
An implementation architecture for aspect-oriented
component engineering

John Grundy

Department of Computer Science
University of Auckland

Private Bag 92019, Auckland, New Zealand

Abstract

Aspect-oriented component engineering (AOCE)
is a new technique for engineering software
components, using a concept of provided and
required systemic aspects of a component’s non-
functional and functional characteristics to
support component composition and interaction.
These aspects include component user interfaces,
collaborative work support, distribution and
persistency, security, data management,
processing, component inter-relationship and
configuration characteristics. We describe
support for AOCE in the JViews software
architecture via the use of aspects, aspect details
and detail properties. We describe
implementation of this aspect information using
the Java language, including the use of
AspectDetail classes to augment JavaBeans, with
different specialisations supporting decoupled
component aspect querying and access to
component services in a very de-coupled manner.

Keywords: aspects, software components,
software architecture, introspection

1. Introduction

Component-based systems have become very
popular as an alternative approach of composing
systems from reusable software “building
blocks”, rather than developing monolithic
applications [13], [12]]. Component-based
development methods and technologies typically
focus on packaging “vertical slices” of system
functionality in components that are then
combined and reused in diverse ways.

Components are typically (though not always)
coarser-grained than objects, provide
introspection mechanisms and more flexible
coupling mechanisms, such as event subscription,
and can often be dynamically deployed.

A problem of component-based development
is the spreading of systemic properties of a system
throughout component code e.g. user interface,
collaboration, distribution, persistency, security
etc. We have developed Aspect Oriented
Component Engineering (AOCE), a new
methodology for component-based development
that uses systemic aspect characterisation of
component properties to help improve component
design and implementation [3]. Component
aspects take a “horizontal slice” across systemic
features of applications (user interface, security,
distribution, etc.) and capture the provided and
required capabilities of components.

We describe the use of AOCE to support
component design, and the architectural support
for aspects in an implementation framework.
Components encode, using a collection of
AspectDetail specialisations, aspect information
for run-time usage. At run-time components can
access other components’ aspects and use them to
determine component capabilities, and sometimes
can use AspectDetail object methods to invoke
component functions in a loosely-coupled way.

2. AOCE

We use an example component-based application
and some of its constituent components to
illustrate AOCE and its architectural support in
this paper.

(3)

(2)

(1)
(4)

 (3)

Figure 1. Example of a component-based application.

Figure 1 shows a screen dump from a
collaborative travel itinerary planner we have
developed using software components. This
application provides: a tree structure editor
component (1), used to view and edit travel
itineraries; a map visualisation component (2);
itinerary item property dialogues; a collaborative
text chat (3); a web browser; and several
collaborative work-supporting notification and
task automation agents (4) (e.g. multi user
editing, multiple cursors, change notifiers etc.).

Different components making up this system
provide services for other components or end
users e.g. User Interface, distribution, persistency,
security, collaborative work and so on. Other
components require these services and thus
developers can reason about the provides/requires
relationships between components that comprise
an application. AOCE develops characteristics of
these provided and required “aspects” of
components, grouping them by the systemic
aspects they relate to.

Figure 2 shows a simple example of such
“horizontal slicing” of a component’s capabilities.
This provides multiple perspectives of the chat
component, illustrating the different kinds of
services such a component provides to other
components and end users, and requires from
other components. With each aspect category are
grouped various “aspect details” e.g. provided
panel and extendable menu, required frame,
provided event generation and actioning, required
event transport mechanism etc. Each aspect detail
has a set of “aspect detail properties” which
further characterise it e.g. events generated before

or after the component state is updated, event
transport should be across WAN and support 100
event objects per second and so on. Aspects thus
allow developers to specify the provided and
required capabilities of components and allow
them to specify functional and non-functional
characteristics of these capabilities.

User Interface Aspects:

Provides: panel
Requires: frame
Provides: extendable
 pop-up menu

Collaboration Aspects:

Provides: event generation
Provides: received event
 actioning
Requires: event transport
Requires: synchronisation

Persistency Aspects:

Provides: data serialisation
Provides: data deserialisation
Requires: data storage
Requires: data retrieval

Chat Component

Properties:
UserName:String
Width:Integer
Height:Integer
…

Methods:
displayPanel()
addMenuItem()
sendMessage()
receiveMessage()
saveChatHistory()
loadChatHistory()
…

Events:

Figure 2. Example aspects.

AOCE is used throughout a component’s
lifecycle. We have extended a CASE tool,
JComposer, and component implementation
framework, JViews, to incorporate the notion of
component aspects to support component design
and implementation. Requirements engineers
develop abstract aspect characterisations of
components based on user requirements.
Refinements of these components and their
aspects are developed to produce design-level
system components and design-level aspects, and
component-implementing classes are generated.
AspectDetail class specialisations are also

generated for each component to codify their
aspects, and provide methods and interfaces used
to implement highly de-coupled component
interactions at run-time.

3. Architectural Support

When designing software components, we have
found aspects greatly assist developers in
identifying component capabilities and ensuring
designers carefully take into account the
possibilities of reuse of components and
necessary component interfaces and support for
this. Aspects help designers to develop general
approaches to providing aspect-based services
and to supporting access by other components to
discovering, using and tailoring such services.
Unlike aspect-oriented programming, we aim to
avoid doing “code weaving” to distribute aspect-
codified capabilities throughout component
implementation code. Rather, we aim to have
component methods implemented so that their

aspect-related properties are handled in such a
way that very general component provision and
requiring of aspect-related services is supported.
This better supports COTS component reuse and
dynamic system configuration.

We have extended our component
implementation framework, JViews, to
incorporate characterisations of component
aspects, including aspect categories, aspect details
and aspect detail properties. Components
publicise their aspects (both required and
provided aspect details) using aspect categories,
and each provide and required aspect detail has a
set of property values further characterising the
component capabilities.

Figure 3 shows an example of characterising
the tree editor component capabilities using
aspects, modelled with the JViews Architecture
Description Language (ADL). The tree editor:
provides a user interface frame and configuration
property sheet, and may optionally require
another form of structure viewer (e.g. outliner).

Tree Editor

Label:String
User:String
…

showFrame()
hideFrame()
addMenuItem()
addPanelItem()
displayMessage()
addEventListener()
generateEvent()
treetToText()
textToTree()
…

<<User Interface>>

+frame viewer
+tree panel
+message bar
+extensible menu
+extensible panel
(- other viewer)

<<Aspect>>

+provided aspect detail
- required aspect detail
(- optional required aspect detail)

Component

Properties

Methods

Events

Other Component

bengs-to

uses

<<Distribution>>

+event generation
+event actioning
-event broadcasting

<<Persistency>>

-store data
-retrieve data
+serialise/deserialise data

<<Secutiry>>

+user identification
-authentication
-encryption

Messaging

AddMessagePanel()

Secure RMI
 Broadcaster

SendEvent()
ReceiveEvent()
EncodeData()
DecodeData()

Local File Store

LocateSavedData()
SaveData()
LoadData()

Component TreeEditor

 Properties
 …
 Methods

showFrame()
hideFrame()
addMenuItem()
…

 Events
 …
 Aspect UserInterface
 Provides frame viewer : Frame
 Default size=…
 Relevant methods=[showFrame, hideFrame]
 …
 End frame viewer
 Provides extensible menu : Extensible Affordance
 Affordance type=menu
 Extensions allowed=[add to end, insert item]
 Can disable=False
 …
 End extensible menu
 …
 End UserInterface

 Aspect Distribution
 Provides event generation : Event Generation
 Generation time=[before, after]
 Relevant Events=[all]

 Relevant methods=[addEventListener, generateEvent]
 …

 End event generation
 Requires event transport : Event Transport
 Transport kind=[lan,wan,wireless]
 Event transport speed=between 10 and 100
 …
 End event transport
 …
 End Distribution
 …
End TreeEditor.

(a) Visual representation of aspects and aspect details. (b) Textual specification of aspects.

Figure 3. Aspects for the tree editor component, modelling using the JViews ADL.

It provides event generation and actioning
capabilities and requires event transport and
synchronisation support; provides serialisation
and deserialisation support but requires data
storage and retrieval capabilities; and provides
item locking and highlighting (for collaborative
awareness) but requires collaboration event
propagation between users.

4. Implementation Support

In order to support AOCE at the component
implementation level, we have extended our
JViews component-based framework to
incorporate aspect information. This has been
achieved by providing each JViews component
with a set of AspectManager objects, one for each
kind of aspect category, with each manager
having a set of AspectDetail objects of various
kinds. Different AspectDetail objects have different
sets of aspect detail properties relevant to the kind
of aspect detail being represented. JViews
component classes inherit from a JVComponent

class that includes functions to access
AspectManager and AspectDetail objects. Figure 4
shows a UML class diagram describing the
representation of JViews aspect manager and

detail objects. Each manager object organises and
provides functions to access (and modify) aspect
details of a particular aspect category e.g. User
Interface, Distribution, Persistency and so on. The
AspectManager classes provide functions to query,
retrieve and modify AspectDetail objects they
organise. The AspectDetail classes provide generic
functionality to identify (name) each aspect detail
for a component, as well as common property
management and annotation functions.

A variety of AspectDetail specialisations are
used to capture extra information (i.e. aspect
detail properties) about aspect details, and many
AspectDetail specialisations also provide aspect
detail-specific component querying and
manipulation functions. For example, the
ExtensibleAfforanceAspectDetail class is used to
characterise components that have a user interface
affordance that can be extened e.g. an extensible
pull-down menu or list of buttons. It provides
properties to characterise the kind of extensible
afforance (e.g. menu, button, panel etc.), how the
affordance can be extended (e.g. add to end of
list, insert item, replace item etc.), and functions
that can be invoked to carry out user interface
affordance extension (addAffordance(), etc).

JVComponent

getAspects() : JVAspects

JVAspects

getUserInterfaceAspects()
getDistributionAspects()
getPersistencyAspects()
getSecurityAspects()
getTransactionAspects()
getConfigurationAspects()
getCollaborativeWorkAspects()
getOtherAspects()

1..1

1..1

1..1

1..1aspects

JVAspectManager

name : String

findNamedAspectDetail()
addAspectDetail()
removeAspectDetail()
validate()
showManagerDialogue()

0..*1..1 0..*1..1

managers

JVAspectDetail

name : String
type : String
provided : Boolean
optional : Boolean

getProperty()
setProperty()
getAnnotation()
setAnnotation()
validate()
showDetailDialogue()

0..*

1..1

details

0..*

1..1

JVUserInterfaceAspectDetail

JVDistributionAspectDetail

JVPersistencyAspectDetail

...

JVExtensibleAffordanceAspectDetail

affordanceKind : String

addAffordance()
removeAffordance()
replaceAffordance()
enableAffordance()
disableAffordance()
validate()
getExtensibleAffordanceInterface()

...

JVEventGeneratorAspectDetail

aggregateEvents : boolean
eventObjectSize : Integer
eventTypes : Vector

getSubscriptionInterface()
addSubscriber()
removeSubscriber()
validate()

JVEventTransportAspectDetai l

transportMech : String
retransmission : String
speed : Range
unicast : Boolean

getTransporterInterface()
sendEvent()
receiveEvent()
connect()
disconnect()
validate()

...

...

Figure 4. Some AspectManager and AspectDetail classes from the JViews framework.

Components providing an extensible
affordance capability advertise that they provide
this via a ExtensibleAfforanceAspectDetail object.
Other components that require an extensible
affordance advertise this, and they can use the
ExtensibleAfforanceAspectDetail functions to both
discover the capabilities of the provider
component as well as dynamically extend the
provider’s user interface in a controlled, de-
coupled fashion.

AspectDetail objects also include validation
functions that can be called at run-time to check
components are correctly combined i.e. their
aspect details and detail properties are consistent
and sufficient to allow them to operate. We have
developed a range of AspectDetail specialisations,
including various ones for collaborative work
support, persistency, security, component
configuration and transaction processing
characterisation. We are continuing to develop
more of these as they are needed in our
component-based systems.

JComposer generates code in components to
create and initialise their AspectManager and
AspectDetail objects. Many JViews framework
components provide standard aspect objects and
implement interfaces, and specialisations for new
components may also implement additional
interfaces relating to their aspect-based
capabilities. Our JViews components are
currently specialisations of the JavaBeans
component model, adding extra event
subscription and notification support.

5. Run-time Aspect Usage

AspectDetail objects are used to introspect a
component’s capabilities at run-time, to provide a
standardised access point for invoking functions
of a component that implement aspect-related
services, or be used to re-configure a component.
Figure 5 shows some examples of AspectDetail

object usage at run-time. Figure 5(a) shows a
persistency management component, which needs
to add “Save” and “Load” affordances to the tree
editor’s user interface. The persistency
component accesses the tree editor’s user
interface manager (1) to obtain an extensible
affordance aspect detail object; (2) invokes the
addAffordance() function (2), passing new
affordance labels, which calls appropriate

functions implemented by the tree editor (3). In
our implementation, the persistency manager
extends the “File” menu, adding “Save” and
“Load” menu items. The persistency component
knows nothing about the tree editor component
and only interacts with it via the functions
provided by ExtensibleAfforanceAspectDetail object.

Figure 5(b) shows a collaborative editing
component using a distribution aspect manager
(1) to discover the event subscription interface of
the tree editor (2), and uses this interface to
subscribe to editing events (3, 4). When the
collaborative editing component receives events
(5), it sends events to a corresponding user's
collaborative editing component via an event
transport component (6, 7). Received events (8)
are sent to the tree editor for actioning (9). This
could be done via an event actioning aspect detail
object, interface implemented by the tree editor
(as here), or by a particular tree editor function
being called.

Figure 5(c) shows the use of a third
component to mediate inter-component
communication. A persistency component locates
(1) and accesses a security encoder aspect detail
object (2), using it to obtain a specified data
encoder component. When tree component data
needs to be stored, the persistency component
obtains the data (3, 4), and uses the data encoder
to encrypt it (5). When restoring data, the encoder
is used to decrypt it (6) before the persistency
component passes it back to the tree component
(7, 8) to restore the tree’s state.

6. Discussion

Aspect-oriented Component Engineering aims to
increase component developers’ ability to
engineer reusable software components that are
more easily combined and reconfigured, both
statically and dynamically. Most current
component technologies and methods, such as
DCOM, JavaBeans and CORBA C-IDL [12], [7],
[9], do not adequately support component service
characterisation, and generally focus only on
vertical component provided functionality.
Focusing on both provided and required
horizontal component services, aspects help
component engineers to build components with
interfaces that support very de-coupled
component interaction.

aspect : JVExtensible
AffordanceAspectDetail

tree : Tree
Editor

UI manager :
JVAspectManager

persistency comp : File
PersistencyComponent1: findAspectDetailByKind()

2: addAffordance()3: addMenuItem()

(a) Tree editor and persistency component collaboration.

tree : Tree
Editor

distribution aspects :
JVAspectManager collab work comp :

JVCollaborativeEditing

event gen : JVEvent
GeneratorAspectDetail

event IF :
JVEventNotifier

event transport :
JVTCPEventTransporter

event trans aspect : JVEvent
TransportAspectDetail

5: eventReceived()

1: findAspectDetailByKind()

2: getSubscriptionInterface()

3: addSubscriber()

6: sendEvent()

4: addTreeListener()

7: sendEventData()

8: eventReceived()

9: receiveEvent()

(b) Tree editor, collaborative work and event transport component collaboration.

tree : Tree
Editor

persistency comp : File
PersistencyComponent

security manager :
JVAspectManager

encoder aspect :
JVEncodingAspectDetail

encoder comp :
JVSimpleDataEncoder

persistency aspect :
JVPers istencyAspectDetail

1: findAspectDetailByKind()

2: getDefaultEncoder()

3: getData()

4: serialiseTreeData()

5: encodeData()

6: decodeData()
7: setData()8: deserial iseTreeData()

(c) Tree editor, security component and event transport component collaboration.

Figure 5. Three examples of inter-component service access via AspectDetail objects.

Some component engineering methods ([11]
and [14]) take into account component interface
requirements and system-wide component
properties. However, these are typically only used
for characterising limited forms of component
services, such as distribution. Most also focus
only on component functionality and often not
non-functional characteristics.

Aspect-oriented Programming [5] and
Adaptive Programming [6] have become popular
approaches to describing design-level aspects of
programs, and incorporating support in programs
via code weaving and component adaptors.
AOCE differs in that its intention and
architectural support are aimed at characterising
component services and providing interfaces to
combine provided and required services in
flexible ways, rather than specifying aspect

information separately to OO programs and
weaving support into them, or wrapping
components and linking interfaces with plug-in
adaptors. Another key difference is our support
for dynamic system composition and the ability to
reconfigure and use different aspect-related
services at run-time.

Dynamically reconfigurable systems have
become important in many domains, including
end user computing systems [8], agent-oriented
systems [10], and various software tools [2]..
Most of the architectures used to build such
applications adopt ad-hoc solutions to
reconfiguration and inter-component interaction
[8], or use domain-specific solutions, such as
agent communication languages, workflow and
software data interchange formats [2], or basic
component interface usage models [1], [4].

Compared to our component aspects and their
realisation using aspect detail objects, these
approaches are less flexible, do not capture the
range of systemic system services of aspects, and
result in generally less reusable and
reconfigurable components.

We have deployed our aspect-oriented
components in a range of complex problem
domains, including a CASE tool, process
management system and collaborative travel
itinerary planner [3], [4]. We have identified a
wide range of systemic aspects for which a
number of aspect details and properties can be
identified for characterising component provided
and required services. The use of our component
aspects architecture has allowed us to engineer
components which are highly reusable and
reconfigurable. Aspects ensure these components
are implemented in such a way that their
interfaces support appropriate interaction and
configuration functions that other components
can leverage without needing hard-coded
knowledge of component types.

7. Summary

We have been developing a new methodology for
engineering software components, and a
corresponding design and implementation
architecture. Our aspect-oriented component
implementation architecture allows developers to
describe various component services using
systemic aspect categorisations, and have
specialisations of AspectDetail objects generated to
represent many of the provided and required
services of components. AspectDetail objects
provide properties to specify the nature of
provided and require services, and functions
which can be used to configure components and
access their aspect-related services in a very de-
coupled manner, obviating the need for many
components to have hard-coded type and
interface knowledge of other components they
might be reused with. At run-time, AspectDetail

objects are queried to determine component
capabilities, and their functions called to obtain
aspect service-related interfaces a component
supports or even to access and configure services.

References

[1] Brown, A.W. and Wallnau, K.C. Engineering of
component-based systems, In Proceedings of the
2nd International Conference on Engineering of
Complex Computer Systems, Montreal, Quebec,
Canada, October 21-25, 1996, IEEE CS Press.

[2] Gray, .J.P., Liu, A. and Scott, L. Issues in
software engineering tool construction,
Information and Software Technology, 42 (2),
Elsevier, 73-77.

[3] Grundy, J.C. Supporting aspect-oriented
component-based systems engineering, In
Proceedings of 11th International Conference on
Software Engineering and Knowledge
Engineering, Kaiserslautern, Germany, June 16-
19 1999, KSI Press, pp. 388-395.

[4] Grundy, J.C., Mugridge, W.B. and Hosking, J.G.
Constructing component-based software
engineering environments: issues and
experiences, Journal of Information and Software
Technology, 42 (2), January 2000.

[5] Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C.V., Loingtier, J.M., and
Irwin, J. Aspect-oriented Programming, In
Proceedings of the European Conference on
Object-Oriented Programming, Finland.
Springer-Verlag LNCS 1241. June 1997.

[6] Mezini, M. and Lieberherr, K. Adaptive Plug-
and-Play Components for Evolutionary Software
Development, OOPSLA’98, Vancouver, WA,
October 1998, ACM Press, pp. 97-116.

[7] Monson-Haefel, R Enterprise JavaBeans,
O'Reilly, 1999.

[8] Morch, A. Tailoring tools for system
development, Journal of End User Computing, 10
(2), 1998, pp. 22-29.

[9] Mowbray, T.J., Ruh, W.A. Inside Corba :
Distributed Object Standards and Applications,
Addison-Wesley, 1997.

[10] Nwana, H.S. Software Agents: An Overview. The
Knowledge Engineering Review, 11 (3) (1996),
205-244.

[11] Rakotonirainy, A. and Bond, A. A Simple
Architecture Description Model, In Proceedings
of TOOLS Pacific’98, Melbourne, Australia, Nov
24-26, 1998, IEEE CS Press.

[12] Sessions, R. COM and DCOM: Microsoft’s vision
for distributed objects, John Wiley & Sons 1998.

[13] Szyperski, C.A. Component Software: Beyond
OO Programming, Addison-Wesley, 1997.

[14] Szyperski, C.A. and Vernik, R.J. Establishing
system-wide properties of component-based
systems: a case for tiered component frameworks,
Workshop on Compositional Software
Architecture, Monterey, CA, Jan 1998.

