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Abstract 
 
A wide range of software tools provide software engineers with different views (static and dynamic) of software systems. 
Much recent work has focused on software information model exchange. However, most software tools lack support for 
exchange of information about visualisation notations (both definitions of notations and instances of them). Some basic 
converters have been developed to support the exchange of notation information between software tools but almost all are 
custom-built to support specific notations and difficult to maintain. We describe the development of several notation 
exchange converters for tools supporting software architecture notations. This has lead to the development of a unified 
converter generator framework for notation exchange. 
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1. Introduction 
A vast (and still increasing) number of software visualisation notations exist. These include static visualisation 

notations at varying levels of abstraction e.g. class diagrams, component diagrams and deployment diagrams [4, 26]; 
dependency graphs [27, 30], software architecture structure [9, 15, 30], and for dynamic visualisation e.g. call-graphs and 
control flow [1, 20, 27], message sequencing [30, 24, 31, 4]; dynamic architectures [14, 24]; and various run-time 
software characteristics like performance and resource utilisation [14, 27]. Many tools have been developed to support 
variants of these visualisation notations, for example UML-based CASE tools [26, 30], software architecture design and 
analysis tools [9, 24, 15], graph visualisation tools [11, 18, 20], program analysis and visualisation tools [3, 24, 27] and 
visual language tools [13, 31]. 

 Often developers would like to exchange notation information between the tools from time to time e.g. exchange a 
UML diagram from a CASE tool to MS Visio™ for further enhancement; exchange diagram notation descriptions 
between CASE tools so the tools allow viewing and possibly editing of the same format notation; and exchange notation 
instance information with other tools to support viewing the information in a different platform e.g. web interface, or 3D 
virtual reality interface to the visualisations. In addition to exchanging notation information in custom tool formats we 
may wish to convert between low-level display formats e.g. a CASE tool diagram into SVG, VRML or GXL exchange 
formats [5, 18, 19]. Currently to support these kinds of software visualisation notation exchange a custom converter or 
translator must be developed [17, 16, 19]. These take considerable effort to build, test and deploy and are difficult to 
modify if the notation itself or the tool notation information formats change. They also typically lose parts of the 
information in one tool when translating to another tool’s notation information model.  

We describe our work building several translators for different software visualisation notation formats. The original 
notations are those defined and used by our Pounamu meta-tool to describe various visualisation notation shapes, their 
properties and their relations. We have hand-built several notation converters supporting the translation of static and 
dynamic software architecture notation information between Pounamu and an earlier software architecture modelling tool 
(SoftArch), and to graph-based formats (GXL) and graphic-based formats (SVG, VRML), used by other rendering and 
editing tools. From insights during this work, we describe our new approach to generating notation converters from inter-
visual notation mapping specifications. 

2. Motivation 
We have been developing Pounamu, a new meta-tool to support the specification of multi-user, multi-view visual 

language-oriented software engineering tools. Pounamu allows software engineers to define new meta-models and meta-
views for software tools and to realise tools based on these specifications. Pounamu was designed to provide thick client 
CASE tools to support the developer in different parts of software development. Pounamu views consist of a wide range 
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of graphical shapes and connectors representing information about a software system, as well as dialogue-based views. 
Pounamu currently uses its own proprietary XML-based representation format for its software notations.  

Pounamu’s design tools include shape and connector designer, meta-model designer, modelling view designer and 
event handler designer. Figure 1 (a) shows an example of specifying a UML class icon shape in the Pounamu shape 
design tool. This shape is composed of a box, set of labels (class name, stereotype etc), list of attributes and list of 
methods. The Pounamu tool designer specifies a graphical notation for a new tool based on shapes and shape connectors. 
Shapes can be of arbitrary complexity and may be composed of other sub-shapes. Figure 1 (b) shows an example 
diagramming tool generated by Pounamu, a Unified Modelling Language (UML) CASE tool, being used. A thick-client 
interface is provided for all Pounamu tools, which includes an element tree (1), pop-up and pull-down (2) menus, drawing 
canvas (3), shape property editor, status window (4), and directly-manipulatable shapes (5) and shape elements. 

 

 

(1)

(2)

(3)

(4) 

(5) 

 
Figure 1. (a) Example of Pounamu shape design view and (b) example of UML tool modeller view. 

As identified in the introduction, a large number of software tools have been developed to support visual software 
modelling and analysis, each using a particular set of visual notational symbols. We wanted to support import and export 
of software visualisations (both static and dynamic) between Pounamu-based environments and other software 
engineering tools, e.g. CASE tools, architecture design tools, software visualisation tools and other visual language 
environments. More generally, we want to more easily support the import and export of visual software notations between 
a wide range of 3rd party software tools e.g. CASE tools. We also want to allow users of Pounamu, and possibly users of 
other visual language-based software engineering tools, to interact with views using different viewing and editing 
technologies, including web-based thin client and 3D virtual reality. For complex dynamic software visualisations in 
particular, we want to make use of 3rd party viewing tools like 3D viewers and information visualisation tools. To achieve 
this, Pounamu has to be able to support the import and export of a wide range of external visual notation formats. This can 
include formats of applications dealing with graphs, view layouts, software information (e.g., UML-based models), data 
visualization tool formats or even translating events within a CASE tool into rule sets using Programming by Example 
techniques.  

As an example of the kinds of software visualisation notation exchange we require, consider the four software 
architecture visualisations shown in Figure 2. A Pounamu tool (1) has been defined to support the modelling of complex 
software architectures, using a domain-specific visual language comprising of shapes representing clients, servers, 
processes, databases and so on. We want to be able to exchange this visual model with other tools providing software 
architecture modelling and analysis. For example, we want to exchange this model view with our SoftArch [13, 15] 
software architecture modelling and analysis tool, a view from which is shown in (2). This would allow us to model an 
architecture in our Pounamu tool and then export it to SoftArch for further refinement and analysis. Pounamu and 
SoftArch can both visualise software architecture diagrams but use a set of different visual notational symbols and 
different representational formats for this information. Similarly, we may wish to import a SoftArch view into Pounamu, 
or export a Pounamu or SoftArch view to e.g. the Argo/UML CASE tool, a view from which is shown in (3). Again, a 
different visual notation and representational format is used by all tools, requiring complex conversion between them. As 
a final example, we may wish to export one of these software architecture views to a VRML viewer, as shown in (4). This 
might enable us to both show extra information (e.g. architecture performance metrics) using the third visual dimension, 
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and/or enable the architect to more easily and flexibly navigate a complex model using the VRML viewer’s 3D visual 
interaction support. 

 

(2) 

(4)

(3) 

(1) 

 
Figure 2: Some examples of software architecture visualization notation exchange between software tools. 

3. Related Work 
A range of software tool integration approaches have been developed over many years [12, 33]. Most integration 

approaches tend to focus on supporting data integration [32], control integration [28, 29], user interface integration [29], 
and/or process integration [1]. Data-oriented tool integration approaches have typically used CASE tool data exchange 
[32], common exchange formats like XMI and GXL [21, 30], and shared databases [12]. The main disadvantages of these 
approaches are their lack of dynamic integration support and limitation to data-oriented exchanges. User interface 
integration techniques provide a common user interface metaphor e.g. GUI wrappers [28], a common interface library, or 
WWW [22], but often lack back-end integration support for the tools. Control integration approaches typically use APIs 
and object-based integration approaches, such as CORBA and related distributed object technologies [10], software 
components [36], and web services, particularly for workflow system integration [23]. These approaches provide powerful 
integration support, but often lack adequate user interface and process integration support across the integrated tool sets 
[25, 29]. Process integration approaches typically require data and/or control integration strategies if integrated tools are 
intended to exchange model or view information [25, 33]. 

To exchange software information with other tools is still a major software engineering challenge, with much effort 
and time spent in developing solutions to build data exchange converters between different tools [12, 21, 30]. To achieve 
data-oriented tool integration as shown in the previous section, developers have typically ended up using tool APIs, shared 
databases or data exchange formats. Remote APIs for accessing the functionality of tools can ensure more consistent 
information and close integration of tools [28, 36]. However this requires detailed knowledge of the different functional 
parts of the API and their interaction. Functions of an API have to be used in a specific order and requires target tools to 
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be running as a server application. APIs tend to be more likely to be changed than the underlying information in tools and 
only a few are well-established standards (for example ODBC or J2EE) which make it easier to exchange tools. API based 
integration is used to build very flexible and complex Integrated Development Environments (IDEs) with plug-in 
facilities, for example Eclipse [8] or ArgoUML [30], where plug-ins implement a specific API interface which can be 
accessed and the results visualized by the IDE.  

Shared databases are an intermediate step where a tool uses a database via well-known database APIs to access 
information generated by another tool [10, 12]. This approach has the advantage that the database APIs used are much 
more stable and well-known than proprietary tool APIs. However, using such a data-oriented approach can limit the 
degree of tool integration achievable compared to an API-based control integration approach. In addition, while database 
APIs are much more general than proprietary tool APIs they still typically require explicit coding to use. 

If a tool-specific API or shared information database API is not accessible, data exchange formats are commonly used 
to exchange information between tools [12, 18, 21]. Data exchange formats allow access to tool information stored in an 
persistent format. XML has become a popular exchange format for many tool applications, but tools require specific XML 
schemas to represent information in meaningful ways. Knowledge of the particular XML schema being used is essential 
and many tools use their own XML schema, such as our Pounamu tool, to represent information. Much work has been 
done developing standard exchange formats for model data in software tools, such as the XML-based schema XMI [30], 
but rather less on visual notation-level information exchange. SVG and VRML have XML-based schema for describing 
rendering of visual forms, but these are very low-level and not suitable for visual notation exchange. Some tools support 
the exchange of visual notation information using their own proprietary formats, for example the graph description 
language (GDL) [1] or WilmaScope [7]. These approaches still require tool integrators to build complex data converters to 
exchange information with other tools. Some graph-based information exchange approaches, such as GraphML [11] and 
GXL, are useful for notation-level exchange between tools. However, building converters between different visual 
notations using these approaches still typically requires explicit coding of complex transformation algorithms. 

4. Our Approach 
We have approached this research in two phases: in the first we have hand-built several notation converter tools to 

enable exchange of software architecture information between software tools. Based on our experiences, we are currently 
developing a prototype of a converter generator which permits specification and generation of such converters. Figure 3 
provides a high level overview of the types of notation converters we have hand developed. These convert between the 
XML-based format of Pounamu and other tools’ formats. Pounamu can import and export information at two levels: view-
based (1), exchanging information about notations and notation instances, or model-based (2), exchanging software model 
information (schema or instance data). The second approach is suitable if each tool defines its own visualisation notation 
conventions and fully-generates its own views from the model information. The disadvantage is that there is no way to 
exchange information about appearance, layout and composition of visualisations.  
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Figure 3: High-level architecture of our approach. 

We use notation converters to translate Pounamu view XML save formats and (3) generic visualisation notations like 
GXL and GraphML, (4) tool-specific formats e.g. SoftArch’s view representation or (5) low-level rendering formats e.g. 
SVG and VRML. Currently tool developers develop custom converters using ad-hoc architectures and implementations. 
Ideally we want to generate converters from specifications of mappings between notations. To achieve visual notation 
conversion, a source notational representational structure must be loaded, its elements traversed and converted into target 
visual notational elements, and this target representational structure formatted and given to a receiving software tool. 
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From our experiences with this work we have identified some key requirements for the notation converter generator 
framework that we want to develop. Our main requirements for such a framework include: 

• A notation description language that can describe each token/element/node of a notation. We would like a 
language that allows us to classify different parts of a visual notation e.g. tokens vs. simple elements vs. 
complex elements vs. repeating elements and so on, to aid its transformation.  

• Visual notation definitions in this language are used to generate a graph-based object representational 
structure for each notation which will be used to hold instances of the notation for transformation. Each 
element in our graph-based object structure can manipulate, add or remove other elements in the graph-based 
structure, allowing complex manipulation of notational elements during transformation. 

• A flexible inter-notation mapping specification language which can be modified without changing internals of 
the converter or its elements. This language specifies transformations from source visual notational elements 
to target elements. Such transformation specifications range from simple (e.g. 1 to 1 token conversions), or 
very complex e.g. large structural rearrangement from the source notation representational form to the target 
notation representational form. 

• The graph-based object structure must provide expressive search facilities to make every element accessible 
in various ways, supporting complex queries over each notational structure. Our experiences with complex 
visual notational conversion indicate that such conversions can become very complex with major re-
organisational of structural parts of the source notation representation, as well as token-level transformations. 

• Where appropriate, notational element descriptions can include user interaction and access a complete 
programming language for further extensions. This allows the converter framework to support arbitrarily 
complex conversion, but where most notational conversions can be specified and handled by the inter-
notational mapping language.  

• Verifying the formal correctness of notations using a notation schema description language. This allows 
converter developers to express constraints in both mapping specifications and visual notation specification 
languages that can be formally checked to indicate incomplete and invalid transformation specifications. 

• A converter generator framework which takes the source and target visual notation specifications and the 
mappings between them expressed in the inter-notational mapping language and generates an appropriate 
notation converter. 

• Bi-directional notational conversion support. An infrastructure is needed to support converting between 
source notation A to target notation B and then back to notation A with a minimal loss of information. As 
many notational transformations are “lossy” e.g. target notation B doesn’t express all data in source A, 
support is needed for capturing “lost” information when converting from A to B and adding it back when 
doing the reverse B to A conversion. 

5. Example Notation Converters 
In this section we describe some of our experiences developing hand-coded software visualization notation converters. 

In these examples we use simple static and dynamic software architecture visualization notations to illustrate the kinds of 
notation exchanges that we want to support between software visualization tools. As a common example to illustrate these 
we use a software architecture description for a video store library providing different search interfaces for customers and 
staff shown in Figure 1. This architecture can be viewed statically and dynamically in various ways [13, 15].  

5.1 Pounamu Notation to/from GXL Converter 

GXL (Graph eXchange Language) is a simple XML-based graph exchange format based on relationships between 
nodes and edges [18]. Originally it was used for reverse engineering, where it is supported by a variety of graph-based 
software tools, including converters, visualization tools, graph analysis and transformation tools, and source code 
extractors [5, 19, 21, 37].  

We have built import and export converters for moving views to/from Pounamu and GXL. Any Pounamu-designed 
view format can be converted to GXL or imported from GXL into Pounamu’s XML-based view format description using 
these converters. These converters are implemented using the XSLT transformation scripting language, which converts 
the Pounamu view XML format to and from the GXL format. We chose XSLT to implement these GXL converters as 
both notations use XML-based formats for visualisation notation information description and for the ease with which we 
could change these XSLT scripts during converter development and future extension. 
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Figure 4 shows a view of the video system architecture designed with the SoftArch tool (1); this view’s corresponding 
Pounamu view XML format (2); and the result GXL file using the developed converter (3). This architecture visualisation 
is a simple static structure view and one that we may wish to view in a variety of different software and interface tools e.g. 
SoftArch, Pounamu, Argo/UML, an SVG or VRML web browser plug-in. The GXL and Pounamu XML formats are quite 
similar in structure and purpose so implementing these converters was relatively straightforward. However, when 
importing GXL-described views into Pounamu views a set of graph layout defaults must be added to the newly generated 
Pounamu view model as these do not exist in many GXL descriptions.  

This layout generation was implemented with a Java algorithm using the DOM interface provided by Java’s XML 
parser to enable standardized access to the structure of the imported Pounamu XML-format view documents. Java was 
used so that complex computation could be used and because some information in Pounamu has no direct relation to GXL 
but may used by some tools (e.g. shape design, position or size). To support these tools we divided the document into 
different parts (GXL and properties) and added references in the GXL document to the corresponding property file. The 
limitations of XSLT with respect to file access required also the use of a programming language. When exporting 
Pounamu XML format views to GXL we leave the Pounamu layout information in the GXL format. As this isn’t used by 
some 3rd party GXL-based tools it may be ignored and lost if the data is re-imported into Pounamu or other tools.  

Our GXL import/export converters for Pounamu enable any Pounamu-defined visual notation views to be converted to 
and from GXL representations. Thus any GXL-compliant software or graph-manipulation tool can consume and/or 
produce information that can be viewed and edited within our Pounamu meta-tool environment. New visualisation 
notations designed in Pounamu and view instances of these notations can be exchanged with these tools via the GXL-
based common exchange format. 

(2) (3)

(1) 

 
Figure 4: An example of converting a Pounamu XML format architecture visualization into GXL. 

5.2 GXL to SVG Converter 

SVG (Scalable Vector Graphics) is a recommendation of the W3C group [38]. The main goal of the SVG format is to 
describe two-dimensional graphics in XML. Our interest in SVG was as a vehicle to provide developers a thin client 
interface with limited interaction. Currently Pounamu provides a thick-client interface for editing views of software 
information e.g. the software architecture diagrams shown previously are all viewed and edited via a desktop 
environment. The availability of SVG as a plug-in for every common browser makes it a very portable front-end for 
viewing and/or editing graph-based information visualisation notations, including those for software tools. A developer 
could for example use an SVG plug-in in a browser to view models designed with Pounamu without having the Pounamu 
system being locally installed.  

A very limited converter from GXL to SVG already exists and we initially attempted to adapt this to allow Pounamu 
views to be converted to SVG, using GXL as an intermediate format, for viewing in browsers [19]. However a major 
drawback of this converter proved to be a lack of support for hierarchies (graphs inside graphs) and this is an important 
issue for a breakdown of a complex systems. Our example software architecture visualisation notations all use limited 
forms of this [15]. In addition, the implemented layout algorithm in this 3rd party GXL to SVG converter is only able to 
arrange all nodes in a circle, which is extremely unsatisfactory for many applications such as our software architecture 



Stoeckle, H., Grundy, J.C. and Hosking, J.G. A Framework for Visual Notation Exchange, Journal of Visual Languages and Computing, Volume 16, 
Issue 3 , June 2005, Elsevier, pp.187-212. 

 

visualisation notations. Converting model information to SVG with this converter also loses some information e.g. 
directions of the edges and links between nodes.  

(1) (2)

G X L 
Interm ediate 
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X SLT  T ranslator 

X SLT Translator 
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view  X M L 

SV G 
X M L 

 
Figure 5: Example of an SVG software architecture view in a web browser (2) converted from a Pounamu view (1) 

via an intermediate GXL format. 
To overcome these problems we have developed a new GXL to SVG converter that enables hierarchical graph-based 

notations to be converted, uses a more flexible layout algorithm, and preserves more of the GXL-described notation 
characteristics in the SVG format. Figure 5 shows a video system architecture (1) converted to SVG (2) and viewing this 
SVG-format software architecture diagram in a web browser with an SVG plug-in. This was a Pounamu view initially 
converted into GXL by our Pounamu GXL converter. For Pounamu based models we could simply use the layout 
information provided in the property files generated from our Pounamu to GXL converter. For conversions from pure 
GXL based models a number of complexities arose, therefore we used a modified version of the GXL to Pounamu 
converter (which provided the layout information) and did calculations to arrange the shapes appropriately. For converting 
the GXL data format into SVG data format we didn’t used XSLT because the process required more complex operations 
than are provided by XSLT. 
We also had to convert the GXL data format into SVG format, rearranging the structure of the XML data significantly in 
places. The generated SVG-format software visualisations can then be viewed in a web browser using a suitable SVG 
plug-in. Our converter from GXL to SVG can be accessed via a URL and runs as a servlet to enable distributed users to 
access the architecture diagrams from their browsers. We have only implemented a converter from GXL to SVG, since the 
plug-ins are view only and Pounamu users interact with the SVG-format visualisations via browser-based scripting. We 
have not investigated converting SVG into GXL or Pounamu’s own view XML format. 

5.3 GXL to VRML Converter 

X3D is a XML-based standard notation for defining interactive web- and broadcast-based 3D content integrated with 
multimedia [34]. X3D is the successor of VRML [35], the original ISO standard for web-based 3D graphics and extends it 
with new features, additional data encoding formats, stricter conformance, and a component based architecture allowing a 
more modular approach. X3D is intended for use on a variety of hardware devices and in a broad range of application 
areas such as engineering, multimedia presentations, and shared virtual worlds.  

Our aim in building a converter from the GXL format to the X3D format was to provide developers with a 3D-based 
static and dynamic view of software system information. This is in contrast to developing 3D views in Pounamu, which 
would be an enormous effort. In our software architecture examples, we may wish to view large, complex static 
architecture dependencies and other structural relationships using VRML-style 3D virtual environments. We may also 
want to view complex dynamic information about a software architecture, such as architecture performance 
measurements, using a 3D approach (e.g. the number of calls can be expressed in the size of shapes; requests across a 
network link can be expressed by thickness or colour of links between client and server nodes and so on) or other dynamic 
aspects as animation. A key advantage of such visualisations using 3D virtual reality environments is that navigation of 
the complex models is more intuitive, via direct manipulation of the environment, zoom in and zoom out and three-axis 
rotations.  

Figure 6 shows a simple visualization of our video system architecture example in a VRML web browser plug-in. This 
uses colour to show the frequency of function calls related to various architecture components of the video system. The 
designer can rotate the models in 3 dimensions; can zoom in and out, click on nodes/links to request detailed information 
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about the performance measures and the architecture components to be shown. In previous work, we tried to show such 
information using 2 dimensional views in SoftArch, and user feedback indicated difficulty in navigating and interpreting 
the information [14]. 

 
Figure 6: Example of a software architecture diagram converted to VRML from GXL. 

We implemented the GXL to VRML conversion by building a Java converter that translates GXL nodes and links into 
VRML 3D scene description elements. This converter also performs simple layout to ensure that the resulting scene 
elements are separated using basic heuristics If available, it uses the Pounamu layout information added to the GXL by 
our Pounamu-to-GXL converter. For simple architecture visualisations based on the GXL representation the same layout 
algorithms as for two dimensions can be used. For very complex visualisations, use of the extra dimension in VRML 
needs to be made to minimise the visual complexity of the view. We have only made very basic use of this third 
dimension in our converter to date. Another feature of VRML and X3D we could make further use of is control of 
viewing and navigation via proximity sensors and scene interaction event-handling.  

6. A Unified Notation Mapping Language 
Motivated by the similarities in many converters and the effort involved in developing them, we have been developing 

a general approach for modelling the conversion between different notations. Our approach is being realised as a Java-
based converter-generator framework that will enable developers to describe inter-notation mappings and have suitable 
visualisation notation converters generated for them. The architecture consists of two tools. A Unified Notation Mapping 
(UNM) specification language provides a notation format specification facility along with a notation mapping 
specification syntax, allowing developers to describe a mapping from one visual notation to another. To support the user 
through this process we provide a UNM development tool. An Automatic LAnguage MApper TOol (ALAMATO) is used 
to translate UNM inter-notation mapping specifications into specific notation-to-notation converter implementations. 

Figure 7 shows the basic structure of the UNM. It supports the description of a visualisation notation (1), in terms of 
fundamental notation elements and their inter-relationships. UNM supports text-based file formats (we assume each visual 
notation has a textual “save” format) and generates, with the interactive help of the developer, a dictionary (2) which 
specifies the syntactic structure of the notation. This dictionary is used by ALAMATO to generate a converter between 
two different visual notations. The dictionary structure can be annotated by editors (3) to specify additional behaviours, 
with the resulting structures represented as Java code (4). UNM is also used to create a mapping table (5), to provide 
ALAMATO with the required mapping information for each notation. 

Storing the mapping information separate from the dictionary has the advantage of more flexibility of mapping. 
Different users may want different mappings for specific languages, e.g. one user wants to have a GXL node to SVG 
mapped as a rectangle and another user prefers another shape. The user has only to change the mapping table, not the 
more complex dictionary which contains the implementation (action) part of the notation and how each element in the 
notation is represented. External editors can be used to extend the existing functionality, for example doing boundary 
checking, setting special dynamic behaviours (in the simplest form adding date or time to an output notation), or more 
complex functions such as layout generation. External editors can also be used for including notations not viewable 
directly in UNM, such as graphic formats (GIF, JPEG) or text document formats (PDF, MS Word documents). For this, 
UNM generates a skeleton and the functionality can be implemented using an editor tool. Each notation has to have a 
connector which is used to transform the notations information into the graph-based structure which is used by the 
framework. Output facilities are not necessarily required, for example when the UNM framework is only used to visualize 
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information. For XML-based notations no such converter has to be developed because XML itself provides enough 
information to process this step automatically. 

(1) (4)

(5)

(2)

(3)

Mapping
table

Java
compiler

UNM

New notation
External
editorsDictionary

 
Figure 7: UNM and its components. 

Figure 8 shows a sample dictionary containing several notations. The user designs this hierarchy in UNM and UNM 
automatically assigns the corresponding tags used for this node. These tags can be used to both find the node in input files 
and also later to create the output file.  

The dictionary consists of two types of nodes, structure nodes and content nodes. Structure nodes provide dictionary 
structure and category branches. Examples are in Figure 8 the nodes PureGraphFormats and GraphicalFormats which 
categorize different notation types. Content nodes represent the corresponding Java classes and have patterns, which 
corresponds to the representation in the notation. External editors can be used to annotate each node. A node can also 
contain a list of nodes, for example to support structures similar to a number of rectangles embedded in a canvas. To 
validate the correct use of nodes (normally before storing the output format), UNM can be requested to check for 
correctness which is described in XML Schema [40] for each notation. XML Schema is normally used for XML-based 
structures, but we use it to describe the nodes in the UNM structures. Figure 9 shows how to specify mappings between 
notations. To illustrate the mapping we use the video system architecture, (1) shows the Pounamu view and (2) how it is 
represented in GXL. Developers can use existing data in one notation and model the mapping based on this. Because of 
UNM’s extensibility (no hard-coded mapping rules) users can start with a small set of mapping rules and refine them 
when necessary. Arrows describe which elements a mapping should be applied between and also the direction, e.g. in the 
example the shape element in Pounamu is mapped to the node element in GXL and vice versa (3). UNM generates for 
both elements an entry point, i.e. the shape element will have a convert method with the node element in GXL as 
parameter. For complex mappings, i.e. different order or number of parameters the developer has to implement the 
corresponding rules. 

 

PureGraph 
Formats 

General 

Graphical
Formats 

GraphXM L 
<GraphXM L>…  
</GraphXM L> 

SVG 
<svg>… </svg> 

VRM L G X L 
<gxl>… </gxl> 

Graph 
<graph>… </graph> 

Edge 
<edge>… </edge> 

Edge 
<edge>… </edge> 

Node 
<node>… </node> 

G raph 
<graph>… </graph>

Source Target NameToFromId Id 

Node 
<node>… </node> 

 
Figure 8: Part of a UNM dictionary. 
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The UNM tool also provides a tree-based view of the dictionary and the mappings, which can be used to categorize 
elements. An example is shown in Figure 10 representing a small part of a mapping table for GraphXML, GXL, SVG and 
VRML, being specified in our prototype UNM tool. Mappings can be designed using UNM or by editing the generated 
mapping table code which is described in GXL. This table gives ALAMATO information about how the nodes are to be 
mapped between notations. Virtual nodes can be used, which provide no output but categorize the mappings, for example 
the node Shape (1). Another type of node enables links between branches and guarantees only a single child node in 
another branch. For example, it is not possible to assign a child node other than a Rectangle to the link node NodeShape 
based in the Shape branch (2), explicitly specifying that Nodes from GXL or GraphXML have to be mapped to SVG or 
VRML as rectangles. All nodes are eventually derived from a GeneralNode (via MultipleValueNode for Edge (3)) which 
provides basic functionality required by every node such as analysing the textual form of the nodes, set and get values etc. 

 
 

(3)

(1)
(2) 

 
Figure 9. Example of Pounamu XML to GXL UNM specification. 
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(2)

(1)

(3)

(4)

(5)

 
Figure 10: Example of a mapping table in the UNM specification tool. 

In the constructor of each node the textual representation is specified (4) which is used by GeneralNode to construct 
the node’s textual form and identify the parameters of a node. Figure 10 also shows how to specify more information 
about each node (5). UNM has similar navigation facilities to an XML DOM to retrieve documents for specific type of 
nodes.  

7. ALAMATO Notation Converter Generator 
The architecture of our ALAMATO (Automatic LAnguage MApper TOol) is shown in Figure 11. This tool generates 

a custom inter-notation mapping converter to translate one visualisation notation format into another. It bundles the 
requested notations from the dictionary (with schema description) and their mapping tables to build a converter package. 
ALAMATO also removes all non required mapping rules from the requested notation nodes before generate the converter 
package, i.e. when a converter from GXL to/from SVG is needed, it removes for example the converting rules for VRML 
in both notations before deploying it.  

Mapping 
table 

ALAMATO

Converter
Dictionary 

Input Notation 
Format 

Output Notation 
Format 

 
Figure 11: ALAMATO converter generator approach. 

The deployed converter uses the UNM-specified mapping scheme to generate the structure and node conversion from 
the input notation to the output notation. During the process of generating the graph structure each node in the dictionary 
has a life-cycle. The framework provides every node with the capability of reacting to events when the node is created, 
when the node has to convert from the input notation and when the node is destroyed/removed. ALAMATO can be 
customized to trigger the conversion event for each node to be iterative (which results in a parser-like behaviour); after the 
graph-based structure is completely created or both. ALAMATO iterates over all nodes and requests their conversion 
status until all nodes report their conversion process complete. After the complete conversion, ALAMATO validates the 
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output structure before storing it. The output visualisation notation information is then formatted into the output format for 
consumption by another tool. 

ALAMATO can be used to prevent loss of information when converting from tool A to tool B for modification and 
then back to tool A. Figure 12 illustrates how this can be achieved. Information described in the notation of tool A is 
converted into the notations of tool B using ALAMATO. Some information could not be converted and is lost (1). This is 
a typical scenario which for example occurs in Section 5.1 when converting from Pounamu, which provides layout 
information, to GXL, which doesn’t. When converting back from GXL to the Pounamu after editing operations, 
ALAMATO can use the original version of information (2) to generate an output graph in Pounamu which reinserts the 
information which was not converted into GXL. Also it generates from Pounamu a graph in GXL, which is used for 
comparison to identify the differences made. In Figure 12 the differences are 3 new nodes. Only for these nodes is the 
conversion process (3) invoked.  

(2)

Converter

(1)

Editing

(3)

Converter

Pounamu Pounamu

GXL GXL

 
Figure 12: ALAMATO using the template mechanism. 
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8. Discussion 
We provide an assessment of current visual notation conversion approaches that are used in software tools and 

diagramming tools at present. We then assess our UNM’s ability to represent visual notation information models and to 
express mapping transformation specifications between these models. We compare and contrast our ALAMATO 
converter generation architecture to existing approaches to realising notation converters and conclude with a summary of 
our current and future research plans. 

8.1 Current Visual Notation Conversion Approaches 

The issue of integrating software notation-supporting tools has existed for a very long time, with a wide variety of 
approaches used to address the problem. Table 1 summaries many of the common approaches to addressing this problem. 
Some approaches focus on user interface or presentation integration, such as shared GUI frameworks or WWW browser 
[22, 28, 29], OLE-style Embedded Objects, or shared desktops (e.g. VNC) and application sharing (e.g. MS 
NetMeeting™). None of these approaches address the issue of notation translation but instead force users to utilise only 
the capabilities of the shared editing tool and its own presentation of notation elements. Control integration approaches 
[28, 36, 7] utilise APIs, plug-ins and event exchange to integrate tools. These enable a form of indirect notation 
transformation by changing model and view information state in other tools programmatically. However these typically 
require low-level programmatic solutions that are very time-consuming to build, maintain and extend.  

 
Approach Examples Summary of Advantages and Disadvantages 

User Interface 
Integration/Sharing 

OLE, VNC, MS 
NetMeeting™, 
CHIME 

+Can access notation views inside other tool windows or on other users’ desktop 
+Notation “exchange” is not required 
-Limited to using only facilities in other notation supporting tool 
-Often not supported by many existing tools 

Control Integration Eclipse plug-ins, 
FIELD tools 

+Powerful and flexible approach 
+Supports indirect notation transformation between tools 
-Requires low-level programmatic solutions via API calls etc 
-Limited by suitability of other tool APIs – some do not adequately support 
notation-level transformation at all 

Database sharing Federated databases +Common information repository removes need to transform data between tools 
-Tools must be built to share same data formats and database APIs 
-Notation-level sharing or translation of information often not supported 

Model-based data 
exchange 

XMI, GraphML +Decouples tools fully, unlike user interface, control and shared databases 
-Don’t support notation-level information transformation explicitly, often loosing 
much e.g. position, size, colour etc information 
-Both tools must agree on and support same data representation in exchange format 

Domain-specific 
notation converters 

GXL, GXL2SVG +Domain-specific notation exchange formats and translator tools 
+Ready-to-use conversion facilities as a black-box 
-Fixed facilities as provided by converter implementer 
-Have to program in low-level, general-purpose language to build new converters 
-Complex to understand and evolve 

General-purpose 
Translator Generators 

XSLT +easier to built converters than with standard programming languages 
- not visual notation-domain specific, meaning more effort to develop translators 

Notation converter 
Generators 

UNM and 
ALAMATO 

+high-level domain-specific framework and IDE for specifying and generating 
notation translators 
-Need escape to low-level programming language for very complex conversions 

Table 1. Summary of common notation integration approaches. 
Over many years of research into software visualization and the development of a wide variety of software 

visualization-supporting tools we have identified the need to support inter-notation translation i.e. the exchange of view 
(or visualization)-level information between tools, not just model-based information exchange. Examples of such visual 
notation conversion includes exporting a visual model from one modelling tool, like Pounamu, to another, like SoftArch 
or Argo/UML, where we want to preserve the basic layout and look-and-feel of the visual model. Other examples include 
converting a Pounamu, SoftArch or Argo/UML diagram into GXL (for import by tools supporting this exchange format), 
SVG (for rendering in a SVG-enabled web browser), or VRML (for rendering in a 3D virtual environment web browser 
plug-in). 
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This is a harder task in many respects to the much more common model-based tool integration [17, 30] which focuses 
on translating between descriptions of software information formats. Translating between notations requires the mapping 
of descriptions of complex views, which make use of a very wide variety of boxes, lines, colour, positioning and size 
parameters, text characteristics, annotations and possibly 3D structures. Most current visual software design tools only 
support model-based information exchange. This requires the generation of visual views from these exchanged models, 
losing most of the diagrammatic information in the process e.g. layout, icon size, and additional annotation like colour, 
font etc. In addition, in most cases if the tools do not both support the exact same visual modelling notation, they very 
often cannot exchange information at even a model-based level. 

A variety of graph-based converters have been developed [5, 19, 21, 37]. Unfortunately we found that many of these 
conversion tools only partially implement visual notation mappings. Many of these converters are very “lossy” and 
remove source notation information that can not be represented in the target notation format e.g. layout when translating 
into GXL. We also found that modifying them was usually very difficult due to their complexity and the large amount of 
low-level programming required. In addition, in some instances a tool developer will need to provide default information 
between notations e.g. layout, icon appearance that isn’t in the source notation information. Often existing converters 
don’t support this or use inappropriate defaults. Some kinds of visual notation conversion e.g. Pounamu views to 
Argo/UML views, require complex representational information translation as the save format of each tool is very 
different, even if the visual notation is quite similar. Other conversions e.g. GXL to VRML, require both complex 
translation of visual notation information structures and synthesis of target format information e.g. the third dimension in 
VRML visualisations which doesn’t exist in two-dimensional GXL data files produced by most tools. 

8.2 Unified Notation Mapping 

Some of the complexities that need to be handled in inter-tool visual notation conversions include supporting 
translation between quite different notation description structures (e.g. between GXL and SVG), the defaulting of values 
particularly relating to layout (2D or 3D) of visualizations (e.g. Pounamu to VRML), and the translation of simple 
editing/hyper-linking support into scripting languages or other semantic editing/viewing control (e.g. GXL to SVG and 
VRML). Our Universal Notation Mapping language captures these notation mapping complexities so that software tool 
developers can specify inter-notation mappings at high levels of abstraction. UNM provides a technique for specifying the 
source and target notation information structures, by classifying notational elements into a dictionary framework. 
Elements and associations between elements in a visual notation thus classified then allow us to represent instances of a 
notation i.e. a diagram information model, with a set of objects from our framework of UNM classes.  

Our approach contrasts to pure XML-based approaches using Document Object Model which only support 
hierarchical nodes of the same type i.e. are not visual notation representational-specific. Our approach allows notation 
mapping specifications to leverage the classification of visual notation information structure elements for specifying 
structure and element mappings more easily and to provide a more efficient in-memory representational form. Our UNM 
dictionary is more flexible than purely XML-based formats such as GXL and SVG in that it can represent these structures 
and the structure of non-XML notational forms such as VRML.  

Mapping specifications between visual notational information models is expressed as correspondences in our UNM. 
These may be from one dictionary element in one notation to a similar element in another; may be from one source 
element to multiple target elements; may be a formula from multiple source elements to a single target element; or may be 
from a source information sub-structure to a target sub-structure. We designed UNM’s mapping specifications to provide 
a wide range of expressive power, allowing quite complex transformations from one part of a source visual notational 
information structure to another. In addition, we aim to support ease-of-understanding and use for notation mapping 
specifiers allowing them to easily understand what elements and sub-structures in the source notation structure map to 
those in the target. Our UNM mapping specification approach is higher-level and focused on visual notation conversion, 
unlike XSLT scripts for data transformation [14, 41], Rimu scripts for EDI message transformations [16], and purely 
coded information translation solutions, as used by most current notation converters [5]. This means that in general it 
provides a more suitable language for expressing visual notational mapping specifications than other current approaches. 
However, our UNM mapping specifications are not a general-purpose programming language, as they are targeted at 
notation element and structure mapping and utilise our dictionary-based classification of notation elements and structural 
groupings. Thus they can not express all possible mappings directly, but instead provide the user the ability to express 
most common notation information structure mappings we have come across to date. We allow very complex mappings 
not expressible in UNM to be expressed by a call to arbitrary Java code from a UNM mapping correspondence 
relationship.    
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8.3 ALAMATO Converter Generator Framework 

Current approaches to realizing notation converters are to implement them by hand using conventional programming 
languages, express them in a data conversion language like XSLT, or to require the translation of visual notation 
information models into a common exchange format, such as GXL. Hand-implementation of converters is prone to high 
overheads in building and maintaining these programs, difficulty in modifying them and a combination of errors, 
inconsistencies, incompleteness and inappropriate conversions. Using domain-specific data conversion tools like XSLT is 
generally an improvement but supporting tools are not focused on the domain of visual language notation translation. 
Thus the corresponding effort and difficulty is still very high. Use of a common exchange format still requires the writing 
of converters to and from the common exchange format, using one of the previously described approaches. As such, this 
approach is still prone to high overheads and no domain-specific tools. Our experience with converting visual notations to 
and from common exchange formats to date has demonstrated that this is generally a lossy process i.e. often many source 
notation information structures and elements are lost in the conversion. If a target application of the converter requires 
backwards and forwards conversion, this solution is very poor.  

Our ALAMATO converter generator framework processes UNM-specified visual notation mapping specifications to 
automate the generation of notation converters. UNM and its supporting visual notations and IDE allow developers of 
converters much higher level support in describing the visual notations to convert between and the mapping specifications 
to use in the conversion process. ALAMATO allows multiple target converter implementations to be realised e.g. can 
generate a Java-implemented converter or XSLT-implemented converter depending on the requirements of the 
diagramming tools to be integrated. ALAMATO also provides support for “remembering” information from a source 
visual notation model that is not translated to the target, and is able to add this information back to a model then translated 
in the reverse direction, reducing lossy bi-directional transformations. 

8.4 Comparative Work 

XSLT [41] is only useful for relatively straightforward converting processes, because it lacks the completeness of 
formal programming languages and it cannot be used for all kinds of notations. An advantage of XSLT is its integration of 
XML and related standards, which provides some basic functionality which compiler developer have to implement on 
their own. This includes, for example, searching for specific elements in documents using XPath [39] or validating 
documents with XML Schema. Compared with XSLT our framework provides several advantages. It uses a simple way of 
mapping by using nodes and edges which can be enriched with logging information during the development process. The 
translation expressed in XSLT is harder to read and to follow, therefore more error-prone than our approach. Using our 
framework also provides already well established tools (IDEs and libraries) for developing converters. XSLT provides no 
direct way for user interaction, which can be necessary the more complex transformations are.  

Compiler development has much in common with translator development for notations. But in detail both differs in 
several ways. Compiler generators (for example Yacc) lack on facilities to process structures on a higher level, for 
example simple functionalities like XPath to navigate to a specific element in the structure. Also the focus is different, 
compilers parse token by token and generate a target language, whereas notation converters can require to read the entire 
source before converting the source into the target. Compilers have hard-coded mapping rules and these cannot be 
modified or changed “on the fly”, changes in either the source language definition, the target language definition or the 
mapping between requires to have access to the compiler sources to modify them. Our approach can be used for an 
incremental development, i.e. starting with define basic elements, then refine the notation description and the mappings of 
the notation without touching the converter framework. Adding new notations to our framework doesn’t require access to 
converter internals. 

The only direct comparable work known in this area is the Sankhya Translation Framework (STF) [6] which is very 
similar to our approach but uses its own simple proprietary language to describe mappings. The Sankhya Translation 
Modelling language (STML) can represent multiple notations in the same model. The STF uses pluggable streams 
modules to provide different data sources, for example for file and database access. It also provides facilities to trigger 
actions for each element. STML doesn’t provide a complete programming language and therefore more complex tasks and 
user interaction has to be implemented in a traditional programming language using the STF library. STML doesn’t 
provide any search facilities nor is as easy to extend as UNM is and doesn’t provide any formal validation of the output.  

To our knowledge no other tool provides an approach similar to our template mechanism which could be one of the 
main advantages of our framework. The mixture of all these different technologies (GXL, XML Schemata, a mapping 
table which is exchangeable and separated from the dictionary, direct use of the Java programming language and its 
extensibility) makes it an interesting alternative to existing approaches. 
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8.5 Future Work 

Our current work focuses on refining the current prototype Unified Notation Mapping dictionary representational 
structures and mapping specification representations. We are applying this prototype UNM to representing Pounamu 
diagrams, GXL-encoded diagrams, Argo/UML diagram export files, SVG 2-dimensional diagram models, and VRML 3-
dimensional virtual world models.  This allows us to determine if the UNM is flexible enough and can directly express 
most mapping transformation specifications between different parts of these quite different visual notational models. We 
are developing a visual language and IDE for the UNM to allow users to model their visual notational models and to 
express transformations between source and target model elements and structures. We are implementing a converter 
generator using the ALAMATO architecture, initially focusing on interpreting UNM specifications to realise our 
converters and assuming source and target notation information models in an XML-based data format. We are then going 
to generate Java, XSLT and possibly domain-specific mapping language scripting code from UNM specifications via the 
ALAMATO approach, allowing a range of notation converter implementations to be realised from the same UNM 
specification. We will also implement notation information model parsers and unparsers, allowing our generated 
converters to read and write source and target visual notation information models in non-XML formats e.g. concrete 
VRML, GIF and SVG formats. Further work will look at generating optimised converter code where necessary to achieve 
high levels of performance when converting visual notations in some domains e.g. dynamic web page diagram content 
generation. Where appropriate we aim to add generation of editing action conversions (i.e. view editing and navigation 
interactions) between different software tools. This would allow developers to readily exchange software visualization 
notations (appearance – view syntax) as described in this paper, as well as interaction behaviour (editing – view 
semantics) between software tools and 3rd party visualization products. 

9. Summary 
We have developed a number of software visualization converters that support the translation of notation instance 

descriptions between a range of formats e.g. our custom Pounamu XML format and the general GXL format; GXL and 
SVG; GXL and VRML; and have investigated translation between GXL and Excel chart, Visio diagram and GXL and 
GIF/image map renderings. From our experiences building these visual notation converters we have designed a converter 
generator framework that allows tool developers to specify inter-notation mappings and to have custom visualization 
notation converters generated from these mapping specifications. We have developed a Universal Notation Mapping 
language and prototype notation specification tool and are developing an automatic converter generator from these 
specifications. 
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