In Proceedings of the 7th Workshop on the Next Generation of CASE Tools (NGCT’'96), Crete, May 20-24, 1996.

Supporting Collaborative Work in Integrated Information
Systems Engineering Environments

John C. Grundy John R. Venable John G. Hosking and Warwick B. Mugridgéf

T Department of Computer Science TTDepartment of Computer Science
University of Waikato University of Auckland
Private Bag 3105, Hamilton, New ZealanéPrivate Bag, Auckland, New Zealand
{igrundy,jvenable}@cs.waikato.ac.nz {john,rick}@cs.auckland.ac.nz

Abstract

The development of complex Information Systems requires many Information Systems
engineering tools. These diverse tools need to be integrated in order to be effectively used by
multiple developers. In addition, these developers require features that facilitate effective
cooperation, such as support for collaboratively planning work, notification of changes to
parts of a system under development (but only when necessary or desired), support for
keeping aware of other developers' work contexts, and the ability to flexibly engineer or
adapt development processes and methods. We describe our approach to adding such
collaborative work support to an integrated Information Systems engineering environment.

1. Introduction

Development of complex Information Systems requires the use of many Information Systems
engineering tools, including CASE tools, databases and programming languages, and
documentation and project management tools. Effective use of these tools together requires
their integration [3]. The use of integrated tools by multiple developers introduces a further
requirement - tool use needs to be coordinated [14]. Developers need to collaborate to plan
their work, know what other developers are doing or have done, be informed of changes
other developers are making to artefacts they use, and need to collaboratively modify their
work processes during development.

We have developed a tool integration mechanism [7, 22, 8] which supports data integration
(by integrating repositories or linking them together to keep their data consistent), control
integration (by propagating events between tools), and user interface integration (by ensuring
a consistent user interface across all tools). We have developed a process integration
mechanism [9] which uses an extended visual planning language to specify collaborative
work plans and capture modification histories. A tool for constructing these plans is
integrated with integrated IS development tools, supporting the capture and presentation of
work contexts. These work contexts are presented with work artefact changes to other
developers, coordinating tool use.

2. Related Research

Integrated environments include PECAN [18] and Dora [17], which utilise a centralised
database to store shared information. FIELD [19, 20] utilises selective broadcasting of events
between Unix tools to achieve limited integration. CASE tools utilise code generation and
reverse engineering but only partially keep design and code consistent [23]. Federated
approaches use hetrogeneous databases [3], but often lack collaborative work facilities.

Many collaborative environments and CASE tools support low-level editing mechanisms [1],
including most Groupware [4], Mjglner [15] and C-SPE [10], but do not usully facilitate
coordination of work. Process-centred software engineering environments (PCSEES), such
as Marvel [2] and ConversationBuilder [13], utilise information about software processes to
enforce or guide development. PCSEESs usually provide low-level text-based descriptions of
work rationale, and often do not effectively handle restructuring of development processes
while in use [21]. Computer-Aided Method Engineering (CAME) tools, such as Decamerone
[12], provide support for configuring development processes and tools to particular
applications, but do not facilitate work coordination. Workflow-based systems, such as
Action Workflow [16], attempt to coordinate work by describing document flow. This has
proven to be inadequate for most coordination activities, as exceptions to workflows usually
outnumber useful cases, and workflows often can’t be modified while in use [21]. Most
PCSEEs and Workflow systems are not well integrated with existing development tools.

3. An Integrated |SEE

_ customer - Relational Schema
customer - form designi oupdates start(z0). [
\ lE] update(S). % Make exclusive subtype
#e of person
Customer |:] update(8). % Add relationship invoice-of to
imvoice
Name: | | [updatec13). % add attribute prefered
updates end. */
Address: table(customer,
fields(
name string(20) not ull ',
credit limit money(7.2) not mull 0.00,
Age: [] customer - ERD
nanme *{}
Credit limit: customex B
[] L
E[]== customer - Documentation =HI2 ace-o£(1,1) inv-0£(1,n)
/*updates start(4). > 3
updates end. */ | @ =~
&
Item: entity - o
Name: customer ;82

cust-o£(1,1) cust-of(1,1)

Relationships:
acc-of, inv-of P

Attributes: 2
c#, name, address, age, » invoice]
credit limit *

Purpose:

trans-of(0,n) trans-of(1,n)

ace-of(1,1) jnv-of£(1,1) line#|

tr#

Figure 1. An integrated Information Systems Engineering Environment.

customer is used to record information
about business customers. It is used by

L[]

A
Q[

We have developed an ISEE which incorporates entity-relationship and relational schema
modelling [7], form and report design [10], NIAM modelling [22], object-oriented analysis,
design and implementation [6], and documentation [6, 7]. Figure 1 is a screen dump
showing some of the IS development views this environment provides. Windows ‘customer
- ERD’ and ‘customer - Relational Schema’ are provided by the MViewsER ER/schema
modelling tool [7]. Window ‘customer - form designl’ is provided by the MViewsDP
form/report design tool [10]. Window ‘customer - Documentation’ is a documentation view
provided by the SPE tool for object-oriented software development (which also provides

object-oriented analysis, design and implementation views) [6]. Other views supported
include NIAM views from MViewsNIAM [22], and debugging views from Cernoll [6].

Our integrated tools support integrated repositories, and information in these repositories and
the tool views is kept consistent when related information in other views is modified. Figure

2 shows an example of consistency management. Updates made to the ER customer entity
are propagated to the schema view, showshasge descriptions this textual view header.

These inform a developer of changes made to the customer entity that may require updates to
the schema. Some can be automatically made by the environment (for example, adding,
renaming or deleting attributes). Others are more difficult to implement, such as adding new
relationships or changing relationship arity. The environment leaves these modifications up to
the developer. Changes need to be reflected in the form design view, and these are indicted in
a dialog. Some can be automatically actioned, as shown by the new attribute ‘preferred’
having an edit box automatically added, but this needs designer intervention to move it to an
appropriate position (hence the greyed outline).

customer - form design1 customer - Relational Schema

/*updates start(20).]
\ Customer #: : update(5). % Make exclusive subtype
. of person
3:;;:':[Io? Name: I: update(s). % Add relatiomship inveice-of to
! imvoice
form desi gn ™\ = update(13). add attribute prefered \

view dates end. */
upda . .

\ change descriptions
table(customer, shown in dialog or

fields(4—"in view text header
game

string(20) not .
momney (7 mll 0.00

5. Make exclusive subtype of person
8. Add relationship invoice-of to invoice
13. add attribute prefered

B[]

CUiew) [Add] [Delete |
[Undo] [Redo]

Figure 2. Keeping different views of development consistent.

4. Supporting Process Modelling and Work Coordination

Our environment supports version merging and synchronous and semi-synchronous
collaborative editing facilities [11].These are useful, but are not by themselves sufficient to
support large groups of cooperating IS developers. A key problem is lack of information
about work processes used and the context in which work artefact changes have been carried
out [9]. In large cooperative work systems coordination of work activities is needed [14].
Users must collaborate in the planning of work activities and modelling of ISD processes,
and be aware of the contexts in which other users’ work is carried out.

We have adapted the Visual Planning Language (VPL) [21] to define process models, work
contexts and work planning activities for our ISEE. VPL defines plans and subplans for
work, and can be used to specify meta-plans for planning itself. We have extended VPL to
produce VPL+, in which plans include extra information about work artefacts, CASE tools
and collaboration mechanisms. Two VPL+ plan diagrams for a software process are shown
in figure 3. VPL+ elements include: stages (steps in the process), denoted by ellipses which

include a role and stage description; split stages, which are duplicated for each person
involved in the stage; araptions, denoted by circles on stage perimeters, which specify the
next plan stage(s). Extra annotations describe tools, work artefacts and communication
mechanisms. These VPL+ elements (or "plan artefacts") can be modified in exactly the same
ways work artefacts are modified. Plans can be defined by multiple users via synchronous,
semi-synchronous or asynchronous editors. Modifications to plans are coordinated via meta-
plans (which are themselves VPL+ plans)..

System Modification - Software Team

Sart

phnsyem
mod(ion 3

StartCoding

[RDEMS, Fomms, [Forms, Reports)

[codes Reports] o
make ot — - - -
modifm difimticns make modifications - information
“""'. WB“V stage("make modifications”, 47
- e hyaten modificati ftuare t B
- . parent("system modification - software team")
Finish Coding Approe inputs("start coding”, Modify" ,"Fix Bug"),
outputs ("Finish Coding"),
desi tools ("ERD","Foms","Reports"),
HEh, [VFL] artefacts(
Approve “relational schema",
modificati ons. Test “form designs",
"report designs"),
roles (multiple(coders)),
Spprare instantiation(multiple)
. =
=

make modifications - add customer branches

coder (johm)

foms/reports

relationships
“coder (jotm)"~

\6\test mew branch
: enti for customer
problems __fy

create cutsomer & O
to branch () modifications .
relationships i finished

list
Figure 3. VPL+ views describing some IS development processes.

In figure 3, the plan specifies a software process for modifying a software system. A subplan
for “make modifications” specifies steps for a particular system enhancement, in this case the
extension of the customer entity to include multiple branches per customer. A plan history is
associated with each actioned stage, containing descriptions of changes made to software
artefacts while the stage was active. Textual views describe extra information about the
purpose of individual plan stages. These describe the tools used to carry out work and which
artefacts are used by a stage. Useful plans can be abstracted out into policies (basically
generalised software process models), which can then be instantiated into further plans.

5. Capturing and Presenting the Context of Work

VPL+ is used to display and manipulate plans in action, with active stages for a plan
highlighted. This enacted plan specifies the “current work” context for each member in a
collaborating team. Members may have more than one plan view open to see the status of
other plans they are interested in. When making work or plan artefact changes, information
about the context of this work is captured and presented to interested collaborating users.
This information includes who made a change, what was changed, when it was changed,
why it was changed and the work or planning context in which the change was made.

customer - Relational Schema System Modification - Software Team /2.
6 M~ updates start(20). i sant 4+
- update(S). % rick, upate design:
Make exclusive subtype of person
update(8). % rick, update design: i . [ERD, DFD]
Add relationship invoice-of to imvoice Enter the entltg name
update(13). % john, make modifications:
add attribute prefered |branch
updates end. */ Plan Stage:
table(customer, [add customer branches

fields(StartCoding

name string(20) mot null : N
credit limit money (7,2) mot null Extra rationale:

M customer - ERD Need branch entity so we
can represent multiple

[CT) (Remap) (Concel]

[RDEMS, Fomms,
Reports)

Stage: add customer branches

N Branch entity is used to store branch
cccccc | |information for customers with
| |[multiple branch locations

inv-line

John: test new branch entity for customer

report 'print customer' does not
currently show branch info...

. (john) add entity branches
. (john) establish relationship branch-of from cus
. (john) make branch-of arity 1:n o L
. (john) add attribute branch_id to branches }'ﬁ: :‘rj:g;:'u
. (john) add attribute contact to branches

. (john) add attribute address to branches
. (john) change relationship branch-of arity to 8:n

Mark: modify reports

ok - will modify my version soon .
finished

~N A NN -

\ /

[Undo] [Redo] [Cancel]

\ J/

Figure 4. Capturing work context information.

Figure 4 shows how different views can be used to capture work contexts when using ISEE
views (a developer would not normally have this many views open at once!). A shared VPL+
view (1) shows information about a developer’s current active stage status (bold border) and
indicates current plans of other collaborators (shaded borders). Other VPL+ views (2) show
other plans the developer is using. Shared artefact notes (3) specify extra documentation
about individual work or plan artefacts. Shared modification histories (4) detail changes that
have been made for a stage. As plan or work artefact changes are generated, descriptions of
these changes are forwarded to the appropriate current plan stage and stored to document the
stage’s work history. A collaboration dialog (5) is used for informal, context-dependent
dialogue between developers. Work artefact views (6) are graphical or textual ISEE editors
which capture information about changes made to artefacts. Augmented artefact dialogs (7)
allow a developer to optionally specify extra rationale for low-level work or plan artefact
changes. The current context of work is modified by advancing VPL+ active stages and VPL

views can be extended as users become more familiar with their actual work processes,
unlike many existing workflow and process-centred environments.

Collaborating users must be informed of changes to work and plan artefacts they are
interested in [9]. In most CSCW environments this amounts to presenting only artefact-level
information to collaborators, either directly updating their work artefact views or using
version control facilities to indicate changes made by other users. Our approach provides
collaborating users with both change descriptions describing actual work or plan artefact
changes and extra information about the work context in which the changes were made.
Presentation of work context information to collaborators is done in a similar way and using
similar views to the capture of work context information shown in Figure 4 [9].

6. Method Engineering

Information Systems development methodologies are generally situation-independent.
Researchers have found that due to the increasing complexity of Information Systems,
methods often need to be tailored for a particular system development project[12]. Our work
coordination views assist in Method Engineering by allowing developers to incrementally
refine their development methodology and work processes. Our approach has advantages
over comparable, textual notations, such as MEL [12], in that its visual nature is more
accessible to developers for visualising and modifying plans. It also allows users to modify
their processes during or after use, so new, improved policies (i.e. software process models)
can be developed.

System Modification - Software Team

: [Forms, Reports
SanCeodinz (rorms, Reports, Batch i?:oeqp;:ams]f

Batch Programs)

TN

odifimticns

st
Fix Bugs 4Approve
modifimtions Test

Apprare

[E]

Figure 5. Method engineering techniques.

Figure 5 shows a VPL+ method engineering example. The ‘System Modification’ plan
(software process model) has now been collaboratively updated to use slightly different plan
stages and tools. Database modifications are now done during the “plan modifications” stage
(the “RDBMS” tool is now used in this stage and not during the “make modifications” stage),
batch programs are now modified and tested, and the subsequent step to “make
modifications” is now “test modifications”, not “approve modifications” as previously.

7. Design and Implementation

The individual ISEE tools and our VPL+ tool are implemented as a collection of classes,
specialised from the MViews framework [5, 10]. MViews supports the construction of
ISEEs by providing a general model for defining software system data structures and tool
views, with a flexible mechanism for propagating changes between software components,
views and development tools. ISEE data is describedrmponentsvith attributes linked

by a variety ofrelationships Multiple views are supported by representing each view as a
graph linked to the base software system graph structure. Each view is rendered and edited in
either a graphical or textual form. When a component is updatelthrage description
documenting the change is generated. Change descriptions are propagated to all components
dependent upon the updated component’s state. Dependent components interpret change
descriptions and possibly modify their own state, producing further change descriptions.
This mechanism supports a diverse range of environment facilities, including attribute
recalculation, multiple views, flexible, bi-directional textual and graphical view consistency,
component “modification histories” and versioning, and collaborative editing support [11].
New components and editing tools are constructed by reusing abstractions provided by the
object-oriented MViews framework. A persistent object store is used to store component and
view data.

Wrk Artefect Editors
M/ ewsDP editors M/ ewsER edi tors Mi ensN AM edi t or s SPE editors
(formreport design) (ERDs/rel ational schema) (N AM di agr ans) (0O desi gn/ i npl / doc)
’ a8

1 < >
vi ew consi st ency
rel ati onshi ps

SPE repository
(QO design/inpl.)
2.
OCEER r eposi t or
(Q0 EER nodel s)

Figure 6. The architecture of the integrated tools.

<>
inter-repository
consi st ency
rel ati onshi ps

4. ewsER repository ewsN AM r eposi tory
(ER/rel ational schema) (N AM nodel s)
3.
ewsDP repository
(formreport designs) X
N AMER reposi tory
(integrated ER' N AM nodel s)

Wrk Artefact Repositories

We have developed a technique of integrating tools for multiple design notations using
hierarchical, integrated MViews repositories [7]. We have extended this approach so that
information in one tool repository (such as relational schema items) can be linked to similar
items in another tool's repository (such as form components). We have integrated the SPE
OOA/D/P, MViewsER, MViewsNIAM, and MViewsDP tools to produce our integrated
ISEE, as shown in Figure 6. We are currently implementing a DFD modelling tool and
extending SPE to support functional and dynamic models. These behavioural modelling
notations will then be integrated and kept consistent using an integrated repository.

The approach we have takenntegrating our VPL+ tool and ISEE is to have coordination
(VPL+) artefacts receive change descriptions from updated work artefacts. Work context
information is associated with these change descriptions, then they are propagated to
interested collaborators’ views for presentation [9]. Figure 7 shows how ISEE and VPL+
artefacts will interrelate: 1) if a developer modifies a work artefact, change descriptions are
sent to the current VPL+ plan stage (developer’s work context) . 2) The plan stage augments
the change descriptions with work context information, and forwards them to the work
context of collaborators interested in the change. 3) Change descriptions are presented to

collaborators in an appropriate manner to inform them of both work artefacts changes and
collaborating users’ work context, facilitating work coordination.

(" \ ()

- - Capture/ I nterest/
| VPL . .
tool editors Editors Presentation Editors

change descriptions sent to VPL+

itenms, which use themto 2.
integrated tool coor di nate work ¢ VPL Repository
repositories
Vérk (CASE) Tool s L Coor di nati on/ pl anni ng Tool s
J . J/

Figure 7. Integrating VPL+ views with integrated tool views.

8. Summary

We have described an integrated ISEE which includes work coordination facilities to help
manage large systems development. Integrated development tools allow developers to design
and build complex Information Systems using a variety of integrated tools, with full data,
control and presentation integration between the tools. A coordination layer using an
extended Visual Planning Language (VPL+) is used to achieve process integration between
tools. This includes the ability to collaboratively develop, refine and reuse complex work
plans (i.e. software process specifications), coordinate work via work context capture and
presentation, and use plans to document development via plan histories. VPL+ views provide
a work coordination layer and facilitate collaborative planning and method engineering.

We are continuing to extend VPL+ to make it easier for collaborators to specify interest in
changes, presentation mechanisms, and to visualise inter-plan stage communication
mechanisms, artefact and tool usage, and developer roles. We are also developing a true
MetaCASE environment which uses meta-models of notations as CASE tool repository
specifications, and allows MViews environments to be declaratively specified and generated.

References

1. Aaen, |, Siltanen, A., Sgrensen, C., , and Tahvanainen, V.P. A Tale of Two Countries: CASE
experiences and expectations.Phoceedings of the IFIP WG8.2. Working Conference on The Impact of
Computer Supported Technologies on Information Systems Developeedall, K.E., DeGross, J.1.,
and Lyytinen, K. Eds, North-Holland, Minneapolis, June 14-17 1992.

2. Barghouti, N.S. Supporting Cooperation in the Marvel Process-Centred SDFrodeedings of the
1992 ACM Symposium on Software Development Environnfedhd, Press, 1992, pp. 21-31.

3. Bounab, M. and Godart, C. A Federated Approach to Tool IntegratioRrokceedings of CAISE'95,
Springer-Verlag, Finland, June 13-16 1995, pp. 269-282.

4. Ellis, C.A., Gibbs, S.J., and Rein, G.L. Groupware: Some Issues and Experi€uamunications of
the ACM 34, 1 (January 1991), 38-58.

5. Grundy, J.C. and Hosking, J.G. A framework for building visusal programming environments. In
Proceedings of the 1993 IEEE Symposium on Visual Languddes,CS Press, 1993, pp. 220-224.

6. Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge, W.B. Connecting the Wisoas,Object-
Oriented ProgrammingManning/Prentice-Hall (1995), Chapter 11.

7. Grundy, J.C. and Venable, J.R. Providing Integrated Support for Multiple Development Notations. In
Proceedings of CAISE'9RNCS 932, Springer-Verlag, Finland, Finland, June 1995, pp. 255-268.

8. Grundy, J.C., and Venable, J.R. Developing CASE tools that support integrated design notations. In
Proceedings of the 6th European Workshop on Next Generation of CASETB&&lspp. 109-116.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Apperley, M.D. Coordinating, capturing and
presenting work contexts in CSCW systemsPilaceedings of OZCHI'93/ollongong, Australia, Nov
28-30 1995, pp. 146-151.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor, R. Support for Collaborative, Integrated
Software Development. IRroceeding of the 7th Conference on Software Engineering Environments,
IEEE CS Press, April 5-7 1995, pp. 84-94.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. Supporting flexible consistency management via
discrete change description propagation. accepted for publicat®uoftimare - Practice and Experience
(1995).

Harmsen, F., and Brinkkemper, S. Design and Implementation of a Method Base Management System
for a Situational CASE Environment. Rroceedings of the 2nd Asia-Pacific Software Engineering
Conference (APSEC'99EEE CS Press, Brisbane, December 1995.

Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli, C. Flexible, Active Support for Collaborative
Work with ConversationBuilder. 18992 ACM Conference on Computer-Supported Cooperative Work,
ACM Press, 1992, pp. 378-385.

Krant, R.E. and Streeter, L.A. Coordination in Software Develop@&@M 38, 3 (March 1995), 69-
81.

Magnusson, B., Asklund, U., and Mindr, S. Fine-grained Revision Control for Collaborative Software
Development . IrProceedings of thel993 ACM SIGSOFT Conference on Foundations of Software
Engineeringl os Angeles CA, December 1993, pp. 7-10.

Medina-Mora, R., Winograd, T., Flores, R., and F., F. The Action Workflow Approach to Workflow
Management Technology. Froceedings of CSCW'9ACM Press, 1992, pp. 281-288.

Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R. Dora - a structure oriented environment
generator.|IEE Software Engineering Journdl, 3 (1992), 184-190.

Reiss, S.P. PECAN: Program Development Systems that Support Multiple ViEE®ES. Transactions
on Software Engineering1, 3 (1985), 276-285.

Reiss, S.P. Connecting Tools Using Message Passing in the Field EnvirolBidhtSoftware7, 7
(July 1990), 57-66.

Reiss, S.P. Interacting with the Field environm&aftware practice and Experien@), S1 (June
1990), S1/89-S1/115.

Swenson, K.D. A Visual Language to Describe Collaborative WorkPrdceedings of the 1993 IEEE
Symposium on Visual Languag#SEE CS Press, 1993, pp. 298-303.

Venable, J.R. and Grundy, J.C. Integrating and Supporting Entity Relationship and Object Role Models.
In to appear in Proceedings of the 14th Object-Oriented and Entity Relationship Modelling Conferece,
LNCS 1021, Springer-Verlag, Gold Coast, Australia, Dec 1995.

Wasserman, A.l. and Pircher, P.A. A Graphical, Extensible, Integrated Environment for Software
DevelopmentSIGPLAN Notice22, 1 (January 1987), 131-142.

