
Copyright 1998 IEEE. Published in the Proceedings of OZCHI'98, 29 November - 3 December 1998 in Adelaide, South Australia.  Personal use

of this material is permitted. However, permission to reprint/republish this material for advertising or promotional  purposes or for creating new

collective works for resale or  redistribution to servers or lists, or to reuse any copyrighted  component of this work in other works, must be obtained

from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-

1331, USA. Telephone:  + Intl. 732-562-3966.

Vixels, CreateThroughs, DragThroughs and Attachment Regions in
BuildByWire

W.B. Mugridge†, J.G. Hosking† and J.C. Grundy††

†Department of Computer Science
University of Auckland

Private Bag 92019, Auckland,
New Zealand

email: {rick,john}@cs.auckland.ac.nz

††Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton,
New Zealand

email:  jgrundy@cs.waikato.ac.nz

Abstract

BuildByWire is a direct-manipulation meta-editor
for composing sophisticated visual notations and their
editors from JavaBean components. It in turn generates
JavaBeans, which can be plugged into other tools.
BuildByWire has been used to generate editors for a
variety of visual languages and notations. We describe
new features that eliminate several previous limitations
of BuildByWire and its generated editors.  The designer
of a notation now has more control over the tools that
are provided in the generated editor.  Composition of
notational elements using layout managers has been
improved. Connectors between notational elements
have been made more general and flexible.

Key words: user-interface, visual notation, meta-
editor, JavaBeans

1. Introduction

Visual notations are important in many domains,
including software development, architectural design
and business process reengineering. Many software
applications require editors for visual notations that
provide appropriate editing mechanisms. Examples
include software design tools supporting notations such
as the Unified Modelling Language (UML) [7], process
modelling tools supporting work process diagrams [8],
and building design tools supporting Computer-Aided
Design (CAD) diagramming [17].

Developing editors for visual notations has proven to
be a time-consuming and difficult task [1, 11, 15]. Not
only do visual notational constructs have to be
designed, but also layout and semantic constraints,
editing functions and editing tools which support these
notations. Many attempts at general-purpose meta-tools
for the development of graphical editors have been
produced. Examples include Unidraw [17], Zeus [1],
Escalante [11], and BuildByWire [12]. However, many
of these systems suffer from complex specification of
tools using programming languages, inflexible
constructs and notational symbols, inappropriate editing
mechanisms in the resultant tools, and lack of reuse of
existing visual notational elements.

We have developed the BuildByWire meta-editor
which adopts a compositional approach to notation and
editor specification and generation. Editor designers
compose basic notational elements, or even third-party
complex elements, along with layout and connectivity
constraints and editing facilities. Particularly novel
aspects of BuildByWire includes its support for reuse of
JavaBeans components as visual elements, or vixels,
create throughs used to support iconic element creation,
drag throughs used to support iconic element layout,
and attachment regions used to support iconic
component interconnection. These facilities greatly
improve the usablity of both the BuildByWire meta-tool
and the editing tools it generates.

In the next section we illustrate the uses of
BuildByWire, and identify limitations with previous
versions of the tool. We then describe the process used
to develop BuildByWire-based editing tools, with



generic JavaBeans-based editors being produced. In the
following sections, we look at various extensions to
BuildByWire that improve usability of the tool,
including create throughs, drag throughs and attachment
regions. We then overview related research and finish
with our current and future work.

2. Problem Domain

BuildByWire is a direct-manipulation meta-editor, a
tool for composing sophisticated visual notations and
generating editors for them. Originally developed in
Prolog [12], BuildByWire has been redeveloped in Java
to utilise and generate JavaBeans [9]. JavaBean
components (such as panels, text fields and buttons) are
used to compose the visual elements (vixels) of a
notation, such as the vixel for a class of a UML class
diagram.

Once the vixels of a notation have been composed
and their beans generated, BuildByWire generates a
visual editor bean. This provides the end-user with a
direct-manipulation interface to create and modify
diagrams or visual programs in that notation.

We have used BuildByWire to develop visual
languages for several CASE tools [6, 7, 8, 12]. Such
visual language editors support the end-user in creating
diagrams from vixels and inter-vixel connectors.

For example, Figure 1 shows a visual editor
generated by BuildByWire for the visual language of
JComposer, a tool for designing and generating CASE
tools [7].  This  notation includes vixels for tool
components and relationships, and connectors between

them with associated role and arity information.
JComposer components have substructure, including
information about the class of the component and its
attributes.  The end-user clicks on text to edit it or on
the arity of a connector Choice to select a different
arity.  The properties of a selected vixel may be altered
through a property sheet; the changeable properties are
as defined previously by the notation designer.

A popup menu is associated with each vixel;  this
includes standard actions, such as deleting the vixel or
changing its Z-order.  In addition, external code can
associate other popup menu items with any vixel to
provide for semantic actions managed independently of
BuildByWire.

The end-user selects a modal tool from the menu at
the bottom of the window; in Figure 1, a Move
controller is selected for moving and resizing vixels.
There are menu items for the various vixels of the
notation, with an associated prototype of that vixel.
When a vixel item is selected, the user may click and
drag into the work area to create a copy of that
prototype and resize it.

The handles of a vixel may be individually or
collectively shown or hidden.  When a connector tool is
selected, the user clicks on the handle of one vixel and
drags to another handle in order to place a connector
between them.  A similar approach is taken to adding
constraints over vixels, such as to require two vixels to
remain horizontally aligned. As well as outer resize
handles, a vixel may have internal handles for
manipulating its internal structure or for attaching
connectors.

Figure 1. An Editor Generated by BuildByWire: JComposer



BuildByWire was used to develop the user
interface for several CASE tools, including a process
modelling tool, ER modeller, UML modelling tool
and JComposer itself. BuildByWire, as used to
provide editors for such tools, proved to have some
limitations. A menu was provided to the end-user to
select the mode of operation: either a drag tool or a
vixel type for click-and-drag creation on the work
area. The notation designer had no control over the
use of this menu, only over the vixels that were
available in it.  Designers wanted some control over
the generation of suitable tools.

When composing vixels, it was awkward for a
designer to add components to a Java container with a
layout manager. The layout had no visual form and it
was difficult to change layout characteristics such as
the number of columns in a GridLayout.

Connectors between vixels could only be attached
to the vixel handles.  This restricted the attachment
points and the resulting diagrams were rather ugly.
For example, connectors were inadequate to build
UML sequence diagrams.

These limitations necessitated some modifications
to BuildByWire, in particular to its facilities for
specifying vixel creation, layout and attachment, and
its support for reuse of existing JavaBeans. The

following section outlines how an editor designer uses
BuildByWire to specify editors, and how JavaBeans
are both reused and produced by BuildByWire. We
then describe some of the usability enhancements we
have made to BuildByWire to assist editor designers
and users.

3. The BuildByWire Editor Design Process

A designer uses BuildByWire as a meta-editor to
define a visual notation and to generate an editor for
that notation.  Off-the-shelf and customised JavaBean
components can be used to compose complex vixels
and their interconnections.

A new vixel, such as a UML class icon, is first
built as a composite. A JavaBean class for the new
vixel is then generated from that composite.  A
composite is usually defined by taking a standard
Java Container, such as a JPanel, specifying a layout
and adding lightweight Java components to it, such as
a JTextField or JButton.  A nested structure may be
created by adding containers to the top-level
container of the vixel. For example, Figure 2 shows a
composite for a UML class that has been constructed
from a Container with three elements.

Figure 2. Composition and Creating a Bean



The properties of components added to a
composite, such as the font used in a text field or the
size and label of a button, are modified using a
property sheet.   Some of these may need to be fixed
at design time, however, so that the end-user cannot
change them. In Figure 2, some of the properties of
one of the elements of the composite (an
ExpandingtextArea object) are shown. The designer
selects to show those properties to be exported in the
generated bean, as well as renaming them where
necessary.

Before generating a JavaBean class for the new
vixel, it is necessary to define its encapsulation, both
through the user interface and through a program
(bean) interface visible to external code.

User-interface encapsulation defines how the end-
user can change the vixel through the user interface,
both by direct manipulation and through the property
sheet. Encapsulation of direct manipulation of the
elements that make up the vixel is carried out as the
composite is constructed. For example, a JTextField
may be disabled so that the end-user of the generated
editor is unable to alter its contents.

Encapsulation of the properties of the vixel
specifies which properties of the originating
composite may be changed by the end-user through a
property sheet. In addition, some properties of the
elements of the composite may also be available for
editing. For example, the end-user may be able to
change the font of a text field within a vixel. This
requires specifying which properties of elements are
to be “exported”, possibly with renaming to avoid
property name clashes (such as between the text
property of two JTextFields within a composite).

Programmatic encapsulation includes those
properties of the vixel that may be manipulated from
other code. For example, the colour of some
component may be altered by external code to signify
some semantic state change. The events and methods
of the vixel must also be encapsulated. For example,
external code may place a listener on a button within
a vixel to respond when it is pressed by the end-user,
or may add a new component to a container nested
within the vixel.

The encapsulation of a composite’s properties,
events and methods involves generating a new class
definition for the composite as a bean, which includes
mapping methods to provide access to exported
properties (ie getter and setter methods), events (ie
addListener and removeListener methods), and
methods of composite elements.  A related BeanInfo
class is also generated to define what properties (and

events and methods) of the new bean class are
accessible through any bean builder’s property sheet.

Once all the vixels of a notation have been
composed, the designer requests the generation of the
overall editor.  BuildByWire generates a Java
container bean for the editor, including the list of
vixels that may be created, as specified by the
designer.

While BuildByWire provides many of the visual
drag and drop capabilities of a bean-based
development system like JBuilder [17], it is not a
programming environment. BuildByWire is not
concerned with the semantics of visual notations
(such as the consequences of inheritance in UML
class diagrams). Semantic processing is provided by
other tools.  For example, BuildByWire has been
used with JComposer to develop a number of multi-
view, multi-user visual editors, including an ER
modeller, a UML modeller, the visual process
modelling language Serendipity-II, and JComposer
itself [6, 7, 8, 12].

The beans generated by BuildByWire are
deployed by adding them to semantic-processing
code, such as that provided by JComposer [6].  A tool
designer uses the JComposer visual language to
specify repository and view component structures and
event-handling behaviour [6, 7]. JComposer uses the
JavaBeans introspection mechanism to determine the
properties, events and methods of vixel beans.
Correspondences are then made between JComposer
views and BuildByWire editor beans (panels), and
between JComposer view components and
BuildByWire vixels. View components may constrain
the semantics of BuildByWire editing operations.

JComposer generates code for the JViews API [7]
to produce an editor for the visual notation with
support for multiple consistent views, multiple users,
end-user constraint customisation and task
automation facilities. When an end-user edits
BuildByWire diagrams, events describing changes to
a vixel are captured by its corresponding JViews view
component and acted on. When a JViews view
component is modified, due to changes elsewhere
(such as in another view) it updates the corresponding
BuildByWire vixel.

4. CreateThroughs

CreateThroughs provide an extensible lens-based
alternative to the BuildByWire modal menu for
selecting vixels, as introduced in the previous section.



Figure 3. CreateThroughs and DragThroughs

Figure 3 shows BuildByWire in use by a designer.
At the top of the work area is a semi-transparent
CreateThrough that includes six component types
(JButton, JCheckBox, JRadioButton, JLabel,
JTextField and JTextArea). By clicking through one
of the regions in a CreateThrough, a new component
corresponding to that region is created and may then
be dragged out to an appropriate size.

Other CreateThroughs are available via the Tools
menu to allow other types of component to be
created. These may include any lightweight Java
Component bean object. CreateThroughs are dragged
by a header area at the top.

New CreateThroughs may be created from any
container of components. The CreateThrough in
Figure 2 was created by adding six components to a
JPanel with GridLayout and then selecting a menu
option to form the CreateThrough. A semi-transparent
image of a copy of the container is made. When the
user clicks on the CreateThrough, it clones a copy of
the component at that relative position in the copied
container.

This makes it trivial for a designer or end-user to
tailor-make tools. The components in the Container
act as prototypes for new ones and so can have their
properties set to a useful state before being added.
For example, once all the icons for an editor have
been created, they may be added to a container to
produce the CreateThrough to be provided to the end-
user. We plan to use the same technique to build
floating modal tools.

When the designer generates the overall editor,
they specify which CreateThroughs are available to

the end-user and whether the end-user is able to
construct their own (and whether they are able to
introduce new beans as new vixels).

5. DragThroughs

A second type of lens, a DragThrough provides a
visual form for the layout manager of a container.
The bottom two components in Figure 3 are both
containers (JPanels); each is overlayed by a
DragThrough.  The left DragThrough provides a
BorderLayout view of the underlying container. Drag
regions represent the north, south, etc layout regions
of the Container (independent of the elements in it).
The right DragThrough provides a GridLayout view,
which has been tailored to use one column.

A popup menu selection is made to acquire a
DragThrough over a Container.  The DragThrough
provides options to select the layout manager that’s
required and to specify layout characteristics, such as
the number of rows/columns in GridLayout.
Components, such as the JTextField in Figure 3, may
be dragged onto one of the DragThrough’s drag
regions or can be created in place by clicking through
a CreateThrough placed over the DragThrough.

Specialised code has to be written for each
DragThrough. Several layouts (such as FlowLayout)
have a common DragThrough; it simply is needed to
specify and alter the sequence of components in the
Container. This DragThrough is also used for Swing
components that hold a sequence of elements, such as
a JComboBox. The most complex layout manager,
GridBagLayout, is currently being built.



Figure 4.  Types of Connections Figure 5. AttachmentRegions for UML
Sequence Diagrams

6. Connectors & AttachmentRegions

Many visual notations include connectors between
vixels, such as associations between class icons in a
UML class diagram.  Figure 4 shows several types of
BuildByWire connections between two ProcessKey
vixels.  As a ProcessKey vixel is moved, the
connectors stretch to maintain the connections. There
are two means by which the endpoint of a connector
may be attached to a vixel. The first type of
attachment is to a vixel boundary, as shown by the
arrow connector in Figure 4.

The second type of attachment is to a pin (visible
or invisible).  BuildByWire defines an
AttachmentRegion container, which may be
embedded in a vixel. Associated with an
AttachmentRegion is a prototype component, a pin.
In Figure 4, for example, a filled circular component
acts as the pin in the AttachmentRegion at the bottom
of a ProcessKey vixel.

When the user clicks on an AttachmentRegion to
drag out a connector, the AttachmentRegion creates a
pin at the click point by cloning the prototype pin.
Similarly, if the other end of the connector is dropped
on an AttachmentRegion, a pin is created there.
AttachmentRegions don’t need to be visible.  For
example, the ProcessKey vixel in Figure 4 has an
invisible AttachmentRegion at the bottom. An
AttachmentRegion may also have a layout manager
associated with it.

Because connectors may be attached to pins, they
often cross containment (and hence coordinate space)
boundaries. To manage this, they are added to the
least upper bound container of the two end-points.

Figure 5 shows how AttachmentRegions can be
easily used to build a vixel for a UML sequence
diagram, representing method calls between objects.
Each object vixel specifies the name of the object and
its class in a JTextArea component.  This has no
border, but contains an AttachmentRegion with an
invisible pin below the text. The AttachmentRegion
height grows as the vixel is made taller. It has a
HorizontallyCentredLayout manager to ensure that
each contained pin is horizontally centred in the
AttachmentRegion.

Connectors may have attached components, such
as text.  Such attached components are managed by a
LayoutManager, which can ensure that they are
positioned relative to either end-point or to the centre
of the connector. Alternatively, a multi-directional
constraint such as a RelativeConstraint can be used to
attach them, as provided in the original Prolog-based
BuildByWire [12].

Pins may be moved within the bounds of their
AttachmentRegion. In Figure 4, for example, the
circular pins can be dragged along the base of the
vixels. In Figure 5, the method-call lines may be
moved up and down ; horizontal constraints are used
to keep an arrow level by keeping its endpoints at the
same y-position.

7. Related Work

A variety of approaches have been developed for
specifying and implementing visual editors. Common
approaches include implementing visual
diagramming tools using graphical toolkits,
interactively specifying icon appearance and



generating icon drawing code, and interactively
specifying icon appearance and behaviour, usually
interpreting such specifications.

Examples of toolkit-based approaches to visual
editor development include Unidraw [17], Garnet
[13], Zeus [1], and Amulet [14]. These systems are
very flexible and powerful, and allow a great range of
visual editors to be developed. However, such
approaches decouple specification from final iconic
appearance and behavior, and require great time,
effort and skill, plus considerable interative
refinement, to develop editors. Some reuse of editor
components is often possible, but often at
considerable effort in managing the complexity of
such components. Some limited abstractions similar
to BuildByWire attachment regions exist in many of
these systems, but no visual DrawThroughs and
CreateThroughs. Many such toolkit-based approaches
do not support component-based reuse of predefined
or standard vixels.

Specialised languages for specifying iconic editor
appearance are common, but few have even limited
editing and layout behaviour. For example, Chang's
two- dimensional iconic parsers [4] allow diagrams
which have been free-edited to be parsed and
executed. Users typically prefer editors which are
"structure-oriented" for most diagramming
applications, however, with support from the editor to
build iconic forms. Read and Marlin's VSL [15]
provides a complex textual language with similar
capabilities to BuildByWire for specifying icon
appearance, layout constraints and editing behaviour.
As it is a textual language, designers can not readily
map textual icon and state chart specifications onto
their resultant editors.

In earlier work, we developed the Skin icon
specification language [18]. This allows complex
composition of graphical elements to be specified
visually. However, it lacks some forms of layout
specification and is rather weak on connector
specification. Like BuildByWire, tool semantics are
specified separately. Most iconic specification
languages don't provide CreateThrough, DragThrough
and AttachmentRegion abstractions.

Interactive environments for iconic editor
specification allow designers to more easily visualise
the resultant iconic forms, and some aspects of editor
behaviour. The work of Daberitz [5] generates editors
using database schemas and basic icon appearance
specifications. Editing functionality and icon layout
and connection is limited and automatically generated
however, and only very simple composite icons are
supported, limiting the flexibility of this approach.

The DV-Centro Framework [2] has some elements
in common with BuildByWire. It supports the
construction of image elements, consisting of graphic
elements and pads. The latter are connection regions
used to specify graphical relationships between image
elements which are maintained by connecting the
image elements using joints. Joints and pads perform
a similar role to BuildByWire pins and connectors,
specifying constraints, such as alignment, between
the associated image elements. However, it lacks
elements such as BuildByWire’s CreateThroughs and
DragThroughs for icon creation and layout.

HotDoc [3] is a tool for constructing compound
documents. It has one main element in common with
BuildByWire.  Like BuildByWire, it provides a
visual approach to specifying layout of containers,
but does not provide equivalents to CreateThroughs
nor flexible AttachmentRegions.

Vampire [10] permits specification of editors (and
runtime semantics) for notations such as logic
circuits. It attempts to extend the graphical rewrite
rule approach to visual notation specification beyond
rigid adjacencies to cover connections, geometric
constraints and mouse interaction. However, the
vixels that can be specified are unsophisticated
compared to those of BuildByWire.

Escalante [11] allows visual specification of visual
notations via its GrandView visual language.
Escalante permits specification of quite complex
components, such as pie charts and Kiviat diagrams,
using graphical composition techniques. However, it
lacks support for reusable components, such as Beans,
and lacks BuildByWire’s extensibility with
CreateThroughs and DragThroughs.

Some VRML world builders such as
CosmoWorlds provide sophisticated tools for
composing three-dimensional nodes or scenes.
However, they lack extensibility and sophisticated
direct manipulation of nodes.

8. Conclusions and Future Work

BuildByWire allows a designer to construct by
direct manipulation both the notational elements
(vixels) of a visual notation and the tools required for
an end-user to create, connect, and combine those
visual elements. Unlike other similar tools,
BuildByWire is designed to operate with standard,
reusable JavaBeans parts, so that sophisticated
JavaBeans can be incorporated into vixels.
BuildByWire generates JavaBeans from composites;
these parts may in turn be included in BuildByWire
or other beans-based tools.



We have identified several usability limitations in
the previous version of BuildByWire.  These have
been addressed with CreateThroughs, DragThroughs
and AttachmentRegions. CreateThroughs provide a
way of adding tailor-made tools; new CreateThroughs
can be created from any container of components.
CreateThroughs support more flexible, extensible and
easier to use creation of vixels by editor designers and
users. DragThroughs make the layout of a container
visible so that components may be more easily added
to it. Editor designers use DragThroughs to place
vixels within containers in appropriate ways.
AttachmentRegions may be included in vixels, along
with prototype pins, to allow for flexible connections
between vixels. This allows editor users to connect
their vixels in many different ways, as appropriate to
their visual notation's requirements.

 Further work is underway to make BuildByWire
more generally applicable.  We plan to generate
modal  tools (floating and docked) in a similar way to
CreateThroughs. Gesture-based creation techniques
may well be incorporated in a similar manner.
Specialised components for managing poly-line
connectors and rotated text on connections are needed
for some notations.  DragThroughs are currently
being built for GridBagLayouts, menus and
hierarchical viewers.

References

[1] Brown, M.H., “Zeus: A System for Algorithm
Animation and Multi-View Editing,” in Procs of the
1991 IEEE Symposium on Visual Languages, IEEE
Computer Society Press, 1991, pp. 4-9.

[2] Brown, P.C., “Satisfying the graphical requirements
of visual languages in the DV-Centro framework,”  in
Procs of the 1997 IEEE Symposium on Visual
Languages, IEEE CS Press, 1997, pp. 84-91.

[3] Buchner, J., Fehnl, T., and Kuntsmann, T., “HotDoc:
a flexible framework for spatial composition,” in
Procs of the 1997 IEEE Symposium on Visual
Languages, IEEE CS Press, 1997, pp. 92-99.

[4] Chang, S.K., Costagliola, G., Orefice, S., Tucci, M.,
Tortora, G., and Polese, G., “A 2D Interactive Parser
for Iconic Languages,” in Procs of the 1992 IEEE
Workshop on Visual Languages, IEEE CS Press,
Seattle, WA, 1992, pp. 207-213.

[5] Daberitz, D. and Kelter, U., “Rapid Prototyping of
Graphical Editors in an Open SDE,” in Procs of 7th
Conference on Software Engineering Environments,
IEEE CS Press, Netherlands, 1995, pp. 61-73.

[6] Grundy, J.C., Mugridge, W.B., and Hosking, J.G., “A
Java-based toolkit for the construction of multi-view
editing systems,” in Procs of the Second Component
Users Conference, Munich, Germany, July 14-18
1997.

[7] Grundy, J.C., Hosking, J.G., and Mugridge, W.B.,
“Visual specification of multi-view visual
environments,” in Procs of 1998 IEEE Symposium on
Visual Languages, IEEE CS Press, Halifax, Nova
Scotia, Canada, 1998.

[8] Grundy, J.C. and Hosking, J.G., “Serendipity:
integrated environment support for process
modelling, enactment and work coordination,”
Automated Software Engineering, vol. 5, no. 1, 1998.

[9] Sun Microsystems, “Java Beans 1.0 Specification”,
1996.

[10] McIntyre, D.W., Design and implementation with
Vampire, Visual Object-Oriented Programming.
Manning Publications, Greenwich, CT, USA, 1995,
chap. 7, pp. 129-160.

[11] McWhirter, J.D. and Nutt, G.J., “Escalante: An
Environment for the Rapid Construction of Visual
Language Applications,” in Procs of the 1994 IEEE
Symposium on Visual Languages, IEEE CS Press,
1994.

[12] Mugridge, W.B., Hosking, J.G., and Grundy, J.C.,
“Towards a constructor kit for visual notations,”  in
Procs of OZCHI'96, IEEE CS Press, Hamilton, New
Zealand, Nov 25-28 1996, pp. 169-176.

[13] Myers, B.A., “Garnet: Comprehensive Support for
Graphical, Highly Interactive User Interfaces,”
COMPUTER, vol. 23, no. 11, pp. 71-85, 1990.

[14] Myers, B.A., “The Amulet Environment: New
Models for Effective User Interface Software
Development,” IEEE Transactions on Software
Engineering, vol. 23, no. 6, pp. 347-365, June 1997.

[15] Read, M. and Marlin, C., “Specifying and generating
program editors with novel visual editing
mechanisms,” in Procs of the 10th Conference on
Software Engineering and Knowledge Engineering,
KSI Press, San Francisco, USA, 1998, pp. 418-425.

[16] Borland JBuilder™,http://www.borland.com/jbuilder.

[17] Vlissides, J.M., “Unidraw - a framework for building
domain-specific graphical editors”, ACM
Transactions on Information Systems, 8, 3, pp 237-
268, July 1990.

 [18] Hosking, J.G., Mugridge, W.B., Fenwick, S, and
Grundy, J.C., 1995: “Cover yourself with skin”,
Procs of OZCHI'95, University of Wollongong Nov
1995, pp 101-106.

 [19] http://www.cosmosoftware.com


