
Copyright 1999 IEEE. Published in the Proceedings of RE’99, 7-11 June, Limerick, Ireland. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and

Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.
Aspect-oriented Requirements Engineering for Component-based Software

Systems

John Grundy

Department of Computer Science, University of Waikato
Private Bag 3105, Hamilton, New Zealand

jgrundy@cs.waikato.ac.nz

Abstract

Developing requirements for software components, and
ensuring these requirements are met by component
designs, is very challenging, as very often application
domain and stakeholders are not fully known during
component development. We introduce a new
methodology, aspect-oriented component engineering,
that addresses some difficult issues of component
requirements engineering by analysing and
characterising components based on different aspects of
the overall application a component addresses. We give
an overview of the aspect-oriented component
requirements engineering process, focus on component
requirements analysis, specification and reasoning, and
briefly discuss tool support.

1. Introduction

As software systems become ever more complex,
developers use new technologies to help manage
development. Component-based systems are one example
offering potential for better existing or third party
component reuse, compositional systems development,
and dynamic and end user reconfiguration of applications
[1, 16]. Component-based systems build applications
from discrete, inter-related software components, often
dynamically plugged into running applications and
reconfigured by end users or other components [10, 16].

While some processes, notations and tools used for
traditional Requirements Engineering [12] are useful for
component development, we have found deficiencies
during development of component-based design tools [2,
3, 4]. Stakeholders are often not clearly identifiable when
analysing component requirements, and include end users,
developers, and other components. Components typically
provide and require services to and from end users and
other components, which can usually be classified by

different systemic aspects of an application. Traditional
requirements capture techniques don't usually achieve this
for individual components. The "requires" and "provides"
relationships are captured by notations like Object-
Oriented Analysis (OOA), but with insufficient detail. A
key aim of software components is to allow components
to be interchangeable, but traditional analysis techniques
don’t adequately identify and describe generic interfaces
for extensible user interfaces, persistency, distribution and
collaborative work. Lastly, a suitable codification of
requirements is needed by end users and other
components at run-time. We have developed aspect-
oriented component engineering using the notion of
"aspects" of a system (e.g. user interface, persistency and
distribution, user configuration, collaborative work), for
which components provide or require services. Aspects
help identify, categorise and reason about component
requirements.

Section 2 motivates our work using an example
application and deficiencies with traditional RE methods
and existing component-based methods and tools.
Sections 3 to 5 overview the concepts and process of
aspect-oriented component engineering, illustrating
requirements specification for our example application
and discuss reasoning with aspect-oriented requirements.
Section 6 describes how aspect-oriented requirements are
used during component design, implementation and
deployment, and discusses tool support for aspect-
oriented component engineering. We conclude with a
summary of contributions and overview of future research
directions.

2. Motivation

Our need for improved component requirements
engineering grew from experiences developing multiple
view, multiple user design environments. An example of
such a system, Serendipity-II, is shown in Figure 1 [2].

…

(1)

(2)

(3) (4)

(5)

(6)

(7)

Figure 1. An example component-based application: the Serendipity-II process-centred environment.

Serendipity-II’s main functional requirements include
visual, collaborative process modelling and software
agent specification views (1, 2), process enactment and
view modification histories (3, 4), to-do lists (5), and
agent component information (6, 7). Key non-functional
requirements include supporting novice and experienced
users, platform independence and mobile computer
support, robustness, and security [4].

Serendipity-II was developed using component-based
techniques, with many of the components making up the
environment reused elsewhere. Examples include
enactment and editing event history management and
interfaces, collaborative view editing, persistency
management, event broadcasting between environments,
and version control and configuration management.

We found that traditional approaches to Requirements
Engineering [12] are not ideal for developing component
requirements. They tend to assume stakeholders and
requirements are known, most parts of a system are used
in one application (or are not dynamically configurable),
and end users don’t significantly reconfigure applications.
Unfortunately existing component-based development
methods usually focus on component design and
implementation [1, 15, 16], and usually only provided
services are documented. We found this leads to less-
reusable components, particularly with regard to
component user interfaces and support for distribution
and collaborative work. Some have suggested provides-
requires relationships between components be reasoned
about [13, 17], though have focused on low-level
interface specification. Determining customer
requirements for product development [8] shares similar
issues to component engineering, with stakeholders and

usage not well-known. Techniques of ensuring diverse
specifications are consistent, use of multiple perspectives
and careful refinement of requirements to designs could
thus be useful in component RE. Aspect-oriented
programming (AOP) [7] uses systemic “aspects” of
objects (particularly data distribution and concurrency),
augmenting traditional object classes and “weaved” into
code. We view weaving from an inter-component view,
rather than intra-method, with some components
unchangeable COTS parts.

Existing component development tools, such as Visual
Age™ [3], focus on design and implementation, as do
many CASE tools, such as Rational Rose™ [14] and
Software thru Pictures™ [6]. We have found such tools
unsatisfactory for analysing and documenting component
requirements. Similarly, the component characterisation
used by component architectures, like JavaBeans [10] and
COM [15], are too low level for describing requirements.
Enterprise JavaBeans use a high-level service framework,
though currently focus only on service provision. Tools
supporting component deployment [7, 18], lack high-level
information about components, making run-time
configuration difficult. Similarly, most component
repositories [11] utilise indexing mechanisms that don’t
adequately characterise components for retrieval and
reuse.

3. Component Engineering with Aspects

We have been developing an aspect-oriented
component engineering methodology. Aspect-oriented
Component Requirements Engineering (AOCRE) within
this focuses on identifying and specifying the functional

and non-functional requirements relating to key “aspects”
of a system each component provides or requires. For
example, a developer may identify user interface,
collaborative work and persistency-related functional and
non-functional aspects of a component, and document
provision and required services of the component for each
such aspect. Aspects may be decomposed into aspect
“details”, for example the data transfer, event
broadcasting and version management provides/requires
aspect details for collaborative work support. We have
developed some useful categorisations of component
aspects for design environments, in Table 1. While these
categories have been useful for systems we have
developed, other categorisations may be better for other
domains. Domain-specific aspects can also be identified
for specialised components e.g. process modelling for
Serendipity-II, which we have found useful for
documenting and reasoning about domain-specific
component characteristics.

Aspect Aspect Details Description

User interface Views
Affordances
Feedback
Extensible parts

Aspects supporting or requiring
user interface, including
extensible & composable
interfaces for several comps

Collaboration Sync. editing
Versioning
Locking protocol
Awareness

Aspects supporting or required
for collaborative work by users

Persistency Save/load data
Find data
Locking
Versioning

Aspects supported or required for
data persistency management

Distribution Obj. Identification
Oper. Invocation
Transaction Man.
Robustness

Aspects supported or required for
distributed object management

Configuration PEMs & Aspects
Property sheet
Wizard

Aspects supported or required for
end user or dynamic
configuration of component

Table 1. Some useful component aspects.

Some components may have many aspects and others
a few. Unlike traditional object-oriented analysis object
services, aspects may share component services, required
aspects are as important to characterise as provided
aspects, and often more than one other component may
provide or require a component's aspects. These
“overlapping” aspects are a natural consequence of high-
level categorisation of the systemic properties of
components, and help requirements engineers gain
understanding of related component characteristics.

We thus view aspect characterisation as a way to take
multiple, systemic perspectives onto components, and
thus better understand and reason about component data,
functionality, constraints and inter-relationships. Note that
some systemic aspects identified for a component may be
redundant in some usage scenarios, and different aspect
categorisations may be used depending on both the
aspects of reused components and those identified for the
system as a whole being developed.

Component1

OpenDialogue()

SaveData()

DataChanged()

UpdateData()

Persistency

Collaboration

User interface

Highlight Data()

Component2

SendData()

Collaboration

“provides”

“requires”

Figure 2. Basic notion of component aspects.

Figure 3. Basic AOCRE process.

Figure 3 shows the basic AOCRE process, which
begins after analysing general application requirements or
individual or groups of components requirements. This
allows iterative top-down and bottom-up requirements
refinement. Engineers characterise a component's aspects,
aspect details, provided and required details, functional
and non-functional properties, and reason about inter-
related components’ aggregate aspects. Components and
aspects identified are refined into detailed component
designs. For Serendipity-II we analysed requirements for
some reusable components, then designed and
implemented these. Serendipity-II requirements were

developed and refined into components and aspects.
Aspects were reasoned with to determine component
composition, configuration and reuse scenarios.
Component design and implementation was carried out
using these requirements, with feedback evolving
reusable and Serendipity-specific requirements.

4. Describing Requirements Aspects

Candidate components are found from OOA diagrams,
by reverse engineering software components, or bottom-
up consideration of individual, reusable components. We
have found "perfect" identification of components is not
essential during AOCRE, with requirements-level
"components" acting as groupings of related services and
aspects. These can be split, merged or otherwise refined at
design-time, in a similar way to OOA objects being
refined into classes. For each component, we identify
(using possible stakeholder requirements and object
services) aspects for which the component provides
services or requires services from other components.

For example, consider the event history component
used in Serendipity-II, reused to provide view editing
histories, processes stage enactment histories and
collaborative editing histories of exchanged events. This
component is identified from Serendipity-II requirements,
which call for various event histories, or can be
considered in a bottom-up fashion as a commonly
required design environment component. Event history
functional requirements include event management (add,
remove, annotate), history display and manipulation,

multiple user sharing, and data persistency. Components
may need to reconfigure event history user interfaces to
enable/disable affordances or add their own (see Figure
1).

Figure 4 illustrates aspect-oriented requirements we
have identified for the event history component, and some
related components used with in Serendipity-II.
Components are in solid rectangles, aspect
characterisations in dotted rectangles. Aspect details are
categorised as being “provided” by a component (denoted
by a “+” prefix, e.g. dialogue, basic event management,
data serialisation for the event history, or “required” (0”-“
prefix), e.g. extensible affordance, event broadcasting and
data storage. The aspects provided by the event history
are shown in Figure 4, and the usage of provided aspect
details and provision of required aspect details indicated
between aspects and other Serendipity-II components.

When considering aspects for the event history we
identified it must provide a user interface, provide
collaborative work support, must be made persistent, and
allow configuration of history behaviour. We made user
interface affordances “extensible” by other components,
avoiding a common problem of inconsistent user
interfaces built from mis-matched parts. This need for
extension was identified during Serendipity-II
requirements specification, where a reused versioning
component needs to extend event history affordances. We
identified that collaborative work support infrastructure
should be provided by other components, as these
facilities are reused often by applications.

Event History Component

event_count:integer
title:string
…
displayEvents()
addEvent(Event)
removeEvent(integer)
saveEvents(Stream)
loadEvents(Stream)
subscribeToEvent(Comp)
actionEvent(Event)
…
addEvent(integer,Event)
removeEvent(integer,Event)
changeTitle(String)
…

User Interface Aspects
+view
+extensible affordances
- viewer (with extensible affordances)

Persistency Aspects
+ save and load functions
- file manager
- remote data manager

Collaborative Work Aspects
+ data fetch/store functions
+ event broadcasting/actioning functions
+ event annotation functions
- remote data/event synchronisation
- data/event versioning

End User Configuration Aspects
+ properties, methods, events info
+ relationships & aspects info
- property sheet
- visual configuration tool
- configuration wizard tool

Component

Properties…
Methods…
Events…

Related Aspects

+ provided aspect
- required aspect

Provides/uses
aspect

Process Stage Process view Distributed Event
Broadcaster/receiver

File Sream Manager Version Control ToolEvent History Viewer

Provides viewer

Use view
Uses extensible
affordance

Provides file manager

Uses save/load funcs
Provides remote data man. Uses data fetch/store

Provides versioning
Uses event broad/actioning
Provides event sync.

Visual Agent
Specification Tool

Uses PEM/aspect info
Provides property sheet
Provides configuration tool

Figure 4. Example Serendipity-II components and some of their aspects.

II. Collaborative Work Aspects : COLLABORATION
 II. 1) +data fetch/store functions : DATA_MANIPULATION
 -- Provides services for getting some/all of event history data and for updating some/all of event history data. Used by components providing collaborative work infrastructure to keep

distributed data synchronised or partially synchronised.
 QUERY=true; UPDATE=true

 II 2) +event broadcasting/actions functions : EVENT_MANAGEMENT
 -- Provides services allowing other components to detect event history update events and to action (replay) events received by other components. Used by components providing collaborative

work infrastructure to keep distributed event history synchronised or support deltas of event history version changes.
 DETECT=true; ACTION=true

 II 3) + event annotation functions : AWARENESS
 -- Provides services for annotating, selecting, highlighting events. Used by components providing collaborative work infrastructure to support basic group awareness facilities for updated

event history events. Other components should use these to annotate events with remote user name, colour them with a colour associated with a particular user, etc.
 HIGHLIGHT=colour; ANNOTATE=text

 II 4) - remote data/event synchronisation : LOCKING
 -- Requires component(s) that supports remote data/event synchronisation. Could support fully synchronised data or semi-synchronous update. This should be robust if network connections

fail, and should work over low or high bandwidth networks.
 SYNCHRONOUS=true OR false; SEMI_SYNCHRONOUS=true OR false; NETWORK_SPEED=any; STORE=true

 II 5) - data/event versioning : VERSIONING
 -- Requires component(s) providing data versioning. Should support both event history data and event history update event recording/versioning. This should be a simple-to-use facility for

end users. Should extend the viewer affordances to provide at least check-in/check-out capabilities via +extensible affordance aspect.
 DATA=true; EVENT=true; INTERFACE=extensible affordances; CHECKIN=true; CHECKOUT=true

Figure 5. Detailed aspect-oriented component requirements specifications.

The event history provides basic collaborative work
facilities, such as event editing, annotation, actioning
received events and providing event listening and export
facilities. It requires event and data broadcasting between
environments and versioning facilities. Aspect details are
kept quite general at the requirements level, and the
eventual implementation of these facilities is generally
unimportant. During AOCRE generalised aspect details
are specified to characterise event history collaborative
work-related services. Note event serialisation and
deserialisation services are used by collaborative work
and persistency aspects, illustrating aspects may overlap.

Detailed textual specifications of aspects provide
additional documentation of functional and non-
functional requirements. We are developing a set of
properties for each aspect detail kind used to more
formally describe aspects and aspect usage. Figure 5
shows an example of some codified aspect information
for the event history.

5. Reasoning with Aspects

After identifying a component's provided and required
aspects, related components and aspects can be reasoned
about. Inter-component relationships inferred by provided
and required aspects allow Engineers to reason about the
validity relationships and aspects specified. For example,
an event history linked to a component providing only
event broadcasting collaborative work aspect doesn’t
have versioning. The component could be used but would
not provide end users or the target application versioned
event histories. If versioning is mandatory, the
specification is invalid. If a history requires high
bandwidth, encrypted data transfer, and is linked to a
component providing only modem connection and no
encryption, this is invalid.

Aggregate aspects can be identified and specified for
groups of interrelated components, allowing Engineers to
reason about aspect-oriented requirements for a set of
related components, or even global requirements for a
whole application. Figure 6 shows an example of a group
of interrelated components providing an event history
with asynchronous collaboration (via version control),
persistency using files, and no synchronous collaborative
support or extensible user interface. The aspects of this
aggregate are a constrained subset of those of the event
history and related components. Global application
requirements can be specified using aspects, and then be
migrated down to groups of related components or
individual components.

Event History

User Interface

+view
+extensible affordances
- viewer

Simple Viewer

Version Control

Persistency
+ save and load functions
- file manager
- remote data manager

Collaborative Work
+ data fetch/store functions
+ event broadcasting/actioning
+ event annotation functions
- remote data/event sync
- data/event versioning

File Stream

User Interface

+view

Persistency
+ file save/load

Collaborative Work
+ async editing

Figure 6. Example of aggregated aspects.

Aspects aid in handling evolution of requirements by
assisting in categorising requirements changes and
localising effects of these changes to relevant aspect

categories and aspect details. Changing overall system
requirements impacts on aspect-oriented requirements
specifications by: changing properties associated with
aspect details, adding details or removing details;
introducing new aspects and aspect details, or changing
inter-component relationships and aspect
provides/requires associations; and introducing new
components or refining candidate components (merged,
split), with modification of associated aspects. Aspects
assist in reasoning about modified requirements by aiding
requirements engineers in reformulating components,
component aspects and provided/required aspects.

6. Design, Implementation and Run-time

Aspect-oriented component requirements assist when
designing and implementing components. They provide a
focused set of functional and non-functional constraints a
design can be refined from, and provide a specification
that an implementation can be tested against.
Requirements-level components can be refined directly to
matching design-level software components, or can be
split, merged or otherwise revised, as can requirements-
level component aspects. They also allow for design
decisions to be influenced by weakening or strengthening
aspect-level constraints.

Detailed design decisions about the user interface
design and behaviour, component persistency and
distribution strategies, technologies and available
services, collaboration and awareness support facilities,
and component configuration tools are usual refinements.
Figure 7 shows an example of the refinement of event
history component requirements-level aspects to more

detailed design-level software component aspects. Some
aspects become more specific as e.g. user interface design
decisions are made.

Aspects can provide a standardised mechanism for
related components to describe and access each other's
functionality, or be used to guide inter-component
interface definition. A component may thus indirectly
invoke other component functionality via operations
provided by aspect implementations, or may invoke
component operations directly. The former results in
more generic, reusable inter-component relationships,
while the later is sometimes easier to implement. Aspects
can be implemented via interfaces, language reflection or
design patterns. We have used all three approaches when
implementing components with JViews, our component-
based software architecture [8].

Aspect information can be encoded in component
implementations for use at run-time by components or
end users. Components may query other components for
the aspects they provide or require, ask them to perform
consistency checks for a configuration, or use their aspect
information to reconfigure themselves. For example, a
version control tool component queries the event history
component for its user interface aspects, locates its
preferred extensible affordance aspect (if there is more
than one) and requests Check-in and Check-out
affordances be added, and is notified when these are
accessed. End users can peruse encoded aspect
information to determine what functional and non-
functional requirements a component has, as shown in
Figure 1 (6, 7).

Event History Component

User Interface Aspects
+view
+extensible affordances
- viewer (with extensible affordances)

Persistency Aspects
+ save and load functions
- file manager
- remote data manager

Collaborative Work Aspects
+ data fetch/store functions
+ event broadcasting/actioning functions
+ event annotation functions
- remote data/event synchronisation
- data/event versioning

Requirements-level aspects Design-level aspects

User Interface Aspects
+dialogue view
+extensible buttons panel
- dialogue frame
- other views (e.g. visual)

Event History Component
Class

Dialogue
Viewer Class

TCP/IP-based event
synchronisation Class File-based Persistency

Class

Collaborative Work Aspects
+ serialise/deserialise data to/from stream
+ listen to events; action events
+ String-based annotation; colour-based

highlighting
- remote event sending & receiving
- lock shared event histories
- check-out, check-in event list

Persistency Aspects

+ serialise/deserialise data to/from stream
- stream provider

Requires event broadcasting, actioning and
annotation/highlighting services
Provides remote event sending/receiving
Provides locking of shared event histories

Provides file stream services

Provides dialogue view

Component

Aspect

Inter-component relationship

Provides/requires aspect

Figure 7. Refining requirements-level component aspects into design-level aspects.

 7. Tool Support

We have developed some basic tool support for
specifying aspects of components in a component-based
software development environment, JComposer [3].
Aspects of a software component are grouped and
associated with the component, and inter-component
aspect usage documented. Some basic validation checking
ensures related component aspect requirements are
correctly met. Detailed aspect specifications are specified
using a hierarchical notation in MS Word™ and aspect
detail properties in JComposer. Basic inconsistency
management techniques help manage evolving aspect-
oriented requirements and include highlighting of
changed aspect information in views, change histories for
all views and each individual component and each of its
aspects, and consistency checks that test if provide/require
links between components match.

Requirements-level aspects can be refined into
design-level aspects that are associated with classes used
to implement a component. JComposer supports
generation of information describing a component's
aspects that developers and end-users can access at run-
time. Basic reverse-engineering capabilities allow
components with aspect information to be reverse
engineered in JComposer, preserving their aspects.

Aspect-oriented Requirements Engineering can be
used to analyse and refine the requirements of new or
COTS components. We have used JComposer to
characterise the aspects of various software engineering
and office automation tools, including MS Excel™, MS
Word™, Eudora™, JComposer itself, and Netscape™,

and these have been integrated with Serendipity-II [8].
When characterising the aspects of such third party
components, it is only necessary to characterise those
services or requirements of these systems that are to be
used with other components.

To date we have reengineered many Serendipity-II
and JViews components and developed several new
components using our aspect-oriented approach.
Requirements for these components have been
documented using aspects and code part-developed using
JComposer’s support for design-level refinement of
aspects. Previously we had used conventional
requirements engineering and design approaches when
developing environments like Serendipity-II. Our
preliminary experience with AOCRE has been very
positive, with improved documentation and understanding
of component requirements resulting, along with an
improved ability to reason about related component
requirements using our aspect-oriented perspective.
Generally we have found components that have been
developed using AOCRE exhibit improved reusability
and extensibility, and systems built with these
components exhibit improved allocation of responsibility
for data and behaviour among both reused and
application-specific components.

We are exploring additional visual language support
for aspects and aggregated aspects, including better
indication of provides/requires aspects spanning several
components. Extending our property/value aspect
descriptions will help better-describe aspects and provide
more formal, rigorous checking. We are developing a
repository using aspects to index components for reuse.

Figure 8. Specifying aspects in JComposer.

8. Summary

Requirements for component-based software systems
are difficult to analyse and specify. We have developed an
approach that characterises different aspects of a system
each component provides to end users or other
components, or requires support for from other
components. This allows Requirements Engineers to
reason about inter-component relationships that exist for a
selected component or for a group of related components
using categorised perspectives onto a component’s data
and behaviour. These aspect-oriented views of a
component Aspect-oriented component requirements can
be refined naturally into design-level software component
aspects, and can be encoded into component
implementations for use at run-time. We have developed
basic tool support for aspect-oriented requirements
engineering and used the approach for the reengineering
of many components and the development of several new
components. The resultant requirements are more easily
understood, inter-component relationships reasoned about
and component specifications more readily reused than if
using traditional requirements engineering approaches.

Acknowledgements

Financial support from the Public Good Science Fund
is gratefully acknowledged, as are the many helpful
comments of the anonymous reviewers.

References

1. Brown, A.W. and Wallnau, K.C. Engineering of
component-based systems, In Proceedings of the 2nd Int.
Conference on Engineering of Complex Computer Systems,
Montreal, Canada, Oct 1996, IEEE CS Press.

2. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing, Vol.
2, No. 5, September/October 1998, IEEE CS Press.

3. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Visual
specification of multiple view visual environments, In
Proceedings of 1998 IEEE Symposium on Visual
Languages, Halifax, Canada, Sept 1998, IEEE CS Press.

4. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., Tool integration, collaborative work and
user interaction issues in component-based software
architectures, In Proceedings of TOOLS Pacific '98,
Melbourne, Australia, 24-26 November, IEEE CS Press.

5. IBM Inc, VisualAge™ for Java, 1998,
http://www.software.ibm.com/ad/vajava/.

6. IDE Inc., Software thru Pictures™ 7.0, 1998,
http://www.ide.com/Products/SMS/core7.0.html.

7. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M., and Irwin, J. Aspect-oriented
Programming, In Proceedings of the European Conference
on Object-Oriented Programming, Finland. Springer-
Verlag LNCS 1241. June 1997.

8. Litva, P.F., Integrating Customer Requirements into
Product Designs, Journal of Product Innovation
Management, Vol. 12, No. 1, pp. 3-15.

9. Netscape Communications Inc, Visual Javascript™, 1998,
http://www.netscape.com/ compprod/products/.

10. O'Neil, J. and Schildt, H. Java Beans Programming from
the Ground Up, Osborne McGraw-Hill, 1998.

11. Park, Y. and Bai, P. Retrieving software components by
execution, In Proeedings of the. 1st Component Users
Conference, Munich, July 14-18 1996, SIGS Books.

12. Pressman, R. Software Engineering : A Practitioner's
Approach, McGraw-Hill, 4th Edition, 1996.

13. Rakotonirainy, A. and Bond, A. A Simple Architecture
Description Model, In Proceedings of TOOLS Pacific'98,
Melbourne, Australia, Nov 24-26, 1998, IEEE CS Press.

14. Rational Corp., Rational Rose 98, 1998,
http://www.rational.com/products/rose/prodinfo.html.

15. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

16. Szyperski, C.A. Component Software: Beyond Object-
oriented Programming, Addison-Wesley, 1997.

17. Szyperski, C.A. and Vernik, R.J. Establishing system-wide
properties of component-based systems, OMG/DARPA
Workshop on Compositional Software Architecture,
Monterey CA, Jan 6-8 1998.

18. Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman,
P., Black-box Reuse within Frameworks Based on Visual
Programming, In Proeedings of the. 1st Component Users
Conference, Munich, July 14-18 1996, SIGS Books.

