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Abstract. This paper describes the conceptual integration and computer-based
support of two important groups of conceptual data models, Entity Relationship
Models and Object Role Models (e.g. NIAM).  We perform conceptual integration
using the conceptual data modelling language CoCoA to specify separate data
models of individual notations. We then merge these into an integrated
conceptual data model for both notations. These data models form the basis of the
repository for an I-CASE tool supporting modelling with both notations, with
full consistency management between the two notation data models.

1 Introduction

1 . 1 ER and NIAM Models

Conceptual data modelling is an important perspective used in describing information
systems during requirements analysis and specification.  Conceptual data models are
information systems modelling languages (ISMLs) that are used to describe, reason about,
or document the logical structure and meaning of data and the concepts they represent.
They are not concerned with what the data is used for or how.  They are also unconcerned
with how data is represented within a computer-based information system.

Two important groups or classes of conceptual data models are Entity Relationship (ER)
Models and Object Role Models (ORM).  Each group has its advantages and disadvantages
as well as its adherents and critics.  The ER model group follows from the work of Chen
[2], and ER models have become very popular for Information Systems development. ER
models utilise attributed entities and relationships to describe information structure. Fig. 1
shows an example of an ER data model for a simple invoicing system.

ORM models follow from the work of Nijssen and others at Control Data in the
Netherlands.  The most well known ORM is NIAM, as described in [15] and refined in
[9]. ORM offer a well-thought-out system of constraints, rigorous means of dealing with
higher arity relationships (i.e., n-ary with n>2), and an effective means of communicating
with users via examples of data. Fig. 1 also shows an example of a NIAM data model for
a simple invoicing system.

Some problems suit ER modelling while others suit ORM modelling, and developers
have a preference to which notation they use. In order to facilitate system development



using both of these modelling techniques simultaneously, an I-CASE tool is required
which supports integrated modelling with both notations. Consistency management
between ER and NIAM models must be supported in order to effectively use both
notations on the same problem domain. Without such tool support, effective utilisation of
both models is difficult, as inconsistencies are difficult to manually detect and correct.

Fig. 1. ER and NIAM data models for an invoicing Information System.

1 . 2 Related Research

Integrated ISEEs (or Integrated CASE tools and programming environments) allow
designers to analyse, design, and implement Information Systems from within one
environment, providing a consistent user interface and consistent repository (data
dictionary). They help to minimise inconsistencies that can arise when using several
separate tools for information systems development [16, 12].

Some work has been done on the static integration of notations. We base this work on
Venable [14] who has performed detailed analyses and integrations of both data flow
models and conceptual data models.  Campbell and Halpin [1] have also analysed
abstraction techniques for conceptual schemas, including those in the ER and NIAM
models.  Falkenberg and Oei [3] have proposed a metamodel hierarchy but it has not yet
been applied to the ER and ORM areas. Data modelling has been used to compare different
notations [10] and support methodology engineering [7]. Process-modelling has also been
applied to compare and integrate notations [13]. Little has been done to translate
conceptually integrated notations into tool-based implementations.

Limited dynamic notation integration is supported by many CASE tools, such as
Software thru Pictures™ [16]. These ICASE environments allow developers to analyse



and design software using a variety of different notations, with limited inter-notation
consistency. Such tools do not generally support complex mappings between the design
notations, such as propagating an ER relationship addition to a corresponding OOA/D or
NIAM diagram. The implementation of these environments is generally not sufficient to
allow different design notations to be effectively integrated, and consistency between
design and implementation code is often not maintained [8]. FIELD [12] and Dora [11]
provide abstractions for keeping multiple tools and textual and graphical views consistent
under change. They do not, however, provide any mechanism for propagating changes
between views which can not be directly applied by the environment, such as ER
relationship changes to NIAM or OOA/D relationship changes. Thus changes which can
not be automatically translated to another notation are not supported.

1 . 3 Our Approach

To produce a true I-CASE tool for ER and NIAM modelling, we utilise the approach
described in [5]. First, conceptual data models are developed for both the ER and NIAM
notations. Second, an integrated conceptual data model is derived which captures the
concepts of both the ER and NIAM. Third, dynamic data mappings between the individual
models are developed which describe how changes to data in one notation can be reflected
as data changes in the other. Forth, individual CASE tools are developed for the ER and
NIAM notations, using their individual conceptual data models to specify the tool
repositories. Finally, these individual modelling tools are integrated into a single I-CASE
tool by defining an integrated repository based on the integrated conceptual data model.
The individual repositories are kept consistent by using the data mappings to specify how
data changes in one repository are propagated to the integrated repository and then onto the
other notation’s repository.

2 Integration of the Notation Conceptual Data Models

2 . 1 CoCoA

We use the CoCoA conceptual data modelling language [14] as a meta-model for
modelling Information System Modelling Languages (ISMLs) and their concepts. CoCoA
is designed to support modelling of complex problem domains and extends existing Entity
Relationship (ER) models. Fig. 2 depicts the seven main CoCoA abstractions. Entities
are the things in a problem domain and attributes describe and/or identify them (Fig. 2
(a)). Named relationships have the semantics of ER relationships, and are composed of
named roles, played by entities. Cardinalities are indicated with each role (Fig. 2 (b)).

CoCoA supports generalization and specialization, and where specialization is based on a
partitioning attribute, that attribute is shown (Fig. 2 (c)). CoCoA extends other ER
models by the implicit use of categories, allowing more than one entity (type) to play the
same role in the same named relationship (Fig. 2 (d)). CoCoA derives its name from a
fifth data modelling concept, that of Complex Covering A ggregation. Covering
aggregation distinguishes the aggregation of entities into composite entities from the
aggregation of attributes into entities. Complex covering aggregation is distinguished
from simple covering aggregation in that aggregation of named relationships into the
composite entity is allowed (Fig. 2 (e)). CoCoA supports aliases, which are useful for
model integration, showing old local names together with standardized names for
synonyms (Fig. 2 (f)). Derived concepts (attributes, entities,  named relationships, or



covering aggregation relationships) are annotated with a ‘*’ (Fig. 2 (g)).

(a) Entity and Attributes (b) Named Relationship and Roles (c) Generalisation/specialisation

(d) Implied Category

(e) Complex Covering Aggregation
(aggregation of entities and named relationships)(f) Alias (g) Derived Concept
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2 . 2 Individual Notation Conceptual Data Models
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Fig. 3. ER conceptual data model.

We have used CoCoA to derive conceptual data models for ER and NIAM. The data model
describing the fundamental abstractions of ER models is shown in Fig. 3. Entities are
named and have zero or more named attributes. Relationships are named and have two or
more named roles. Roles link entities and relationships and may include a maximum
cardinality. Extensions to this basic ER schema include provision for entity subtyping,
optional and mandatory roles, and distinguished key attributes of entities [14].

Fig. 4 shows NIAM’s main abstractions. A NIAM entity is named and may have a



reference, made by one or more named labels. Fact types are named and have one or more
roles. The “derived” attribute of the fact type entity is marked as derived (by the asterisk)
because it’s value is true if it is related to a derivation rule. Roles link entities to facts,
and are named. Nested fact types are both entities and facts i.e. have roles but also behave
as entities, being linked to zero or more facts via further roles. A CoCoA model of other
NIAM constraints is omitted for brevity, but can be found in [14]. NIAM derivation rules
are not specified further because they are not fully specified by Nijssen and Halpin [9].
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2 . 3 An Integrated Conceptual Data Model

We have developed an integrated data model which captures the overlaps between ER and
NIAM. We have included in this data model the OMT notation, an object-oriented
modelling approach, as shown in Fig. 5. The ER and OMT models differentiate between
entities and attributes, whereas NIAM integrates these concepts into a general entity type.
The main difference between the OMT and ER conceptual data models is OMT’s support
for class methods. The overlaps between the notations are indicated by covering
aggregation showing the composition of each data model from the integrated data model
entities and relationships. Further discussion of relationship type classifications is in [14].

3 Internotation Mappings

Our integrated conceptual data model specifies the static integration of the two notations
i.e. which ER concepts correspond to which NIAM concepts and vice-versa. This
integrated data model can form the specification for an integrated tool repository for ER
and NIAM notations. It does not, however, specify dynamic mappings between the two
notations i.e. when an ER model is changed, what is the affect on the NIAM model for
the same problem? It is straightforward to translate an ER change into the integrated
repository change, as the integrated model fully describes the ER data model. It is often
more difficult to translate a change to the integrated data model into a change in the NIAM
model, as some of the concepts modified may not directly correspond. This is also true in
the reverse direction (NIAM to integrated model to ER model).

Entities directly
correspond

Facts and unattributed
relationships correspond

Role names and
cardinalities correspond

NIAM references
correspond to ER attributes

 with the same name

Fig. 6. Direct mappings between ER and NIAM models.

Some dynamic mappings are quite straightforward, and we term them direct mappings. For
example, ER entities map directly to NIAM entities, so adding, updating or deleting an
ER entity can be automatically reflected as appropriate changes on the corresponding
NIAM entity. Unattributed ER relationships correspond to NIAM facts, and thus adding an
ER relationship and roles can be directly propagated to the addition of a NIAM
relationship and roles. Renaming ER roles and relationships can be translated into
renaming NIAM roles and facts. NIAM entity references, which are used to refer to an
entity, correspond to ER attributes of the same name. Direct mappings between the two



models are shown in Fig. 6.
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Fig. 7. Indirect mappings between ER and NIAM models.

Some concepts do not directly map to concepts in the other notation, and we term these
indirect mappings. See Fig. 7.  For example, ER attributes must be mapped to NIAM
entities, with appropriate NIAM roles and a fact to link the “attribute” entity to its owner.
In Fig. x, a designer adding a “name” attribute to the ER model results in a corresponding
“name” entity and binary fact (“has”) being added to the corresponding NIAM model.
Similarly, if a designer adds a NIAM entity, this may be represented in the ER model by
an entity or an attribute. Addition of a NIAM fact to an entity may translate to an ER
relationship to the entity, or may translate to an ER attribute. Such situations require user
intervention to determine what the correct translation to the ER model should be (see the
following section).
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Fig. 8. Further indirect mappings between ER and NIAM models.

NIAM supports many constraints between facts, such as uniqueness values for single or



composite roles. Subtyping and mandatory/optional roles correspond to the same concepts
in most ER models. The other constraints do not have similar concepts in ER models, and
can not be translated into ER changes. However, designers should be informed when using
ER diagrams that such untranslatable constraints have been added to the corresponding
NIAM model.

Some mappings between the notations can be translated initially, but may need to be
modified depending on further development of the system being designed. For example, if
the customer name attribute was added to the ER model, a corresponding NIAM entity and
fact would be added. If the designer subsequently added further facts about this entity to the
NIAM view, such as first name and last name, the ER customer name attribute would
need to be converted to an ER entity, with appropriate relationship and roles to the
customer entity. Similarly, if attributes are added to an ER relationship, the corresponding
NIAM fact must be converted to a nested fact type, which can have facts of its own. Thus
some modifications to one notation result in many modifications to the other model.
Some may be defaulted by an I-CASE tool, but some user intervention may be required.
Fig. 8 illustrates complex indirect mappings.

4 An Integrated CASE Tool for NIAM/ER Modelling

4 . 1 MViews

NIAMER is implemented as a collection of classes, specialised from the MViews
framework [4, 6]. MViews supports the construction of Integrated Software Development
Environments (ISDEs) by providing a general model for defining software system data
structures and tool views, with a flexible mechanism for propagating changes between
software components, views and distinct software development tools.

MViews describes ISDE data as components with attributes, linked by a variety of
relationships. Multiple views are supported by representing each view as a graph linked to
the base software system graph structure. Each view is rendered and edited in either a
graphical or textual form. Distinct environment tools can be interfaced at the view level
(as editors), via external view translators, or multiple base layers may be connected via
inter-view relationships.

When a software or view component is updated, a change description is generated. This is
of the form UpdateKind(UpdatedComponent, ...UpdateKind-specific Values...). For example,
an attribute update on Comp1 of attribute Name is represented as:
update(Comp1,Name,OldValue,NewValue). All basic graph editing operations generate
change descriptions and pass them to the propagation system. Change descriptions are
propagated to all related components that are dependent upon the updated component’s
state. Dependents interpret these change descriptions and possibly modify their own state,
producing further change descriptions. This change description mechanism supports a
diverse range of software development environment facilities, including semantic attribute
recalculation, multiple views of a component, flexible, bi-directional textual and graphical
view consistency management, a generic undo/redo mechanism, and component
“modification history” information.

New software components and editing tools are constructed by reusing abstractions



provided by an object-oriented framework. ISDE developers specialise MViews classes to
define software components, views and editing tools to produce the new environment. A
persistent object store is used to store component and view data.

4 . 2 NIAMER Architecture

NIAMER was built by integrating two independently developed CASE tools. MViewsER
[5] provides multiple graphical ER views and textual relational schema views.
MViewsNIAM provides multiple NIAM modelling views. These two tools were
integrated by developing an integrated repository, based on the integrated conceptual data
model from section 2. The items in this integrated repository are linked to items in the
individual tool repositories. Changes to ER tool data are translated into changes to the
integrated repository data and then into changes on NIAM tool data (and vice-versa), by the
inter-repository relationships.

An advantage of using an integrated repository to maintain inter-notation consistency is
when extending the environment. For example, the authors have developer another
environment supporting integrated EER and OOA/D modelling, called OOEER [5], with
many of the NIAM and ER mappings used in OOEER. Thus it is far easier to integrate
OOEER and NIAMER by using the integrated repository, to produce an environment
supporting EER, OOA/D and NIAM modelling, than by respecifying many of the
mappings already implemented in each environment. In fact, a third integrated repository
could be used to link the integrated NIAMER and OOEER repositories.

4 . 3 Examples of NIAMER Consistency Management

Some translations between NIAM and ER diagrams can be fully automated by NIAMER.
In this case, when a designer selects a view from the other notation from which they have
been working in, it is updated to reflect any changes which can be automatically carried
out. Some updates can not be automatically carried out. In this case, NIAMER allows
designers to browse a “modification history” for the view or the components rendered in
the view, to determine if manual updates are needed to complete a translation.

Fig. 9 shows the modification history for the NIAM transaction entity. This contains a
list of human-readable change descriptions which inform the designer of changes which
have affected the transaction entity. The lines prefixed by ‘ER:’ have been carried on ER
model diagrams, affecting the ER transaction entity. These have been sent to the NIAM
transaction entity and are stored to document ER changes affecting this entity. NIAMER
has also translated some of these updates into NIAM model updates, indicated by the
following lines prefixed by a ‘→’. Changes not prefixed by a ‘→’ have been manually
carried out by the designer to maintain full internotation consistency.

NIAMER supports textual views showing relational database tables for entities and
facts/relationships. This facility is provided by MViewsER, but as the NIAM model is
kept consistent with the ER model, relational tables can be produced for the NIAM model
as well. These textual views can be kept consistent with the graphical views by expanding
change descriptions into the view’s text. Some expanded changes can be automatically
applied to the textual view on programmer request. For example, update 12 in Fig.9 can
be automatically applied by NIAMER, resulting in the acc-of table field being renamed.



Fig. 9. Examples of translation of ER updates to NIAM updates.

5 Summary

We have integrated the conceptual data models for two common conceptual data modelling
notions, ER and NIAM. This integrated model facilitates mapping dynamic data changes
between the individual data models for each notation. These conceptual data models can
form the basis for integrated CASE tool repositories, and we have implemented an I-
CASE tool, NIAMER, which supports fully integrated NIAM and ER data modelling.
Unlike other CASE tools, our data models are kept fully consistent, with any change to
data in one model being translated into appropriate changes in the other model. Some
changes can be automatically translated, while others require some degree of designer
assistance. NIAMER always highlights such updates, and its default attempt at a
translation, to assist designers in keeping their designs in each notation consistent.

We are currently integrating NIAMER and OOEER, to produce an I-CASE tool which
supports EER, OOA/D and NIAM modelling, and relational schema and OO program
construction. We are extending OOEER to support DFD and object-oriented functional
diagram consistency. Keeping the data modelling parts of such diagrams consistent with
ER and NIAM models is also being investigated. We are producing a metaCASE tool,
incorporating our CoCoA modelling language and MViews framework. This will allow I-
CASE tools such as NIAMER to be more easily specified, generated and integrated.
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