
To be published in Proceedings of OZCHI’95, Wollongon, Australia, Nov 27-30, 1995.

COORDINATING, CAPTURING AND PRESENTING WORK
CONTEXTS IN CSCW SYSTEMS

John C. Grundy†, Warwick B. Mugridge††, John G. Hosking†† and Mark D. Apperley†

†Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand
{jgrundy, M.Apperley}@cs.waikato.ac.nz

††Department of Computer Science
University of Auckland

Private Bag, Auckland, New Zealand
{john, rick}@cs.auckland.ac.nz

ABSTRACT

Large Computer Supported Cooperative Work (CSCW)
systems require both high level work coordination
mechanisms and low level asychronous and synchronous
editing capabilities. We describe an architecture supporting
flexible, user-defined work coordination mechanisms, fully
integrated with work artefacts. Users define and work within
task contexts. When artefacts change, descriptions of the
changes are automatically annotated with task context-
dependent information. This contextual information is
presented (at a suitable level of abstraction) to interested
users facilitating coordination between collaborative
workers. We illustrate the use of this architecture in a
collaborative software engineering environment.

KEYWORDS

computer-supported cooperative work, work coordination,
work contexts, software engineering environments

INTRODUCTION

The Need for Coordination in CSCW Systems

Much recent research into Computer Supported Cooperative
Work (CSCW) systems has focused on providing low-level
interaction mechanisms, such as synchronous and
asynchronous editing support [13, 4]. For example, C-SPE
is a collaborative environment for software development
[6]. Figure 1 shows a screen dump from C-SPE during
semi-synchronous view editing. Changes made by another
user (“rick”) are presented semi-synchronously in work
artefact views or in a dialog. C-SPE also supports
asynchronous development where different versions are
merged, and synchronous view editing, where users see and
manipulate exactly the same view information.

C-SPE's low-level editing mechanisms, like those of most
other such systems, do not support the coordination of
work, and only deal with the editing of work artefacts. C-
SPE thus illustrates the key problem of systems providing
only low-level editing for CSCW work: the lack of
information about the context that changes have been
carried out in. The collaborating user is not told why rick
changed things, only the sequence they were changed in. No

support is provided for planning work nor for grouping
changes into histories based on particular tasks or subtasks.

Some work has been done on providing higher-level
coordination mechanisms for CSCW, such as workflow
configuration [12], software process protocols [8], and
shared workspace awareness [3]. Usually, however, these
systems are separate from the work artefacts or editing
tools, or are not utilised to provide work context
information when work artefact changes are presented. Thus
their usefulness for integrated work coordination is limited.

Change descriptions inserted
into view text, dialog, and/or
icons highlighted (but only

collaborator name is shown)

Figure 1. Asynchronous and Semi-synchronous editing in C-SPE

In large CSCW systems, such as collaborative software
engineering environments, coordination of cooperative work
activities is needed. Users must collaborate in the planning
of work activities and be aware of the contexts in which
other users’ work is carried out. Support is needed for
defining activities to be done (plans), coordinating
planning itself (meta-plans), and restructuring the history of
work done to better convey intent (“rewriting history”).
Such a system should encourage users to build good work
plans and histories. Users should be able to structure the
rationale for their work according to their current work
context. Work and plan artefacts, and extra rationale, should
be shared. Users should be able to specify the coordination
and work artefact changes they are interested in, and how the

work or plan context of these changes is to be captured and
presented to them. Capture of work context and rationale
should be as unobtrusive as possible [2].

Related Research

Examples of collaborative environments which support
low-level editing mechanisms include most groupware
systems [4], Mercury [7], Mjølner [11] and C-SPE [6]. As
these systems do not facilitate coordination of work, nor the
capture and presentation of work contexts, effective
collaborative development of large systems is not possible.
Some systems support limited group awareness capabilities
[13], such as multiple cursors, but these usually only
inform collaborators about the work artefacts of immediate
interest, not their overall work contexts.

Process-centred software engineering environments utilise
information about software processes to enforce or guide
software development. Examples include Marvel [1], CPCE
[10], and ConversationBuilder [8]. These environments
usually provide low-level text-based descriptions of work
rationale, and often do not effectively handle restructuring of
software processes while in use [14].

Workflow-based systems attempt to coordinate work by
describing the flow of documents between collaborators.
Examples include Active Workflow [12], and Domino [9].
Workflow approaches have proven inadequate for most real-
world coordination activities, as exceptions to workflows
usually outnumber cases when they are useful. Workflows
also usually need to be modified while in use, and such
systems usually do not model nor facilitate collaboration on
the coordination (planning) activity itself [14]. Most
workflow systems and process-centred environments have
only a tenuous integration with the work artefacts being
modified. Thus the context of coordination and work artefact
changes is difficult or impossible to obtain and present.

Our Approach

We have designed extensions to C-MViews, the low-level
CSCW architecture used to build C-SPE [6], which support
more effective coordination of collaborative work.
Collaborating users design work plans together, and can
abstract these into reusable policies, using VPL (Visual
Planning Language) [14]. Both plans and policies are very
flexible and can be modified before, during or after
actioning. Work artefact changes are carried out in
association with a current plan stage, the current work
context. Descriptions of work and plan artefact changes are
augmented with extra information, which captures the
current work or planning context, and any extra rationale for
the changes. Collaborating users register their interest in
plan, policy, or work artefact changes, so that when these
artefacts are modified by collaborating users, the user is
informed of the change in an appropriate manner.
Collaborating users are informed of changes by descriptions
of changes made and the context the work was carried out
in. This includes grouping change descriptions with their
plans or meta-plans, showing collaborators the context of

work when displaying change descriptions, and highlighting
affected plan and work artefacts in various ways.

WORK CONTEXTS AND CONTEXT SETTING

Defining Work Contexts

Rather than inadequate workflow or process model
approaches, we have adapted Visual Planning Language
(VPL) [14] to define the context of work and planning
activities. VPL allows the definition of plans and subplans
for work tasks, and can be used to specify meta-plans for
the planning process itself. Useful plans can be abstracted
out into policies, which can then be instantiated into further
plans. VPL supports flexible restructuring of plans while in
use, and partially defined plans can be actioned and later
completed. The history of what actually happened when
using a plan can be used to restructure the plan to better
document the process and to refine it into a policy.

Figure 2. Defining work contexts.

A VPL plan diagram for a software process is shown in
figure 2. VPL elements include: stages (steps in the
process), denoted by elipses which include a role and stage
description; split stages, which are duplicated for each
person involved in the stage; and options, denoted by
circles on the stage perimeter, used to specify the the next
plan stage. VPL elements are “plan artefacts”, modified in
the same way work artefacts are in C-SPE. Plans are defined
by users via C-MViews-based synchronous, semi-
synchronous or asychronous editors. Plan modifications are
coordinated via meta-plans (themselves VPL plans).

The figure 2 plan specifies a software process for modifying
a software system. A subplan for the “make modifications”
stage specifies particular steps for a particular system
enhancement. A plan history view is associated with each
actioned plan, containing descriptions of changes made to
both plan and software artefacts in accordance with this
plan. Textual views describing extra information about the
purpose of individual plan stages are also supported.

Setting and Capturing the Context of Work

The same notation used to design plans is used to display
and manipulate plans in action. Active stages for an
activated plan are highlighted, and to advance plan stages
users interact with stage options. Obligations can be
specified between plans and plan stages. These ensure users
of related plans are informed of changes to a plan.

The plan view specifies the current work context for each
member in a collaborating team. A user may have several
plan views open to see the status of other plans they are
interested in or are working with. Plan views indicate the
current work context of other users by their respective roles.
When making work artefact or plan artefact changes,
information about the context of this work must be
captured and presented to interested collaborating users. The

information required includes who made a change, what was
changed, when it was changed, why it was changed and the
work or planning context in which the change was made.

For example, consider a software system for a drawing
editor which is being modified by several software
developers. This drawing program is being extended to
incorporate support for circle figures and draggable figures.
Team members are using the plan for software system
enhancement from figure 2. Figure 3 shows different kinds
of views team member “John” might use while working on
adding circle figure support (only some of these are
displayed at any one time). Team member “Mark” is adding
draggable figures, and team member “Rick” is team leader.

This example shows the kinds of supported views and the
ways these views are used to capture work context
information when users modify work artefact or plan views:

1. A “current plan” view shows John’s current active
stage. This captures the current work or plan
context for the changes being made.

2. Shared VPL plan artefact views show other plan
stages John is currently working on i.e. further
contexts for John’s work. These also highlight the
active stages of John’s collaborators, and change
when active stages or the plan itself changes.

1.

2.

3.

6.

7.

4.

5.

Figure 3. Context awareness.

3. Artefact notes dialogs capture artefact
documentation. These, like work and plan artefact
views, are shared between all collaborators.

4. Shared modification histories for the current plan
stage, or other plan stages John wants to review
the history of. These detail the actual changes that
have been made for that stage. As plan or work
artefact changes are generated, descriptions of these
changes are forwarded to the appropriate current
plan stage and stored to document the stage’s
subplan history. These historical changes may also
be used to "rewrite history" if the plan is
restructured. C-MViews automatically generates
objects representing these change descriptions [6].

5. A collaboration dialog for a collaborator (Mark), is
used for informal dialog between John and Mark,
and changes when Mark’s current stage changes.

6. Work artefact views are graphical or textual editors
which capture information about changes made to
artefacts. Plan artefact views are manipulated in the
same manner, co-ordinated by meta-plans.

7. Augmented work artefact/plan artefact dialogs
allow John to optionally specify extra rationale for
low-level work or plan artefact changes. These
reasons are stored with the plan stage history and
communicated to collaborators.

The current context of work is modified by advancing VPL
active stages using the specified stage options. Incomplete
VPL views can be extended as users become more familiar
with their work processes, unlike many existing workflow
and process-centred systems. Plans can also be restructured
while in use, using meta-plans to coordinate this process.
Plan history items can be split up if plan stages are split,
or moved to other stage histories if plans are deleted.

PROCESSING WORK ARTEFACT CHANGES

When work or plan artefacts are modified, descriptions of
these changes must be sent to collaborating users.
Collaborators may be informed immediately the change is
made, some time after the change is made, or may view the
change and reasons/context for the change on request.

Figure 4. Registering interest in changes.

Collaborators must thus be able to specify which changes
they are interested in seeing and when and how these should
be presented. We have extended VPL to include annotations

for specifying obligations between plan stages, to allow
users to register interest in particular kinds of plan or work
artefact changes, and for defining extra change description
processing. Figure 4 illustrates the basic annotation
indicating which changes to detect. Extra information about
how to present these changes to interested collaborating
users is specified in a dialog. This notation allows users to
specify interest in either particular or general kinds of work
or plan artefacts. Changes to these artefacts or instances of
these artefact types are then communicated to the
collaborating users as they occur.

Automatically updating plan artefacts in response to
changes or change sequences allows an environment to
automate some coordination tasks. For example, Rick may
need to approve certain kinds of changes or sequences of
changes made by John. The collaborative environment can
detect such changes and update plan artefacts or stage
histories to inform Rick of changes he must approve.
Aggregating related change descriptions into higher-level
change descriptions, and storing or forwarding these, is
useful for gaining a higher-level overview of changes.

PRESENTING THE CONTEXT OF WORK

Collaborating users must be informed of changes to work
and plan artefacts they are interested in. In most CSCW
environments this amounts to presenting only artefact-level
information to collaborators, either directly updating their
work artefact views or using version control facilities to
indicate changes made by other users. Our approach
provides collaborating users not only with C-SPE change
descriptions describing actual work or plan artefact changes,
but also with extra information about the work context the
changes were carried out in.

For example, Mark is collaborating with John to extend the
drawing program, and thus is sharing many work and plan
artefact views with John. Some changes John makes are
directly relevant to Mark and Mark should be informed of
these immediately, such as renaming of classes or methods
Mark is using. Note that Mark may have a different version
of the artefact view, and hence may not need or want to act
on the change immediately, but delay incorporating the
change until later. Other changes, such as the addition of
new classes or methods can be sent to Mark for later
perusal, as they have more limited effects on Mark’s work.
Low-level changes, such as the implementation of methods
or classes Mark is not affected by, need not be presented to
Mark. Mark can, however, see from John’s plan histories
and various active stages the kinds of activities John is
doing, and may choose to view these changes or modified
artefacts on-demand.

Mark is informed of changes in various ways. Figure 5
illustrates how Mark’s views carry this out:

1. Mark’s current plan view specifies Mark’s current
planning or work context.

2. The shared VPL plan view indicate’s John’s current
work context, and any change to this context (new
stage, changes made, change to shared plan(s)).

7.

6.

1.

2.

3.

5.

4.

Figure 5. Presenting context information.

3. Mark monitors John’s changes, displayed semi-
synchronously in a plan history dialog.

4. Informal messages from John are displayed to
Mark in a collaboration dialog. Mark can respond
to these as they are received.

5. Changes to shared work and plan artefact notes are
presented synchronously to Mark. Mark can add
extra comments, which are sent to John. Changes
to notes are documented in plan histories, and thus
can also be viewed asynchronously on-demand.

6. Work artefact views are edited synchronously,
semi-synchronously or asynchronously, as in C-
SPE. Changed view items can be highlighted, and
Mark can see the view modification history or its
work contexts’ plan histories on-demand.

7. Additional information is presented with change
descriptions in work artefact views, including the
work context (plan stage) the changes were made
in. Hypertext links allow quick access to plan
histories and VPL views. Modification histories
for individual work or plan artefacts also display
the work context each change was made in. Users
review change histories grouped by artefact changes
(artefact histories) or work context (plan histories).

Not all of the above presentation techniques would be used
by Mark at once. Mark determines these by opening views
or adding interest/presentation annotations to VPL views.

A HIGHER LEVEL CSCW ARCHITECTURE

C-SPE is built using the C-MViews architecture [6]. C-
MViews provides facilities for building collaborative,
multi-view editing environments, and extends the MViews
architecture [5]. Whenever an artefact is modified, an object
documenting the change, called a change description, is
generated. For example, renaming an attribute generates a
change description of the form update(Artefact, Name,
OldValue, NewValue). Change descriptions are propagated to
all other artefacts dependent on an updated artefact’s state,
and these dependents update their own state. C-MViews
broadcasts these change descriptions to support semi-
synchronous and synchronous editing, and stores them for
use in version merging to support asynchronous editing.

We have extended the design of C-MViews to support
higher-level coordination of work by adding VPL artefacts
and views, and routing all change descriptions to a “current
context” (active plan stage) artefact. This stores the change
description in its plan history and forwards it to interested
collaborating users. Figure 6 illustrates this architecture:

1. A work (or plan) artefact is updated
2. Generated change description(s) are augmented with

the work context then stored in an artefact history
3. Change description(s) are forwarded to the current

work context (current active plan stage) for the user
4. The plan stage stores change description(s) in its

plan history, then forwards them to interested
users. Interest in the change is determined by extra
VPL annotations. Interest is hierarchical, so
interest in a plan includes interest in any subplans.
Extra processing, such as composition of changes,
is carried out at this stage. Related plan artefacts
may be modified in response to these changes.

5. Change descriptions are presented to collaborating
users. The extra work context information is also
presented in various ways. Change descriptions
may be stored in a plan or work artefact history for
on-demand viewing by the collaborating user.

class

features

feature feature

class

features

feature

Work
Artifacts

Coordination
Artifacts

User 1's work artifacts User 2's work artifacts

versions

plans/subplans

1.
2.

...

User 1's
current stage

User 2's
current stage

3.

4. 5.

extra processing

4.

4.

4.

4.

Figure 6. Supporting coordination of work.

Single-user MViews environments become collaborative
environments using these extended C-MViews facilities. No
changes need be made to work artefact or view
implementations to support our coordinated, collaborative
approach, as change descriptions are intercepted using
standard MViews facilities. High performance synchronous
and semi-sychronous editing facilities are unaffected by the
coordination layer, as C-MViews provides these directly [6].

CONCLUSIONS AND FUTURE RESEARCH

We have described a new approach to providing coordination
of work and work planning for CSCW systems. This
utilises extended Visual Planning Language views to define
the context of work, and this work context is associated
with descriptions of all changes made to work or plan
artefacts. Collaborating users register their interest in these
changes, and descriptions of the changes, including the
work context they were made in, are presented in various
ways to these users. The main advantages of our approach
over other CSCW systems include its support for work
coordination, informing collaborators about the context
work artefact changes are made in, and the ability to add this
coordination on top of any MViews environment.

We are currently implementing these extensions to C-
MViews and thus extending C-SPE to support coordination
of software development. We are further developing
notations to define interest in changes, extra processing of
change descriptions, and how to present change descriptions
and their work contexts to collaborating users.

REFERENCES
1 . Barghouti, N.S. Supporting Cooperation in the Marvel

Process-Centred SDE. In Proceedings of the 1992 ACM
Symposium on Software Development Environments,
ACM Press, 1992, pp. 21-31.

2 . Cockburn, A. and Jones, S. Four Principles for Groupware
Design. In Proceedings of OZCHI'94, 1994, pp. 21-26.

3 . Dourish, P. and Bellotti, V. Awareness and Coordination
in Shared Workspaces. In Proceedings of CSCW'92,
ACM Press, 1992, pp. 107-114.

4 . Ellis, C.A., Gibbs, S.J., and Rein, G.L. Groupware: Some
Issues and Experiences. Communications of the ACM
34, 1 (January 1991), 38-58.

5 . Grundy, J.C. and Hosking, J.G. A framework for building
visusal programming environments. In Proceedings of
the1993 IEEE Symposium on Visual Languages, IEEE CS
Press, 1993, pp. 220-224.

6 . Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor,
R. Support for Collaborative, Integrated Software
Development. In Proceedings of the 7th Conference on
Software Engineering Environments, Netherlands, IEEE
CS Press, April 5-7, 1995, pp. 84-94.

7 . Kaiser, G.E., Kaplan, S.M., and Micallef, J., Multiuser,
Distributed Language-Based Environments. I E E E
Software (November 1987), 58-67.

8 . Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P.,
and Bignoli, C. Supporting Collaborative Software
Development with ConversationBuilder. In Proceedings
of the 1992 ACM Symposium on Software Development
Environments, ACM Press, 1992, pp. 11-20.

9 . Kreifelts, T., Hinrichs, E., and Klein, H.K. Experiences
with the Domino Office Procedure System. In
Proceedings of the Second European Conference on
Computer Supported Cooperative Work (ECSCW'91),
1991, pp. 117-130.

1 0 . Lonchamp, J. CPCE: A Kernel for Building Flexible
Collaborative Process-Centred Environments. In Procs
of the 7th Conference on Software Engineering
Environments, IEEE CS Press, 1995, pp. 95-105.

1 1 . Magnusson, B., Asklund, U., and Minör, S. Fine-grained
Revision Control for Collaborative Software
Development. In Proceedings of the 1993 ACM SIGSOFT
Conference on Foundations of Software Engineering, Los
Angeles CA, December 1993, pp. 7-10.

1 2 . Medina-Mora, R., Winograd, T., Flores, R., and F., F.
The Action Workflow Approach to Workflow
Management Technology. In Proceedings of CSCW'92,
ACM Press, 1992, pp. 281-288.

1 3 . Roseman, M. and Greenberg, S. Groupkit: A groupware
toolkit for building real-time conferencing applications.
Proceedings of CSCW'92, ACM Press, 1992, pp. 43-50.

1 4 . Swenson, K.D. A Visual Language to Describe
Collaborative Work. Procs of the 1993 IEEE Symposium
on Visual Languages, IEEE CS Press, 1993, pp. 298-303.

