguments and constructs a horizontal list containing a
textually formatted version of the first argument (using
the text formatter primitive text), a block of white space
(), an alignment marker (see below) and a horizontal
bar (), with length specified by the second
argument's value. Alignment ()is used to line up
icon components across multi dimensional lists. A

horizontal list constructor ()is used to gather the
above elements together horizontally in sequence.
Attached to the function result pin is a viewer (attr1).
Viewers render a prototype version of the Skin fragment
they are attached to.

text

attr1

attr1

Figure 8. An example Skin specification.

MViewsDP and Skin can currently be used in
conjunction with SPE. Code generated by these systems
can be called from SPE Snart programs, and thus much
of the user interface aspects of these programs can be
defined in Skin and MViewsDP. There is not true
integration between these environments with no
hyperlinks between views nor shared data. Banquet will
integrate these tools, allowing a range of user interface
specification mechanisms to be used on a single project.

8 . Integrating multiple users

We have made progress on integrating multiple
users of an environment via both low-level editing
facilities and high-level coordination facilities. C-SPE is
a collaborative environment for software development
[15]. Figure 9 shows a screen dump from C-SPE during
semi-synchronous view editing. Changes made by a
collaborating user “rick” are presented semi-
synchronously in work artefact views or in a dialog. C-
SPE also supports asynchronous development, where
different versions are merged, and synchronous view
editing, where users see and manipulate exactly the same
view information. C-SPE was built by extending
MViews to produce C-MViews, incoporating support
for collaborative editing facilities.

Change descriptions inserted
into view text, dialog, and/or

icons highlighted

Figure 9. Semi-synchronous editing in C-SPE.

While C-SPE provides useful collaborative support
for software development, C-SPE's low-level editing
mechanisms do not support the coordination of work,
and only deal with the editing of work artefacts. C-SPE
thus illustrates a key problem for systems providing
low-level support for CSCW work: a lack of
information about the context that work artefact changes
have been carried out in. The collaborating user is not
told why rick carried out his changes, only the sequence
they were carried out in. No support is provided for
planning work together nor for grouping changes into
histories based on particular tasks and subtasks.

We have designed extensions to C-MViews which
support more effective coordination of collaborative
work [16]. Collaborating users design work plans
together, and can abstract these into policies, using VPL
(Visual Planning Language) [31]. Both plans and
policies are very flexible and can be modified before,
during or after actioning. Work artefact changes are
carried out in association with a current plan stage, the
current work context. Descriptions of work and plan
artefact changes are augmented with extra information,
which captures the current work or planning context,
and any extra rationale for the changes. Collaborating
users register their interest in plan, policy, or work
artefact changes, so that when these artefacts are
modified by collaborating users, the user is informed of
the change in an appropriate manner. Collaborating
users are informed of changes by the presentation of
both the actual changes carried out and the context the
work was carried out in. This includes grouping change
descriptions with their plans or meta-plans, showing
collaborators the context of work when displaying
change descriptions, and highlighting affected plan and
work artefacts in views in various ways.

9 . Summary

We have described the Banquet Integrated Software
Development Environment. Banquet will make a range
of related software engineering notations and tools more
accessible, and their use together more effective, for
software practitioners, students and researchers. Systems
developed using a variety of notations or methodologies
will have all their views of software development kept
consistent with one another. All data will be stored in a
hierarchical data repository, and a consistent user
interface amongst all tools will be provided.
Collaborating developers will be able to coordinate their
work more effectively than with current environments.

Current work Banquet is on three fronts. The first
involves the transfer from the existing Snart-based
implementation platform to C++. C++ offers
significant performance and portability improvements
over Snart. The second is the transfer to C++ as the
target language for the ISDE. This is because the
demand for a Snart ISDE is minimal in comparison to
that for a C++ one. The third is a continuation of the
integration of the environment islands described in
Section 2. Hierarchical, integrated repositories are being
used to achieve data integration between the tools.
MViews’ change propagation mechanism provides
control integration. Presentation integration is via a
consistent user interface, based on OpenDoc [2]. Process
integration is by the use of our work coordination
system, allowing users to plan and manage complex,
cooperative work with many different tools and
notations. The result will be an ISDE with powerful
consistency management and collaborative mechanisms
that supports: object-oriented analysis, formal
specification, design, C++ implementation, and
visualisation; flexible, high-level user interface
specification and construction tools; visual
programming for tool abstraction designs; and a high-
level work coordination system.

References

[1] Apperley, M.D. and Spence, R., “Lean Cuisine: A low-
fat notation for menus,” Interacting With Computers,
vol. 1, no. 1, 43-68, 1989.

[2] OpenDoc Users Manual, Apple�Computers Inc.
[3] Barghouti, N.S., “Supporting Cooperation in the

Marvel Process-Centred SDE,” in Procs of the 1992
ACM Symposium on Software Development
Environments, ACM Press, 1992, pp. 21-31.

[4] Bounab, M. and Godart, C., “A Federated Approach to
Tool Integration,” in Procs of CAiSE'95, Finland,
June 1995, LNCS 932, Springer-Verlag, pp. 269-282.

[5] Cox, P.T., Giles, F.R., and Pietrzykowski, T.,
“Prograph: a step towards liberating programming
from textual conditioning”, in Procs of the 1989 IEEE
Workshop on Visual Languages, 1989, IEEE CS Press,
pp. 150-156.

[6] Fenwick, S., Hosking, J.G., and Mugridge, W.B.,
“Visual debugging of object-oriented systems,” in
Procs of TOOLS Pacific 94, 1994.

[7] Garlan, D., Kaiser, G.E., and Notkin, D., “ Using Tool
Abstraction to Compose Systems,” COMPUTER, vol.
25, no. 6, 30-38, June 1992.

[8] Grundy, J.C. and Hosking, J.G., “A framework for
building visusal programming environments,” in
Procs of the 1993 IEEE Symposium on Visual
Languages, IEEE CS Press, 1993, pp. 220-224.

[9] Grundy, J.C., Hosking, J.G., Fenwick, S., and
Mugridge, W.B., Connecting the pieces, Chapter 11
in Visual Object-Oriented Programming. Mnning/
Prentice-Hall, 1995.

[10] Grundy, J.C. and Hosking, J.G., “Constructing
Integrated Software Development Environments with
Dependency Graphs,” Working Paper, Department of
Computer Science, University of Waikato, 1994.

[11] Grundy, J.C., and Hosking, J.G., “Support for
Integrated Formal Software Development,” in Procs
of APSEC'95, Brisbane, 1995, IEEE CS Press.

[12] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Supporting flexible consistency management via
discrete change description propagation,” Working
Paper, Department of Computer Science, University of
Waikato, 1995.

[13] Grundy, J.C. and Venable, J.R., “Providing Integrated
Support for Multiple Development Notations,” in
Procs of CAiSE'95, Finland, June 1995, LNCS 932,
Springer-Verlag, pp. 254-268.

[14] Grundy, J.C. and Hosking, J.G., “ViTABaL: A Visual
Language Supporting Design By Tool Abstraction,”
in Procs of the 1995 IEEE Symposium on Visual
Languages, IEEE CS Press, 1995.

[15] Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Amor, R., “Support for Collaborative, Integrated
Software Development,” in Proceeding of the 7th
Conference on Software Engineering Environments,
IEEE CS Press, April 1995, pp. 84-94.

[16] Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., “Coordinating, capturing and
presenting work contexts in CSCW systems,” in
Procs of OZCHI'95, Wollongong, November 1995.

[17] Hosking, J.G., Fenwick, S., Mugridge, W.B., and
Grundy, J.C., “Cover yourself with Skin,” in Procs of
OZCHI'95, Wollongong, November 1995.

[18] Kaiser, G.E. and Garlan, D., “Melding Software
Systems from Reusable Blocks,” IEEE Software, vol.
4, no. 4, 17-24, July 1987.

[19] Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia,
D.P., and Bignoli, C., “Supporting Collaborative
Software Development with ConversationBuilder,” in
Procs of the 1992 ACM Symposium on Software
Development Environments, 1992, pp. 11-20.

[20] Lonchamp, J., “CPCE: A Kernel for Building Flexible
Collaborative Process-Centred Environments,” in
Procs of the 7th Conference on Software Engineering
Environments, Netherlands, April 1995, IEEE CS
Press, pp. 95-105.

[21] Meyers, S., “Difficulties in Integrating Multiview
Editing Environments,” IEEE Software, vol. 8, no. 1,
49-57, January 1991.

[22] Parnas, D.L., “On the Criteria To Be Used in
Decompos ing Sys tems in to Modu les , ”
Communications of the ACM, vol. 15, no. 12, 1053-
1058, December 1972.

[23] Phillips, C., “Serving Lean Cuisine+: Towards a
Support Environment,” in Procs of OZCHI'94, 1994,
pp. 41-46.

[24] Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle,
B.R., “Dora - a structure oriented environment
generator,” IEE Software Engineering Journal, vol. 7,
no. 3, 184-190, 1992.

[25] Reiss, S.P., “PECAN: Program Development Systems
that Support Multiple Views,” IEEE Transactions on
Software Engineering, vol. 11, no. 3, 276-285, 1985.

[26] Reiss, S.P., “Connecting Tools Using Message
Passing in the Field Environment,” IEEE Software,
vol. 7, no. 7, 57-66, July 1990.

[27] Reiss, S.P., “Interacting with the Field environment,”
Software practice and Experience, vol. 20, no. S1,
S1/89-S1/115, June 1990.

[28] Reps, T. and Teitelbaum, T., “Language Processing in
Program Editors,” COMPUTER, vol. 20, no. 11, 29-
40, November 1987.

[29] Roseman, M. and Greenberg, S., “Groupkit: A
groupware toolkit for building real-time conferencing
applications,” in Procs of CSCW'92, ACM Press,
1992, pp. 43-50.

[30] TurboCASE Reference Manual, StructSoft�Inc, 5416
156th Ave. S.E. Bellevue, WA, 1992.

[31] Swenson, K.D., “A Visual Language to Describe
Collaborative Work,” in Procs of the 1993 IEEE
Symposium on Visual Languages, IEEE CS Press,
1993, pp. 298-303.

[32] Venable, J.R. and Grundy, J.C., “Integrating and
Supporting Entity Relationship and Object Role
Models,” in Procs of the 14th Object-Oriented and
Entity Relationship Modelling Conferece, Gold
Coast, December 1995, LNCS, Springer-Verlag.

[33] Wasserman, A.I. and Pircher, P.A., “A Graphical,
Extensible, Integrated Environment for Software
Development,” SIGPLAN Notices, vol. 22, no. 1,
131-142, January 1987.

