

SUPPORTING TRACEABILITY AND INCONSISTENCY MANAGEMENT
BETWEEN SOFTWARE ARTEFACTS

Thomas Olsson1 and John Grundy2

1 Dept. of Communication Systems

Lund University
Box 118

SE-221 00 Lund
Sweden

thomas.olsson@telecom.lth.se

2Dept. of Computer Science
University of Auckland

Private Bag 92019
Auckland

New Zealand
john-g @cs.auckland.ac.nz

Abstract
Software artefacts at different levels of abstraction are
closely inter-related. Developers require support for
managing these inter-relationships as artefacts evolve
during development. We describe a conceptual
architecture and prototype for supporting traceability and
inconsistency management between software requirements
descriptions, UML-style use case models and black-box
test plans. Key information models are extracted from
each of these different kinds of software artefacts and
elements in different models are implicitly or explicitly
linked. Changes to one software artefact are detected and
propagated to related artefacts in different information
models and inform developers of change impacts.

Keywords: traceability, inconsistency management,
requirements encoding, use case models, test plans

1 Introduction
As software systems continue to grow larger and more

complex the software developer is faced with managing
more and more information about a system. Exacerbating
this information management problem is the growing
demands on time to market and increased software quality.
As the amount and diversity of information about software
systems grows, so does the need for supporting
consistency and traceability among different levels of
abstraction for developers [15, 1, 6]. Software information
is represented in a wide variety of representations1, in
different notations, managed by different software
development tools, and the information is captured with
different purposes. Such information includes functional
and non-functional requirements, use cases, object-

1 Representation, artefact and document are in this context

the same, referring to the entity where the information is
represented and stored.

oriented analysis and design models, user interface
designs, code, black-box and white-box test plans, user
documentation and so on.

Support for relating information across such
representations is still quite weak [6, 11]. Therefore, the
linking and transformation work has to, a large extent, be
done manually. This is an error-prone and tedious process.
We describe a new approach to managing fuzzy
relationships between high-level software artefacts,
namely requirements, use case models and black-box test
plans. We formulate an abstract model for each kind of
software information and allow elements in one
representation to be linked to related elements in another
representation by both explicit and implicit means. Links
are used to support traceability between different
representations, visualisation of cross-representational
software information, and change management for
inconsistency tracking between representations.

2 Related work
Most software tools support one or more software

information models [8, 10]. Most software development
projects use multiple tools when developing software,
choosing appropriate tools to support different phases of
development and different kinds of software information
management [8]. The problem with many of the current
approaches is that relating information across different
artefacts is either not possible or very simplistic. Most
tools support working only with one part of the
development process, e.g. requirements or design, with
limited support to relate the information to other tools or
parts of the process [1, 10]. Tools that support multiple
phases of development and multiple information models
typically provide limited traceability and consistency
management between artefacts [5, 9]. More elaborate
support is usually found in low-level representations like
design or source code. For high-level representations,
support is very basic if even present at all.

There has been a substantial amount of research put
into issues such as inconsistency management [13],
traceability [18], logic-based formal methods [1], software
tool integration [5, 8] and round-trip engineering [12].
Much of this research is, however, usually focused on
either low-level abstractions or on formal methods to
encode software information. Many current multi-level
software information management approaches require the
notations worked with have to have a logic basis to support
consistency manaement [1, 15, 11]. Most of these
approaches usually focus on one or closely related types of
documents, not allowing the developer to create relations
across quite different types of software artefacts[17, 13, 6,
11].Many integrated software environments utilise a
common data model for all software artefacts [1, 3, 5],
enforcing representational consistency. We have found this
approach does not sufficiently tolerate the fuzzy inter-
relationships many software artefact representational
elements have. Many changes to one model cannot be
automatically applied to another without losing significant
information or making incorrect assumptions [6].

Tool data exchange research adopts a different
approach whereby information in multiple tools can be
exchanged in common formats, or associated by a linking
representational model [8, 19, 3]. Common data format
approaches for the most part do not track changes to one
representational model against another and thus typically
loose information or can not perform many change
propagations necessary [19]. The Xlinkit toolkit [11]
allows developers to express required consistency
constraints between software artefact information models,
with developers informed of inconsistencies present.
Xlinkit requires XML-encoded artefact data and detects
inconsistencies by checking for constraint violations.
JComposer provides an environment and architecture for
relating software artefact elements at different levels of
abstraction and propagating changes between
representations by the use of "change descriptions" [7].
This approach supports traceability and inconsistency

management but has not been applied to high-level artefact
consistency like requirements nor test plan content.

Viewpoints have been used in many projects to manage
multiple views on software information [4, 2, 20]. Most
approaches assume hard consistency between views, either
not allowing for inconsistency or if tolerating
inconsistency, using very formal representation models
that are hard to present to developers [6]. Hyperslices
provide a general mechanism for taking multiple
perspectives of complex system artefacts but traceability
and inconsistency management is not specified [16].

3 Our Approach
We have conducted an empirical study to better

understand how software developers use and manage
software information artefacts in the workplace, and to
understand how tool support should contribute to this [14].
Key findings to date indicate that what is required for
high-level artefact management is support for traceability
and inconsistency management between views that
informs developers of key interrelationships and where
changes in one model have impacted another. While the
quality of many high-level information representations is
often considered to be low, most participants in the survey
indicated that these higher level software system
representations are often a key communication means
between developers.

A key underlying assumption is that information about
the same part of a piece of software is present in several
places, levels of abstraction and in different
representations, as illustrated in Figure 1. In this example,
the requirements of an on-line video system are sketched
out. The informal, natural language-based requirements
codification are related to formalisations of these
requirements, such as a UML use case model as illustrated
in the middle column. Overlapping information includes
user/actor identification, functions/actions, data input and
output and non-functional constraints/special conditions.
Similarly, black-box test plan items are related to use case
and requirements elements.

Requirements:

1. The video store information system should
store information on customers, staff and
videos.

1.1. The video information should be searchable
by staff and customers.

1.2. The customer information should be
searchable by staff.

1.3. It should be possible to maintain the
information about the videos, staff, customers
and so on (find, add, update, delete etc).

1.4. The staff should be able to rent videos to
customers. Renting should take less than 5
seconds to process.

1.5 The staff should be able to view and print the
renting information of a customer.

Use Cases (diagram):

Rent/Return Video

Maintain Videos
Inventory System

Accounts System

Staff Members

Management

Search for video

Test specifications:
1. Add of a new video to the catalogue (ID 1,

Title "Johns Day Out", Price $4.50, Nights
5). Accepted.

2. Change the information of a video (ID 1, Price
= $7.00). Rejected - price violates
maximum constraint.

3. Customer search for a video o see if available
(Title part= "Johns"). List of 5 matching
videos returned and displayed.

4. Staff rent a video to a customer. (ID=1,
CustomerID=1234, StaffID=20,
Date=Today). Accepted.

5. Customer returns a video (ID=999). Rejected -
not rented to customer.

Figure 1 Example on how information overlaps among artefacts.

Requirement
1

Data
*

Context
*

Classification
*

Free text

Defined types

Classification

Description

Free text

Defined types

1 1

1

Data *

Free text

Use case
1

Interaction
1

User
*

Free text

Free text
Description

1

1

1

Data *

Free text

Classification

Description

Defined types

1 1

1

Test case
1

Interface
1

Action
*

Free text

Free text

Classification

Description

Defined types

1

1
1

a) Requirements model b) Use case model c) Test case model

Figure 2 Meta models

Given this multiple representation information overlap
we aim at identifying and characterizing key information
relationships between elements of quite different software
artefacts. In this paper we focus on those between use case
models, functional and non-functional requirements
descriptions, and black-box test plans. Our approach is to
summarise the key software information content in each
representation by extracting “essential information” from
each representational model into abstracted
representational models. We then identify relationships
between abstract elements from each representation and
create relations among these elements of different
representations. These relationships can either be created
explicitly by developers specifying them or implicitly by
heuristics and automatically created by a software tool.
There is a need to explicitly create relations since a full
automation is far away or even not possible, especially
since our current focus is currently on high-level natural
language documents that often lack well-defined formal
abstractions for all software artefacts in the representation.
Having created relationships across representations a
developer can navigate among views. A view might be an
entire artefact or parts of it, or may also be a combination
of parts from different artefacts. By having views the
developer does not have to picture the relationships in their
head but can instead see them on the computer screen. The
relationships can also be used for change impact analysis,
inconsistency management, traceability and so on.

4 Relationship Specification and Usage

4.1. Meta model of Abstract Representational Elements

We aim to support developers creating and relating
software information artefacts across representations
where elements are often imprecise, inter-relationships
often ill-defined and change impacts unclear on related
elements. Instead of trying to define very detailed
structural and semantic representations for all of the
software representations we are considering, we adopt an
approach that focuses on capturing key information from

each that can be related to other representations. Figure 2
summarises our current meta-models - typical sources of
this information include Word and Powerpoint documents,
CASE tool databases and testing tool scripts. We begin
with a very basic model of each of these software
representation informational models being considered. For
example, a use-case is characterized by three basic
elements: the involved actors, the interaction performed by
the action and data used in the interaction. The details
associated with each meta-model element can be further
refined to capture the information about a software system
in more structured detail. A grouping mechanism allows
developers to put related requirements elements together
into hierarchies, the use-cases into sequences, and test
cases into related sets of test plans.

4.2. Inter-representational Relationships

Various relationships can be specified between
elements and groups of elements in each software
representational model, some outlined in Table 1.

Relationship Elements Related

Exact (1:1) Exact duplication of information from one representation
in another e.g. screen name in use case action and test case

Specialisation More detailed information in one model based on
information in another e.g. general functional requirement
and detailed use case actions for this requirement

Generalisation More general (abstract) information in one model based on
information in another e.g. test plan values and functional
requirement or non-functional requirement they are used
to validate

Similar Similar concepts in different representations e.g. one
group of users in requirements and related actors in use
cases

Splits (1:many) Element or group of elements in one model explodes into
multiple elements in another e.g. one functional
requirement into multiple test plans or use cases/use case
actions.

Merges (many:1) Group of elements or multiple groups from one model
merges into a single element or single group e.g. one unit
under test relates to multiple non-functional constraints on
it.

Exact group
(m:n)

Each element of group in one representation related to an
element in group of other representation e.g. each use case
action to a test plan for interface.

Table 1. Relationships between elements.

(1)

(3)

(4)

(2)

Figure 3. Example on the meta model in a web based prototype.

4.3. Artefact Representation

We have developed a prototype tool to support the
capture, summarisation and linking of software
information. This includes support for extracting
information from source documents, viewing artefact
information in its summarised form, tracking changes to
artefact elements and managing change to artefacts in
different representations. The ultimate aim of this tool is to
provide value-added support for existing software artefact
management tools. Figure 3 illustrates the capture and
display of software artefact data in our prototype. (1)
shows a requirements outline for the on-line video system,
captured from a Word document. This describes key
functional and non-functional constraints. Requirements
can be expanded or collapsed for managing complex
system descriptions. (2) shows a use case model for the
video system, captured from a CASE tool. This shows key
actors, use cases, actions within use cases, and data input,
output and processing within use case actions. (3) shows
black-box test plan, captured from a testing tool's test
database. This shows test plan actions, input data and
expected result data. (4) shows a requirement summary.

4.4. Relationships across artefacts

Relationships between elements and groups in different
representations can be implicitly inferred from the meta-
model element relationships or data for a system being
modelled. For example, users in the requirements model
can be associated 1:1 with actors in the use case model
with the same names/roles. A group of test plans
associated with a single named user interface can be

associated with the use case actions for this named
interface and requirements constraining the named
interface or describing its functions. Explicit relationships
are defined by the tool user to give further information
about related representational elements. These
relationships can be used to express exact element
correspondence, specialisation, generalisation, and various
forms of cross-representational loose element association.
Figure 4 shows three views. (1) is the requirements view
for the rent/return video part of the system. In (2) the user
is viewing relationships between one of the requirements
and test plan elements. In (3) a test plan element's data is
being viewed.

(2)

(1)

(3)

Figure 4 Inter-notational relationships and navigation.

(1)

(2)

(3)

(4)

Figure 5 Change propagation and management example

 Requirements:

• Word documents
• Powerpoint files
• RequisitePro™ models
• Scanned text, sketches?

Use cases:
• Rose™ models
• Word documents
• Scanned text, sketches?

Test cases/plans:
• TestSuite™ models
• Word documents
• Excel spreadsheets
• Event traces?

Extraction
agents

Summarised Information
Model & Links

Part-module-system

Action-processing-
constraint

Data-user

User Data-ConstraintAction

Use case Requirements

Test
specification

Action

User

Data

1

2

3

4

5

6

7

9

8

10

11 12

Web User Interfaces
• Drive extraction agents
• Automate links
• Make basic user links
• Low-level artefact views

Diagramatic User
Interfaces

• High-level view of artefacts
and links

• Cross-representational
views

• User create links

Figure 6. Prototype tool architecture.

4.5. Change propagation

To support inconsistency management all changes
made to artefacts, whether explicitly in the tool or by
importing changed data from other tools, are tracked by
change representations. The developer is informed when
viewing elements in other representations that changes
have been made that impact them. Some changes can be
automatically applied by the tool e.g. renaming an actor

might result in a one-to-one, same-named user being
renamed in requirements and test plan representations.
Other changes need developer intervention. For example,
the effects of strengthening a non-functional performance
or user interface interaction constraint must be manually
applied to a use case model.

Our prototype tool captures changes, represents them
as change description objects and displays these to
developers when appropriate. For example, in Figure 5
when a requirement is modified (1), all use case elements
and test plan elements impacted by this change are updated
to indicate they may need to be modified (2). Change
descriptions may be hidden by the developer, indicated as
"actioned" or a summary report of impacted items not yet
inspected obtained. Changes are also associated with the
originating element providing a change history (3).
Changes can be accepted by developers and hidden from
change lists, and can be annotated to support developer
discussion (4).

5 Prototype Tool
Our tool prototype's architecture is illustrated in Figure

6. We use a set of "extraction agents" to capture
summarised information from a wide variety of software
information sources. These include Word™, Excel™ and
PowerPoint™ documents; Rose™, TestSuite™ and
RequisitePro™ CASE tool data models; and possibly may
extend to scanned text or even diagram sketches and
Robot™ test driver event traces. The web-based tool
interface is used to view summarised artefact data and to
support basic explicit linking of elements in different
representational models. The user can move between

different artefacts via these links, supporting traceability,
and changes to elements in one representation are
propagated to linked elements in other representational
models. Where possible, changes to these linked elements
are made, but often "change messages" documenting
related element changes [6] are used to indicate change
impacts. We are also prototyping a visual tool used to
provide high-level diagrammatic views on artefacts.

6 Summary
We have described an approach to supporting traceability
and change management between functional and non-
functional requirements summaries, use case models and
black-box test plans. The essence of our approach is to
summarise these different software information models,
distilling their "core" elements, element properties and
inter-element relations. Implicit (automatic) and explicitly
made links are then created between elements in different
software representation models. This allows developers to
navigate between models using related element links; to
have cross-representational views provided; and to support
change impact visualisation and management. We have
prototyped an information management tool using a
combination of data integration components providing
information extraction from a wide variety of common
software information models; a database capturing
summarised information models and cross-linked
elements; and web-based data capture, linking, viewing,
navigation and change management views. Key extensions
will include providing richer information visualisation
including graphical link and notational element display.
Extraction agents need to support both complex document
parsing and data extraction as well as change detection and
ultimately document update. We intend to make the
representation meta-models editable so different
organizations can specify their own extensions.

References
1. Allison W., Carrington D., Jones T., Stewart-Zerba L.,

Welsh J. Visualising software documents in a generic
development environment. In Proceedings of the 1997
Australian Software Engineering Conference, IEEE CS
Press, pp.49-59.

2. Emmerich, W., CORBA and ODBMSs in Viewpoint
Development Environment Architectures., In Proceedings
of the 4th International Conference on Object-Oriented
Information Systems, Springer Verlag, 1997, pp. 347-360.

3. Furguson, R.I., Parrington, N.F., Dunne, P., Archibald, J.M.
and Thompson, J.B. MetaMOOSE – an Object-oriented
Framework for the Construction of CASE Tools,
Proceedings of CoSET’99, Los Angeles, 17-18 May 1999,
University of South Australia, pp. 19-32.

4. Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J.,
Nuseibeh, B. Inconsistency Handling in Multiperspective
Specifications, IEEE Transactions on Software Engineering.
Vol. 20, no. 8, pp. 569-578, August, 1994.

5. Gray, .J.P., Liu, A. and Scott, L. Issues in software
engineering tool construction, Information and Software
Technology, 42 (2), Elsevier, 73-77.

6. Grundy, J.C., Hosking, J.G., Mugridge, W.B. Supporting
inconsistency management for multiple-view software
development environments, IEEE Transactions on Software
Engineering, vol. 24, no. 11, November 1998.

7. Grundy, J.C., Mugridge, W.B. and Hosking, J.G.
Constructing component-based software engineering
environments: issues and experiences, Journal of
Information and Software Technology, Vol. 42, No. 2,
January 2000, pp. 117-128.

8. Grundy, J.C. and Hosking, J.G. Software Tools, In Wiley
Encyclopedia of Software Engineering, 2nd Edition, Wiley
Interscience, December 2001.

9. Harrison, W., Ossher, H. and Tarr, P. Software Engineering
Tools and Environments: A Roadmap, The Future of
Software Engineering, Finkelstein, A. Ed., ACM Press,
2000.

10. Meyers, S. Difficulties in Integrating Multiview Editing
Environments, IEEE Software, 8 (1), 1991, pp. 49-57.

11. Nentwich, C., Emmerich, W., Finkelstein, A. Static
Consistency Checking for Distributed Specifications, In
Proceedings of the 2001 Automated Software Engineering
Conference, San Diego, November 26-28 2001.

12. Murphy, G., Notkin, D., and Sullivan, K. Software
Reflexion Models: Bridging the Gap between Source and
High-Level Models. ACM SIGSOFT Symposium on The
foundations of software engineering. Pp. 18-28, 1995.

13. Nuseibeh, B., Easterbrook, S., Russo, A. Leveraging
Inconsistency in Software Development. IEEE Computer.
Vol. 33, no. 4, pp. 24-29, April 2000.

14. Olsson, T., Runeson, P., Software document use: A
qualitative survey, Technical report, Dept. of
Communication systems, Lund University.

15. Opdahl, A., Toward a Faceted modelling language,
European Conference on Information Systems. Pp. 353–
366, 1997.

16. Ossher, H. and Tarr, P. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development,
Kluwer, 2000.

17. Rational Corp, Rational Rose™ CASE Tool,
www.rational.com.

18. Ramesh, B., Jarke, M. Toward Reference Models for
Requirements Traceability. IEEE Transactions on Software
Engineering. Vol. 27, no. 1, pp. 58-93, January, 2001.

19. Reiss SP. The Desert environment. ACM Transactions on
Software Engineering & Methodology, 8 (4), Oct. 1999,
pp.297-342.

20. Tarr, P., Ossher, H., Harrison, W. and Sutton, S.M. N
Degrees of Separation: Multi-Dimensional Separation of
Concerns. In Proceedings of the International Conference
on Software Engineering (ICSE 21), May 1999.

