
Grundy, J.C., Panas, T., Singh, S., Stoeckle, H. An Approach to Developing Web Services with Aspect-

oriented Component Engineering, In Proceedings of the 2nd Nordic Conference on Web Services, 2003.

An Approach to Developing Web Services with Aspect-
oriented Component Engineering

John Grundy1, 3 Thomas Panas2 Santokh Singh1 Hermann Stöckle1

1Department of Computer Science and

3Department of Electrical and
Electronic Engineering, University of

Auckland
Private Bag 92019, Auckland, New Zealand
{john-g|santokh|herm}@cs.auckland.ac.nz

2Department of Computer Science
Växjö University

Vejdes Plats 7, 351 95 Växjö,
Sweden

thomas.panas@msi.vxu.se

Abstract Web services have become a popular new technology for describing,
locating and using distributed system functionality. However, existing web
service development approaches lack aspect-based development support for
distributed components. We describe the application of Aspect-Oriented
Component Engineering to web service development. This includes grouping
web service operations into components and characterising the cross-cutting
functional and non-functional aspects of these components such as transaction
support, distribution technology, persistency, performance and reliability,
security, resource utilisation, collaboration support and so on. Web services are
described with an extended, aspect-oriented description language and are
indexed and located using these aspect extensions. Aspect descriptions are used
to statically and dynamically validate located services and to integrate them
with client components. We describe an example of applying this approach to a
highly distributed sample application.

Introduction

Most new distributed systems now use internet technologies as a fundamental part of
their architecture. This has led to demand for an open, stable, scalable software
infrastructure for the development of applications for E-Business [15]. Up until
recently most distributed system infrastructures and technologies, such as CORBA,
DCOM, EDI and XML over TCP/IP, have provided some useful techniques for
abstracting remote component interfaces and supporting cross-organisational
communication [2,9, 12, 15]. However most have lacked the ability to work over a
wide variety of internet services with security constraints, have lacked adequate

dynamic queryable descriptions and binding services, have used proprietary solutions,
or have limited cross-platform or cross-language support features (including complex
data structure representation).

One solution to these problems has been the development of web services [3, 8, 15,
14]. These are basically remote component services described, located and accessed
using a set of open standards from the W3C. This new concept allows very promising
possibilities of heterogeneous application integration over the internet [3]. Web
services have quickly become popular in large part because they build on a well
known and widely accepted meta language, XML. They can provide a basic
communication infrastructure on which existing remote object systems, such as
DCOM or CORBA, can operate, by using HTTP as a de facto Web Service message
carrier. They provide a simple, standardised mechanism for describing web services
(“Web Service Description Language”, WSDL), dynamically locating web services
(“Universal Description and Discovery Interface”, UDDI), and co-ordinating cross-
system processes (“Business Process Execution Language for Web Services”,
BPEL4WS).

However, web services are still an immature technology. Many questions,
regarding their performance, security or interoperability, are yet not answered [5, 14,
11]. In addition, most web service-based systems are currently designed using
conventional object-oriented analysis and design approaches. During development of
a number of distributed systems we have found that such design approaches do not
adequately help developers to capture, reason about and encode higher level
component capabilities and are especially poor with respect to addressing issues
cross-cutting component services [1, 2]. We developed Aspect-oriented Component
Engineering (AOCE) to address these concerns for conventional distributed
component-based systems [1].

In this paper we report on our attempts to apply AOCE to the design and
development of web service-based distributed systems, to try to capture and use more
knowledge about web service-implemented distributed components at both design-
time and run-time. We motivate this work with an example of a highly distributed
application, a travel planner, and outline the AOCE methodology. We then describe
how AOCE concepts can be used when designing web service-based components to
describe their cross-cutting concerns and to reason about component interactions. We
describe how an extended form of WSDL, AO-WSDL, can be used to capture cross-
cutting web service component information and how an extended form of UDDI, AO-
UDDI, can be used to dynamically discover and integrate web service components by
leveraging aspect-oriented information in AO-WSDL descriptions. We summarise
with the contributions of this work and some directions for future research.

Motivation

Web services are self-describing components that can discover and engage other web
services or applications to complete complex tasks over the internet [3, 8, 15].
Historically, client server computing is designed around the intranet model where
software development is based on components operating inside an organisation’s

firewall, using distributed object technologies like DCOM, CORBA, J2EE, and EJB.
Web services primarily use HTTP as a transport mechanism and XML as the inter-
application communication protocol. Technically, a web service is a XML-based call
to software components on distributed servers. In the centre of the web service
technology is XML as a universal data and message structuring and encoding
language. Actual inter-application message exchanges are transmitted through SOAP
(Simple Object Access Protocol). Web services can also be described by XML
documents, typically by the Web Services Description Language (WSDL) format.
Web services can be registered with repositories and located by and bound to by other
web services at run-time. The detection of the web services is by standard repository
services, which are typically based on the Universal Description, Discovery and
Integration (UDDI) language [16]. Several implementations of web services exist, the
most commonly used being J2EE and .NET [3].

As an example of a system that could be built with web services, consider a
collaborative travel planning application, used by customers and travel agents to make
travel bookings [2]. Examples of the user interfaces provided by such a system are
illustrated in Figure 1 (a), and some software components composed to form such an
application are illustrated in Figure 1 (b).

Remote Web Services

Thick Clients

Tree Viewer

Map Vis.

Itinerary Item

Thin Clients

Middleware (SOAP/HTTP etc)

Web Pages

Remote Web Services

planner.jsp
message.jsp

Itinerary Manager Message Server

Travel Items User Profiles Search

(a) Example travel planning application
interfaces

(b) Example travel planner components

Figure 1. Example component-based application.

In this example a distributed component-based system has been built by composing a
set of software components to provide the range of facilities required: travel itinerary
management; customer and staff data management; system integration with remote
booking systems; and various user interfaces, including desktop, web-based and
mobile device interfaces. Some components are quite general and highly reusable e.g.
map visualisation, customer data manager, chat and email message clients and server,
and middleware and database access components. Others like the travel itinerary

manager, travel item manager, travel booking interfaces and integration components,
are more domain-specific. Many facilities, such as locating travel items, booking
items and payment will be provided by remote third-party systems. These will likely
be widely distributed and systems may provide quite different interfaces and protocols
e.g. different travel item formats, searching facilities, booking business processes and
so on.

Ideally we would like to design and develop components that can be described,
dynamically located and integrated into this system as needed. This requires in-depth
knowledge about not only the component type interfaces but aspects of their non-
functional behaviour as well. Earlier versions of this travel planner prototype that we
have developed used older component technologies which were not able to support
this. While web services provide a basic infrastructure that allow this, current design
techniques and web services description and registry technologies do not fully support
identification and use of cross-cutting concerns on web service-implemented software
components [13].

To show that our methodology is platform and language independent, besides
using Java’s J2EE, we have also used Microsoft's .NET technology to implement the
Travel Planner system. We used Visual Studio .NET and C# to build our web services
and clients to consume them. We applied AOCE techniques to implement the travel
planner clients and also all the web services for Flights, Car Rentals, Hotel Room
Reservation and Payment in our collaborative travel planning application. The AOCE
methodology was used to develop this system from inception to implementation and
subsequent maintenance. We have refactored crucial parts of the travel planner
implementation several times and discovered that refactoring was a much easier and
less stressful task as compared to doing it without the AOCE methodology. This
could be attributed to the fact that using aspects and components in our designs and
implementations brought about greater consistency and coherency in our approach
and this gave us more control and increased understanding in the web services system
that we were developing.

Aspect-oriented Component Engineering

When building such an application from parts i.e. when using component-based
development, developers typically assemble components that have been identified and
built using “functional decomposition”: organising system data and functions into
components based on the vertical piece(s) of system functionality these support.
However, many systemic features of an application end up cross-cutting, or
impacting, on many different components in the system. For example, things like user
interfaces, data persistency, data distribution, security management and resource
utilisation all impact a wide variety of components and some of the component
methods and state. Some components provide functionality relating to these system
features, others require it from other components in order to operate. We use the term
“component aspects” to describe these more horizontally-impacting perspectives on
software components in a system [1].

We developed Aspect-Oriented Component Engineering (AOCE) to help
developers engineer better software components [2]. Component aspects are broad
categories of annotations we use to describe systemic system properties that
components provide functions for or require functions from other components.
Examples of component aspects (which we refer to just as "aspects" from here)
include user interface, distribution, transaction processing, security, persistency,
configuration and collaborative work support facilities. Aspect details describe
various systemic properties under each aspect category that some components provide
and that others require. For example, one component may provide a button panel
(user interface aspect detail) another component may require to extend (e.g. to add its
own buttons). One component may provide event broadcasting support, which
another requires to do distributed communications. Each aspect detail has one or more
aspect detail properties which further characterise it e.g. event transfer rate, memory
usage size, kind of user interface affordance, synchronous vs. asynchronous group
editing, and so on. Aspect detail properties may be single-valued or specify an
acceptable value-range constraint. Component aspect details may overlap e.g.
marshalling for persistency and distribution, feedback for user interface and
collaborative work. Several component functions may be impacted by the same aspect
detail and a single function may be impacted by multiple details.

Itinerary W eb S ervice
-Insert/U pdate/D elete Item s
-Item s Collection D ata s tructure
-B ook travel item s
-D ata update events

D atabase C om ponent
-Select/Insert/U pdate/D elete
-T ransactions

Plann er C lient
-T ree disp lay/editing
-T ree data structure
-Lock & h ighligh t
-M essages

< <P ersistency>>
P rovides: store/load
P rovides: transactional update

< <U ser In terface> >
R equires: item s viewer
P rovides: item s list

<< Persistency> >
Provides: item s list
R eq uires: store/lo ad

< <U ser In terface> >
P rovides: collection v iewer

< <C o-o rd ination>>
R equires: data locking

Figure 2. Concept of "Component Aspects".

Figure 2 illustrates this concept for some of the components in our web service-based
travel planner application. The travel planner client provides a tree viewer as the main
user interface and it also requires work co-ordination support (locking data items
across multiple users). The travel itinerary web service requires a user interface to
display and edit its items collection data structure. It also requires data persistency
support. The travel itinerary web service provides a data structure to both render and
store, and generates data update events. A database component provides data storage
and transaction co-ordination support.

Each of these “component aspects” that impact parts of a software component can
be categorised into “aspect details” the component provides or requires. Each aspect
detail may be constrained by “aspect detail properties” that capture functional or non-
functional constraints relating to these horizontal perspectives on the component’s
functionality. For example, the itinerary manager may specify it requires a component
providing data storage of a certain speed e.g. 1000 insert() and update() functions
must be supported per second. The kind of awareness supported by the tree viewer
might be specified e.g. highlight of changed items. Components providing security
may indicate the kind of authentication or encryption used. Components requiring
memory management facilities may indicate the upper bounds of resources they use,
performance they require or concurrency control techniques they need enforced.

Developing Web Services with AOCE

We have been applying AOCE to the development of web service-based distributed
systems to improve web service component design, description and dynamic location
and integration.
Figure 3 shows how AOCE is used in this context.

Deployment
Design Specification

Adaptors

Client(s)
Testing
Agents

Server(s)

AO-UDDI
Registries

<aspect id=distribution>
 <provides>
 <detail id=send event>
 <properties>
 <performance>
 <speed_sec>
 100
 </speed_sec>
 </performance>
 …
 </properties>
 </detail>
 …
 </provides>
 …

</asepct>

AO-WSDL
Implementation

Component

J2EE

Component

.NET

Figure 3. Using the Aspect-oriented Web Services approach.

Component specifications are translated into designs, which include aspect-based
annotations of design diagrams in UML-based CASE tools, such as Rational Rose™
[1] and detailed component interface specifications in development tools, such as our
Aspect-jEdit [10]. When implementing web service components in Aspect-jEdit we
capture information about cross-cutting concerns, such as distribution, security,
transaction processing and resource utilisation. We encode this information in an
extended form of WSDL, which we call Aspect-oriented WSDL, or AO-WSDL. This
describes component interface types as well as provided and required services of a
component relating to cross-cutting aspects, capturing both functional and non-
functional characteristics of the web service component relating to the aspects. Within
the extension of Aspect-jEdit that is currently under development, aspects will be

automatically detectable. Our work relies on syntactical and semantical pattern
detection to detect and visualize functional/non-functional, reusable/non-reusable and
inline/outline aspects [17] automatically.

Implemented web service components are then deployed in servers and advertised
for other components to connect to using an extended UDDI registry, that we call
Aspect-oriented UDDI, or AO-UDDI. This extended web service component registry
indexes aspect characterisations associated with our aspect-oriented web service
components and allows clients to make queries for components meeting aspect
constraints as well as type information. After the services are available on the web,
the client can connect to a server and use the services provided. For this, the client
needs first to retrieve information from the UDDI, which is a repository service where
the client can allocate web services. As the UDDI carries now additional aspect
information, which provides the client with further information about functional and
non-functional crosscutting properties of the services. The additional information
might be especially useful for agents that try to allocate similar services but with e.g.
the highest reliability or performance. Automated testing agents may be deployed to
check these advertised properties of an aspect-oriented web service. However, not
every clients can talk to every server and suitable adaptors to the web service may
need to be located e.g. to translate between CORBA and SOAP protocols, to translate
between different SOAP message sets and so on.

SearchIn terface

B ook ingInterface

M akeB ooking()

M iddlew are

Paym ent

TravelItem sM anager

T ransactionC o-ord

+ begin(): void
+ com m it(): void D atabase

P rov ides

R equ ires

D istribution

Persistency

Security

T ransaction

U ser in terface

Figure 4. An example of an AOCE component design.

We can apply this development approach to the design of our travel planner
application. For example, Figure 4 depicts an AOCE UML class diagram for the
travel planer system. Each component is depicted as a traditional UML class. The
different types of patterns in the boxes indicate the different aspects and also whether
the aspects provide or require crosscutting information from another component. A
square box indicates that the aspect requires the crosscutting information while a
diamond shaped one provides it for another component. The figure shows the aspect
crosscutting over the system, with the functional and non-functional properties
attached to each visual component. This is a benefit in order to match components
according to their requirements. This approach differs from traditional AOP in the

sense that the cross-cuttings are not separated out into own modules. However, this
can be performed in a next step, where a second view of the system is created,
indicating components and aspects separately. Therefore Figure 4 is a good view to
match web-services, while a second aspect-component view would be beneficial to
perform changes on the aspects.

locateWebService()

returnWSLocation()

connectToFlightsWebServiceProviderProxy()
findFlightsParticulars()

return()

findSeats() findVacantSeats()

return() return() return()

closeConnectionToWebServices()

locate service
encode/decode data

Provides

Requires

Distribution

Persistency

Security

Transaction

User interface

process views
form/frame

locate object/data

send/receive data

access control
authentication

locate object
object transfer
store/retrieve data

Web Services

commit data
rollback data

locate object
lock data

object transfer
store/retrieve data
service functions

access control
authentication

object transfer
encode/decode data

send/receive data
store/retrieve data
storage media

access control
object/data transfer
locate objects/data
store/retrieve data
storage media

send/receive object

Return with list of all
Flights, complete with
information that match the
request. Show also all seats
that are currently available.

Use AO-WSDL to describe web
services and required AO
components and functions.

Flights Seats TravelPlannerClient AO-UDDI FlightWebServiceProvider

Figure 5. AO-OOD Sequence Diagram for locating seats in our Travel
Planner.

Figure 5 shows an example of an AO-OOD Sequence Diagram for the Travel Planner.
It describes the sequence of events for searching for seats that match given criteria in
the LocateSeats component. The functions involved are clearly described together
with the aspects embedded in the objects. Again, the different types of patterns in the
boxes indicate the various aspects and also whether the aspects provide or require
crosscutting information from another component. The shapes, patterns and colours in
Figure 5 have the same meaning as in Figure 4, this consistency between different
diagrams can enable a quicker understanding of the content and also ease to find
faster the desired aspects or have an overview in more complex diagrams (compared
to a pure textual representation of the aspects). Moreover it helps to cut down the
amount of textual information in diagrams and is therefore more compact. The colour
can indicate the importance of aspects, as for example security is depicted in Figure 4
and Figure 5 in red horizontal lines. A square box indicates that the aspect requires
the crosscutting information while a diamond shaped one provides it for another

component. Besides different patterns, the aspects are also represented by different
colours, for example the aspects for security are depicted as red horizontal lines.
During implementation we sieved out the aspects that were involved so that we can
identify and isolate these cross-cutting modular units in the objects. This enabled us to
make the code more consistent, understandable and at the same time address the issue
of crosscuts “tangling” in designs and code.

Describing Web Services with AO-WSDL

In order to support the better characterisation of web services and use this information
to support easier and more dynamic, automated systems integration we need to extend
WSDL to AO-WSDL. While WSDL characterises the data, operations, events and
reflective information of a web service, AO-WSDL needs to carry additional
information for functional and non-functional aspects. Functional characteristics of
web service components describe what operations/data provide or require what
system facilities, e.g. distribution, persistency or security. Non-functional
characteristics of web services describe constrains on the data/operations provided by
components, e.g. reliability or performance. Additionally, AO-WSDL contains
composition information in order to aggregate web components to form useful cross-
system business transaction processing support. We have used the extension
mechanisms built into WSDL to add additional descriptive support for aspect-oriented
web service components.

AO-WSDL can be automatically generated for our web services developed using
AOCE. For example, from the AO-design diagrams in the previous section, the
relevant aspect information can be deduced and AO-WSDL descriptions for each
software component generated. These would include the aspect-encoded
characteristics of components as described in the WS-AOCE design diagrams. For the
travel items (itinerary) manager, the standard WSDL descriptions of the web service’s
data, messages and ports would be encoded, along with aspect characterizations of the
web service e.g. distribution support provided (via its web service interface and
associated middleware); security and transaction management required (from the web
service middleware and transaction co-ordinator service respectively); and persistency
required (from the database component). As these AO-WSDL specifications for web
service components follow clearly defined formal semantics, they allow for automatic
searches for any given aspects, aspect details and properties of the services advertised.

 An example of an AO-WSDL specification from our travel planning application
is shown in Figure 6, defining an itinerary manager component with various
properties, operations and event support. In this example three aspect
characterisations of the web service are shown on the right hand side. Persistency
(low-level) support it requires from a database component includes typical
“DataManager” support, the web service operations impacted by persistency
requirements are identified e.g. findItinerary, addItinerary, updateItineraryItem etc,
and a performance constraint has been specified (the persistency operations need to
complete in under 100ms). A transaction (medium-level) policy is required, and its
characteristics include the impacted web service operations and transaction

demarcation over these operations. A domain-specific “booking” aspect is also
required, a high-level aspect characterisation.

Locating AO-Web Services

The web services UDDI registry provides a way of indexing categories of web
services and web service providers for remote querying and web service location.
WSDL descriptions can be used both as a partial basis for organising and indexing
web services and for providing communications-level descriptions of located web
services to requesting clients. When locating a web service using UDDI we need to
utilise AO-Web Service component information in several ways.

<component name= “Itinerary Management”>
 <services name=”” /> <!-- no web services implementing this component />
 <components name=”” />
 <property name=”caching”>
 <value type=”boolean” />
 <getter operation=”getCaching” />
 <setter operation=”setCaching” />
 </property>
 …
 <operation name=”findItinerary” style=”rpc”>
 <arg name=”ID” style=”in” type=”LongInt” />
 <arg name=”itinerary” style=”out” type=”itinerary:ItineraryData” />
 </operation>
 <operation name=”updateItinerary” style=”message”>
 <arg name=”ID” style=”in” type=”LongInt” />
 <arg name=”itinerary” style=”in” type=”itinerary:ItineraryData” />
 <exception name=”InvalidUpdate”
 message=”itinerary:InvalidItineraryUpdate” />
 </operation>
 …
 <aspects namespaces=”www.travelplanner.com/aspects/namespaces/itinerary” >
 <aspect name=”ItineraryData”
 detail=”itinerary:ItineraryDataManagement” type=”provided” >
 <impacts operations=”all” />
 </aspect>

 <aspect name=”Persistency”
 detail=”common:DataManager” type=”required” >
 <impacts operations=”findItinerary|addItinerary|…” />
 <property name=”Performance”
 type=”common:OperationSpeed”>
 <common:lessThan units=”ms”>100</lessThan>
 </property>
 </aspect>
 <aspect name=”TransactionSupport”
 detail=”common:TransactionsRequired” type=”required” >
 <impacts operations=”findItinerary|addItinerary|…” />
 <property name=”TransactionScope”
 type=”common: TransactionDemarcation”>
 <common:transactionState>IN_TRANS</transactionState>
 </property>
 </aspect>
 <aspect name=”BookingManager”
 detail=”booking:TravelBookingManager” type=”required” >
 <impacts operations=”addItinerary|updateItinerary|…” />
 <property name=”BookingCommittalApproach”
 type=”booking:BookingCommittal”>
 <booking: BookingCommittal value=”BTP” />
 </property>
 <property name=”Timeout” type=”booking:TimeOut” >
 <booking:TimeOut units=days>
 <max>5</max></booking:TimeOut>
 </property>
 </aspect>
 …

Figure 6. Example of AO-WSDL based component description.

Firstly, the set of appropriate web components that are provided by a service that
we may wish to interact with. Secondly, determine the provided service
characteristics, allowing searches to be specified with additional query conditions
using aspect information. For example, a web service client could specify desired
performance, security, communications technology, transaction processing, and
domain-specific support provided by web components. The aspectual extensions in
the AO-WSDL and AO-UDDI are used to match the services and service
characteristics being looked for by a prospective web service client. These
compatibility checks and searches can be automated more easily in our systems.
Finally, located web components that require other component functionality in order
to operate can cause additional web service queries to be run in order to provide the
original requesting client with a set of components that as a composite will fulfill their
needs.

As an example, consider that when a travel item provider component is located it
may require loosely-coupled BTP-style transaction support, LDAP authentication and
payment authorisation components in order to operate. The travel item provider e.g.

an airline flight booking service will specify not only required remote services
(transaction coordinator, authentication and payment authorizer) but desired and/or
required characteristics of these services via encoded AO-WSDL information. For
example, a BTP-compliant transaction coordinator may be wanted; an authentication
server using a specific security encryption protocol for passwords; and a payment
authorizer that takes less than 15 seconds to complete payment authorization requests.
Some available web services that can be found in a conventional UDDI registry may
meet these characteristics but some may not. In addition, some services may need
“adaptors” in order for the travel item provider to interact with them e.g. transforming
SOAP messages between different protocols that impact characteristics (performance,
security, transactional behaviour, resource utilization and so on).

AO-UDDI registry queries for suitable components, based the specified required
aspects this travel item provider advertises, can be located by subsequent queries.
Located services can have their AO-WSDL descriptions obtained and where
necessary, validation agents and/or suitable adaptors located and used to test the
services and integrate the requesting client with the newly discovered web service
components. All these can also be automated because our aspects are well defined and
follow formal semantics that are consistently used throughout our Web Services
systems, AO-WSDL documents and AO-UDDI.

Summary

We have described how aspect-oriented component engineering can be applied to the
design, characterisation, location and integration of web service-based software
components. Web service-based component architecture designs are annotated to
capture richer descriptions of the web services, particularly their non-functional
characteristics relating to component cross-cutting concerns (aspects). We have
extended the web service description language to allow capturing of this information
in AO-WSDL XML documents. These extended descriptions can be indexed by AO-
UDDI registries and the aspect information used to assist better location, testing and
integration of web service components. The combination of AO-WSDL and AO-
UDDI used in conjunction with web services that were developed using AOCE
techniques supports richer, clearer and more superior web services systems as
compared to those built without this technique. We are currently working on tool
support for AO-web services development in both design tools with an extended
UML modelling approach and in implementation tools using an extended Java
development environment which generates AO-WSDL descriptions of web service
component implementations.

References

1. Grundy, J.C. Multi-perspective specification, design and implementation of software
components using aspects, International Journal of Software Engineering and Knowledge
Engineering, Vol. 10, No. 6, December 2000, pp. 713-734.

2. Grundy, J.C. Mugridge, W.B. Hosking, J.G. and Apperley, M.D. Tool Integration,
Collaboration and User Interaction Issues in Component-based Software Architectures, in
Proc. of TOOLS Pacific ‘98, Melbourne, Australia (24-26 November 1998), IEEE CS
Press.

3. Hansen, J.J. .NET versus J2EE Web Services: A comparison of approaches, Web Services
Architect, January 2002.

4. Kiczales et al, Aspect-oriented Programming, in Proc. of the 1997 European Conf. on
Object-Oriented Programming, Finland (June 1997), Springer-Verlag, LNCS 124.

5. Litoiu, M. Migrating to Web services - latency and scalability. In Proceedings Fourth
International Workshop on Web Site Evolution, IEEE CS Press, 2002, pp.13-20.

6. McKinlay, M., Tari, Z.. DynWES - a dynamic and interoperable protocol for Web
services. In Proceedings of the Third International Symposium on Electronic Commerce,
IEEE CS Press, 2002, pp.74-83.

7. Mezini, M. and Lieberherr, K. Adaptive Plug-and-Play Components for Evolutionary
Software Development, in Proc. of OOPSLA‘98, Vancouver, WA (Oct. 1998), ACM
Press, pp. 97-116.

8. Microsoft Corp, Microsoft .NET™, www.microsoft.com/net/, February 2003.
9. Mowbray, T.J. and Ruh, W.A., Inside Corba, Addison-Wesley, 1997.
10. Panas, T., Karlsson, J. and Högberg, M. Aspect-jEdit for Inline Aspect Support, In

proceedings of the 3rd German Workshop on Aspect Oriented Software Development,
Technical Report of the University of Essen, March 2003.

11. Piccinelli, G., Emmerich, W., Zirpins, C., Schutt, K. Web service interfaces for inter-
organisational business processes an infrastructure for automated reconciliation. In
Proceedings Sixth International Enterprise Distributed Object Computing Conference,
IEEE CS Press, 2002

12. Sessions, R. COM and DCOM: Microsoft's vision for distributed objects, Wiley, 1998.
13. Stearns, M. and Piccinelli, G. Managing interaction concerns in web-service systems, In

Proceedings of the 22nd International Conference on Distributed Computing Systems
Workshops, Vienna, Austria, July 2002, IEEE CS Press.

14. Tilley et al, Adoption challenges in migrating to web services, In Proceedings of the
Fourth International Workshop on Web Site Evolution. IEEE CS Press, 2002, pp.21-29.

15. Wiedemann, M. Web Services and collaborative commerce. Information Management &
Consulting, vol.17, no.3, Aug. 2002, pp.57-60.

16. Zhang, L.J. Li, H., Chang, H., Chao, T. XML-based advanced UDDI search mechanism
for B2B integration, In Proceedings of the Fourth IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems, IEEE CS Press,
2002, pp.9-16.

17. Panas, T. and Andersson, A. and Assmann, U. The Editing Aspect of Aspects. In I.
Hussain, editor, Software Engineering and Applications (SEA 2002), Cambridge, USA,
November 2002, ACTA Press.

